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Abstract. High strength aluminum alloys are particularly suitable as 

lightweight materials in vehicle and aircraft engineering. The wear 

resistance of materials can be improved by surface and coating technology. 

Strengthening of parts and units of machines, increased reliability and 

longer service life is an important task of modern industry. The aim of 

research was to apply boride coatings on surface of steel parts. Timeliness 

is subject to necessity to harden surface of steel used in high-load 

conditions. Samples of coatings on 65 G grade steel, applied by HFC-

heating, were obtained. Research of samples with different coatings by 

means of metallurgical microscope was carried out. Data on samples with 

different coatings research by means of an eddy current measuring system 

was obtained and conclusion on electrical conductivity distribution along 

the sample surface depending on flux quantitative content during boriding 

was made.  

1 Introduction  

High strength aluminum alloys are particularly suitable as lightweight materials in 

vehicle and aircraft engineering. Because of their high specific strength, accelerated masses 

can be reduced, which enables savings of energy costs and the reduction of CO2 emissions. 

A further improvement of material properties can be achieved by the creation of aluminum 

matrix composites (AMCs). An enhancement of strength, hardness, E modulus and creep 

resistance can be achieved by ceramic particle reinforcement of aluminum alloys as small 

particles (below 1 µm) contribute to dispersion hardening and grain refinement during 

material processing. The resistance of materials against abrasion and adhesive wear 

generally increases with increasing hardness. Thus, AMCs exhibit superior wear resistance 

compared with aluminum alloys and cast iron under sliding wear conditions. This enables 

the implementation of AMCs in automotive applications such as brake discs, drum brakes, 

calipers and cylinder liners [1] and weight reduction due to the substitution of iron base 

materials. However, as reviewed by Deuis et al. [2], AMCs consisting of high-strength 

aluminum alloys and micron or submicron scale particles are susceptible to fatigue wear at 

higher normal loads. Crack initiation takes place at pores, which arise close to particles due 
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to plastic deformation of the matrix alloy at the critical depth beneath the surface. Finally, 

plate-shaped material volumes are delaminated from the surface. 

The wear resistance of materials can be improved by surface and coating technology. 

Especially ceramic coatings provide efficient wear protection due to high abrasion 

resistance and low adhesion against metallic counter bodies. Compact oxide ceramic 

coatings can be generated by plasma electrolytic oxidation (PEO) on aluminum alloys. The 

conversion coatings exhibit excellent adhesion to the substrate and a maximum thickness of 

more than 100 µm. 

Creation of promising disposable and reusable hypersonic airborne devices in aerospace 

industry requires complex solutions of a range of problems, one of which is research and 

development of high-temperature heat-protective coatings. 

Relevance of this research is based on the fact that space airborne vehicles, when in a 

long-duration flight in the atmosphere, are exposed to considerable aerodynamic heating 

under impact air pressure. Materials of space vehicles have to maintain high durability, 

temperature resistance, minimal linear shrinkage. 

Rise of efficiency effectiveness of heat-protective materials is assured with use of 

coatings that raise temperature resistance and mechanical durability of materials. In virtue 

of theoretical and experimental research, basic requirements for a hardening coating 

composition were created: working temperature – 1650, 20-30% raise of compressive 

strength of gradient fibrous material with no more than 3% change of its thermophysical 

properties [3, 4]. 

Process of "classic" diffusion boriding is a rather common method of steel and steel 

parts case-hardening. During boriding, two-phase saturable surface is most often obtained, 

it consists of mixed borides FeB, Fe2B and transition zone — solid boron solution, as well 

as other elements of steel in α-Fe.  

Boron atoms have relatively small size and high mobility; therefore, they can easily 

diffuse into ferrous alloys, forming FeB and Fe2B intermetallic [5]. According to the 

boron–iron phase diagram, maximum amount of boron that can form a single-phase Fe2B is 

33.5 at.% [6]. 

Boron is one of the elements that can generate unique properties in the steel surface. 

The use of hard layer (such as boride) to improve surface properties is a method for 

protecting substrate from environmental effects. The boride layers have high hardness, low 

porosity, high corrosion resistance, and adhesive wear resistance [7]. 

The thermo-chemical boriding process of steel allows FeB and Fe2B phases to be 

obtained. Generation of these layers can improve the surface hardness and wear resistance 

of equipments and components for tribological applications. By controlling the boron 

potential in the steel surface, both single-layer (only the Fe2B phase) or multilayers (FeB–

Fe2B phases) can be produced [8]. The presence of the FeB phase in the layers leads to the 

brittleness of layers and high stress intensity at FeB–Fe2B interface [9]. 

