
BRIEF RESEARCH REPORT
published: 05 February 2019

doi: 10.3389/frobt.2019.00004

Frontiers in Robotics and AI | www.frontiersin.org 1 February 2019 | Volume 6 | Article 4

Edited by:

Matteo Cianchetti,

Sant’Anna School of Advanced

Studies, Italy

Reviewed by:

Chaoyang Song,

Southern University of Science and

Technology, China

Virgilio Mattoli,

Fondazione Istituto Italiano di

Technologia, Italy

*Correspondence:

David Navarro-Alarcon

david.navarro-alarcon@polyu.edu.hk

Specialty section:

This article was submitted to

Soft Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 21 August 2018

Accepted: 14 January 2019

Published: 05 February 2019

Citation:

Navarro-Alarcon D, Zahra O, Trejo C,

Olguín-Díaz E and Parra-Vega V

(2019) Computing

Pressure-Deformation Maps for

Braided Continuum Robots.

Front. Robot. AI 6:4.

doi: 10.3389/frobt.2019.00004

Computing Pressure-Deformation
Maps for Braided Continuum Robots
David Navarro-Alarcon 1*, Omar Zahra 1, Christian Trejo 1,2, Ernesto Olguín-Díaz 2 and

Vicente Parra-Vega 2

1Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 2 Robotics and

Advanced Manufacturing Group, Center for Research and Advanced Studies of the National Polytechnic Institute Saltillo Unit,

Mexico City, Mexico

This paper presents a method for computing sensorimotor maps of braided continuum

robots driven by pneumatic actuators. The method automatically creates a lattice-like

representation of the sensorimotor map that preserves the topology of the input space by

arranging its nodes into clusters of related data. Deformation trajectories can be simply

represented with adjacent nodes whose values smoothly change along the lattice curve;

this facilitates the computation of controls and the prediction of deformations in systems

with unknownmechanical properties. The proposedmodel has an adaptive structure that

can recalibrate to cope with changes in the mechanism or actuators. An experimental

study with a robotic prototype is conducted to validate the proposed method.
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1. INTRODUCTION

Rigid robotic manipulators have been thoroughly studied and implemented in several applications
for more than five decades now (Nof, 1999). More recently, many roboticists have turned their
attention to the design and control of manipulators whose mechanical structure is deformable, and
therefore, can achieve multiple shapes. This new type of continuum robots have many potential
applications in fields such as medical robotics (monitoring procedures with flexible endoscopes),
industrial robotics (grasping parts with compliant grippers), bio-inspired robotics (generating
natural motions with soft limbs), to name a few cases (Hughes et al., 2016; Laschi et al., 2016).
When compared to its rigid robot counterpart, methods for analyzing, sensing, and controlling soft
robots are still in its infancy.

Pneumatic power is a common actuation method for continuum robots that brings
some useful properties such as inherent compliance, motion backdrivability, controllable
expansion/contraction of segments, etc. (Marchese et al., 2015; Sadati et al., 2016). However,
the nonlinear and dynamic behavior of pneumatically-driven components makes it difficult
to derive a closed-form analytical expression relating the driving air pressures and the highly
deformable configuration of the robot. This expression is needed to accurately model and control
the deformations of a system. Currently, there is no widely adopted approach for computing such
sensorimotor relation.

Previous works have addressed this problem (e.g., Trivedi et al., 2008) presents a detailed
nonlinear model relating pressures and the deformations due to pneumatic forces; (Shapiro
et al., 2011) derives a closed-form relation between the segment’s bending angle (measured on a
plane) and the driving pressure; (Falkenhahn et al., 2015) presents a lumped parameters model
using the Euler-Lagrange formalism; (Marchese et al., 2016) presents a model for multi-segment
soft manipulators and experimentally identifies its parameters; (Sadati et al., 2017) derives a
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pressure-deformation model based on the principle of virtual
work. Note that computing these models requires precise
knowledge of the robot’s mechanical properties, which are hardly
available in practice due to the complexity of the system.