After the "classic" boriding, the coating microstructure, most often, is coalescent at the 

bottom of boride needles, that form a coating layer. Resulting internal tensile stresses in the 

borated coating significantly reduce their plasticity, therefore peeling and chipping of such 

a hardening coating occur, until its complete destruction, at relatively small bending, shock 

or compressive stresses and especially reversed loads and vibrations.  

All of the aforesaid restrains application of isothermal boriding process for wide use 

when hardening parts surfaces made of steel in agricultural machinery industry. 

Boriding, is a thermochemical surface treatment, in which boron is diffused into, and 

combines with the substrate material forming a single or double-phase metal boride layer at 

the surface. Unlike many other surface treatments, hard boride layers can be developed on 

most alloys and metals by boron diffusion. The boriding of ferrous materials causes the 

formation of either a single layer (Fe2B) or double-layer (FeB/Fe2B) with definite 
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composition. The thickness of the layer formed (which is known as the case depth), has an 

effect on the mechanical and chemical behaviours of the borided steels, that depends on the 

boriding temperature, the treatment time and the boron potential that surrounds the sample 

surface [10]. When the treatment time, and temperature are increased, the FeB regions 

become much deeper, and they grow from compact and oriented Fe2B crystals. The phases 

grow preferentially in the (002) plane, increasing the mechanical stress over the FeB/Fe2B 

interface because of the significant differences between the expansion coefficients of both 

phases in the range of 473 to 873 K [11]. 

The surface hardness of the boride layers is usually measured by traditional techniques 

such as the Knoop and Vickers microhardness. However, as a result of its wide acceptance 

for exploring the mechanical behavior of elastic–plastic materials, such as ceramics, the 

nanoindentation technique has also been used to measure different mechanical properties 

under monotonic loading and unloading, in which the data are usually processed by the 

manner proposed by Oliver and Pharr [12]. Some devices also enable continuous stiffness 

measurement (so-called CSM mode), where a small harmonic signal (amplitude of several 

nmor a fraction of amN) is added to the monotonously increasing basic load. The harmonic 

contact stiffness is measured continuously, and makes possible the determination of 

properties during loading from “zero” to the maximum force. However, the CSM mode is 

especially suitable for materials with time-dependent response, such as plastics or 

biomaterials [13]. 

In recent years, Culha et al. [14] employed ultra-microhardness tests to estimate the 

mechanical properties of FeB layers, such as the dynamic hardness and the Young's 

modulus in AISI 1020 and 1040 borided steels. 

The steels were exposed to different experimental conditions during the boriding 

process. The load-dependant elastic modulus and the dynamic hardness values of the FeB 

layer were within the range of 125–397 GPa and 775–1381 HV, respectively. The validity 

of the Young's modulus values proposed in [15] was verified taking into account that the 

indentation depth should not exceed 10–25% of the boride layer thickness, avoiding the 

effect of the steel properties in the elastic values of the FeB layer. In addition, finite 

element modelling was applied to simulate the yield strength of the FeB layer on a low-

alloy steel substrate; the resultant values ranged from 5 to 7 GPa [15]. 

The mechanical properties such as fracture toughness, compressive residual stresses, 

and the indentation size effect (ISE) were also evaluated in the tips of the needles of the 

Fe2B layer using the Berkovich nanoindentation technique [16]; the results showed an 

apparent hardness of approximately 14 GPa with a fracture toughness between 2.4 and 2.7 

MPa, and the compressive residual stresses were between 351 and 471 MP 

In case of boriding by HFC-heating, the speed of coating formation increases hugely 

more due to increase of heating rate, if special fluxes are used there is no need to create a 

protective atmosphere, since the boriding time does not exceed several minutes. Besides 

HFC-heating allows to reduce time of high temperatures effect on the base material, as well 

as to combine easily the boriding process with subsequent heat treatment. In the future, 

little time for boriding carried out by HFC-heating, may promote the use of this boriding 

method in flow production lines, in mass production, and production of large quantities of 

hardened parts per shift. 

Preliminary experiments carried out by us showed the principal possibility of boride 

coatings formation on steel parts surface during HFC-heating. During preliminary 

experiments, it was ascertained and confirmed that when the heating rate was increased, the 

rate of reaction and consequently the formation of coating increased hugely more in 

comparison with an isothermal case-hardening in furnace, and it was ascertained that it was 

necessary to use borate fluxes, for example P-0.66 flux, to obtain high-quality, 

indistinguishable coatings. 
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2 Materials and methods  

As an promising materials for protective-strengthening coatings, offered matrix composites 

based on the ternary system Fe-B-FenB, formed directly on the surface of the reinforcing 

parts, when it boriding in conditions of induction heating of the charge of the original 

composition and the various functional fillers. 

Coating the ternary system Fe-B-FenB formed by induction heating on the surface of the 

reinforcing parts when passing exothermic topochemical reaction between iron steel and 

boron the charge, the reaction captures the surface layer of the base-material and the 

reaction products form with it a single whole and characterized by smoothly changing the 

chemical composition of the transition at the interface base-coat which determines their 

high adhesion strength and durability, special properties [17, 18]. 

Coating samples were obtained for 65 G grade steel made of compositions of boron 

carbide and amorphous boron under conditions of high-frequency heating to research 

boriding processes performed together with HFC-heating of surface of structural and alloy 

steels of main grades used in an agricultural machinery industry, and the effect of carbon 

and alloying elements in steel, physical, physical and mechanical properties and wear 

resistance of boride coatings. 

Boride coatings of 65 G steel during simultaneous SHS process and HFC-heating were 

obtained from a modified mixture of 2Al + B2O3 composition containing 20 and 30% of P-

0.66 flux. Temperature of boriding process in all cases was 950 - 1250°С, saturation time 

was 40 - 180 sec. 

The higher composition of Al in FeB-Al coating results thicker coating. Interdiffusion 

layer, which is composed of intermetallic phases, is formed in FeB-50 at.% Al coating after 

heat treatment [19]. 

The compositions were applied to prepared (cleaned) surface of 50*100*5 mm 65 G 

steel plates as daubing, and after drying they were subject to HFC-heating according to the 

same mode: first, before the initiation of the SHS process, and then, at reduced generator 

power by 25% within 60-80 sec. 

Templates and samples for metallographic examination were prepared from the 

obtained samples. To prepare microsections, a manual cutting machine, a sharpening 

machine and a manual grinding-and-polishing machine were used. 

To determine samples structure, the surface of prepared microsections was treated with 

4% nitric acid solution in ethyl alcohol within 5-7 seconds. The main objects of study in the 

work were selected steel 65G, wear-resistant boride coatings, which were investigated by 

electron microscopy (Philips SEM - 515) and eddy-current measurement system [20-23].  

3 Experimental results 

Photos of samples were taken by means of OLYMPUS GX51 inverted metallographic 

microscope after etching of microsections, and response value of VDDS-5 eddy-current 

gage system was obtained as it moved above the sample surface. 

Research results for the structure of coating obtained by SHS process during HFC-heating 

of modified mixtures containing 20 and 30% P-0.66 flux for 65 G steel are shown in 

Figures 1-8. 
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Fig. 1. Microstructure of coating received from modified mixture with 20% of P-0.66 flux 

(enlargement 100) 

 

 

 

 

Fig. 2. Microstructure of coating received from modified mixture with 20% of P-0.66 flux 

(enlargement 200) 
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Fig. 3. Microstructure of a coating received from modified mixture with 20% of P-0.66 flux 

(enlargement 500) 

 

 

Fig. 4. Signal of eddy-current transducer VS location of sensor above the object that is under research 

 

As it can be seen at Figures 1-3, the structure of coating formed is one of the typical ones 

found earlier in boride coatings obtained from mixtures based on amorphous boron, the 

thickness of the resulting coating is 230-250 μm. Signal amplitude of eddy current 
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transducer (Figure 4) when scanning along the surface of sample under research varies 

significantly (RMS deviation - 12.6 mV), this allows to conclude that the obtained coating 

is unevenly conductive. 

 

 

Fig. 5. Microstructure of coating received from modified mixture with 30% of P-0.66 flux 

(enlargement 100) 

 

 

Fig. 6. Microstructure of coating received from modified mixture with 30% of P-0.66 flux 

(enlargement 200) 
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Fig. 7. Microstructure of coating received from modified mixture with 30% of P-0.66 flux 

(enlargement 500) 

 

 
Fig. 8. Signal of eddy-current transducer VS location of sensor above the object that is under research 

 

As it can be seen at Figures 5-7, if content of P-0.66 flux increases, a similar structure of 

boride coating is formed in modified mixture, with marked boundary with base metal, but 

its thickness is smaller and amounts to 170 - 190 μm. Signal amplitude of eddy current 

transducer (Figure 8) when scanning along the surface of sample under research changes 

significantly less than in the standard mixture (RMS deviation of 4.6 mV), this allows to 

conclude that there is much less change in electrical conductivity of the obtained coating. 
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4 Conclusion 

We applied the developed measuring system to examine the objects being by nature of conductive 

and non-conductive coatings, placed on the conductive base, as well as to measure the thickness of 

the solid conductive objects. We determined that the thickness of the coating influences the eddy-

current transducer signal. This allows us to prospectively use the amplitude control method of such 

object class for exact local measurements of the thickness of conductive and non-conductive coatings 

as well as of other objects. Owing to the received dependencies of the eddy-current transducer signal 

on various coatings, it becomes possible to use the developed system in the diagnostic testing of 

composite hardening coatings. 
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