The objective of this manuscript is to present a new
approach for automatically computing the steady-state relation
between pressures and deformations. The method is inspired by
models in neuroscience. Its topographically ordered structure
resembles the way areas in the brain (e.g., the somatosensory
and motor cortex) are organized according to related functions
(Kohonen, 2001). This method creates discrete configuration
clusters that can be used for predicting deformations and
computing controls. In contrast with fixed analytical models,
the proposed computational model can continuously adapt its
structure to cope for new data or changes in the mechanical
conditions. To the best of our knowledge, this is the first time
this approach has been used for characterizing pneumatic-driven
braided continuum robots.

2. METHODS

2.1. Modeling of Braided Continuum
Robots
Consider a cylindrical continuum robot (segment) with no radial
and torsional deformations, and with constant curvature along
its backbone. The configuration of this system is described by the
deformation coordinates (Webster and Jones, 2010):

q =
[
λ κ ψ

]⊺
∈ Q (1)

where λ denotes the length of the backbone, κ the curvature of the
segment, and ψ the angle of the robot’s bending (see Figure 1A).
These deformation coordinates are determined by the lengths
l = [l1, l2, l3]⊺ of the three pneumatic chambers. By using simple
trigonometry, the relations between these two vectors can be
obtained as follows (Sadati et al., 2017):

l =




λ(1− κr cos(ψ))
λ(1− κr cos(120◦ − ψ))
λ(1− κr cos(120◦ + ψ))


 (2)

where r denotes the backbone-chamber distance. The
continuum robot is driven by three independent pressures
p = [p1, p2, p3]⊺ ∈ P that are applied to its inner chambers
(see Figure 1B). The dynamic equations of this system can be
derived using Lagrangian-like methods (see e.g., Falkenhahn
et al., 2015; Olguin-Diaz et al., 2018). To control the robot’s
shape, it is important to know what input pressures are needed to
achieve a desired (final) deformation. This steady-state relation
is characterized by the nonlinear mapping p = f (q) :Q 7→ P ,
which can be found via the principle of virtual work (Hamill,
2014):

δl ·

(
∂Ub

∂l
+
∂Ue

∂l
+
∂Ud

∂l
+
∂Up

∂l

)
= 0 (3)

where Ub, Ue, Ud, and Up denote the potential energies resulting
from the body loads, external loads, elastic deformations,

and pneumatic pressures, respectively. Note that the fourth
term above yields a function that must be solved for p (by
exploiting Equation 2) to obtain the pressure-deformation
relation. However, computing the above energy terms is a difficult
task that requires the exact identification of the system.

2.2. Self-Organizing Configuration Maps
The complex properties of pneumatic continuum robots
make it difficult to derive an expression relating pressures
to deformations. In this work we show how an adaptive
computational model can be used to approximate such nonlinear
relation.

Consider first that the robot performs a series of babbling-like
motions (Saegusa et al., 2009) around the workspace of interest
described byP×Q. Let us assume that a set of T sampling points
p(τ ) and q(τ ) are collected at the time instant τ and grouped into
the following training data vector:

xk =

[
p(τ )
q(τ )

]
∈ P ×Q for k = 1, . . . ,T (4)

The vectors Equation(4) will be used for training a self-organizing
map (SOM) (Kohonen, 2013). An important property of these
maps is that they reduce the dimension of the input space
into a 2D lattice while preserving its topology. Neighboring
neurons represent configurations xk that have “similar” pressure-
deformation values.

The network has N computing units arranged in a 2D lattice.
Each neuron has an associated weight vector wj of the same
dimension as xk. Training is done by sequentially presenting each
input pattern xk to the network and finding the weight vector that
best matches its values. This “winning” neuron satisfies:

i = argmin
j

‖wj − xk‖ (5)

where i denotes its index over the N lattice nodes. The best
matching neuron is placed at the center of a neighborhood of
cooperating nodes. Let hij denote the neighborhood function
centered at i for an active neuron j. To make the excitation
proportional to the distance from the center, a common choice
is to use the Gaussian function:

hij = exp

(
−
‖ri − rj‖2

2σ 2
t

)
(6)

where ri and rj denote the ith and jth node’s 2D position within
the lattice (e.g., ri = [20, 15]). The variable σt > 0 specifies the
effective cooperation width, i.e., the influence that neuron i exerts
over the nearby neurons. The jth weight vector is computed with
the following update rule (Sakamoto et al., 2004):

w
j
t+1 = w

j
t − γth

ij(w
j
t − xk) (7)

for a learning gain γt > 0. By using Equation 6, the degree of

adaptation of w
j
t exponentially decreases with its separation from

the center.
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FIGURE 1 | (A) Geometric representation of the robot’s deformation coordinates q = [λ, κ,ψ ]⊺. (B) Details of the internal pneumatic chambers to control the robot’s

configuration. (C) The experimental setup composed of an elastomer-based manipulator, pneumatic valves from Festo (VPPE-3-1-1), a RealSense camera from Intel,

and a Linux-based PC with an i7-7700K processor.

The variables σt and γt control the network’s plasticity. These
are first given large values to allow for coarse adaptations, and
then decreased to fine tune the network’s structure as follows:

σt+1 = σt −
1

η
(σt − σ̃ ) γt+1 = γt −

1

η
(γt − γ̃ ) (8)

for σ̃ , γ̃ > 0 as the fine tuning parameters, and η > 0 as its time
constant.

3. RESULTS

3.1. Setup
We fabricated an elastomer-based soft manipulator (Agarwal
et al., 2016; Schmitt et al., 2018) with three inner chambers
that are independently controlled with pneumatic servo-
valves (Festo) via an analog board (Phidgets). The robot’s
configuration is measured with a camera (see Figure 1C). All
computations are performed in a Linux PC using OpenCV
(Bradski, 2000).

In this study, we restrict our attention to the case of planar
robot motions1. To produce plane deformations, we couple the
controls p2 = p3 such that a virtual pressure separated by 180◦

from p1 is enforced. To differentiate between left/right bendings,

1This situation removes 1-DOF from q as independent changes in ψ cannot be

determined by its 2D image measurements.

we use signed curvature values and define a 2D deformation
vector q = [λ, sgn(ψ)κ]⊺, where κ is measured with vision as
in Navarro-Alarcon et al. (2014).

3.2. Experiments
The robot first performs a series of slow bending/stretching
motions (by commanding ramp pressure signals to
the valves) from which T = 734 data points xk =

[p1, p2,3, λ, sgn(ψ)κ]⊺ are collected. This pressure/deformation
data set is then used for training the network. The
Supplementary Material Video S1 depicts the conducted
experiments.

Note that if the network has too few neurons, the model
has problems in separating distinct configurations (e.g., left
and right bendings). The U-matrix is a useful method to
visualize boundaries between different configurations (Ultsch
and Siemon, 1990). It assigns high/low values if its weight
vector is different/similar from those of Neighboring nodes.
Figures 2A-C depict the U-matrices obtained by considering
lattices of 10×10, 30×30, and 50×50 neurons, respectively. These
figures show that boundaries (i.e., red stripes) start to appear with
a higher number of nodes2. For this study, we have selected a

2The left/right arc symbols are used for representing positive/negative curvatures,

respectively, whereas the vertical line symbol is used for central configurations

without prominent bendings.
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FIGURE 2 | U-matrices with: (A) 10× 10, (B) 30× 30, and (C) 50× 50 neurons. Magnitude of: (D) w1j (activated with p1), (E) w2j (activated with p2,3), and (F)

[w3j ,w4j ] (activated with q). (G) U-matrix with 60× 60 neurons. (H) Deformation clusters. (I) Pressure clusters. Curves for (J) extension, (K) left bending, and (L) right

bending.
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network with 60× 60 neurons, which will be used for the results
reported here.

Figures 2D,E depict the areas that are activated with the
input pressures p1 and p2,3. High values can be interpreted
as deformations that are “mostly” enforced by either p1 or
p2,3 (i.e., right bending, and left bending). The map presents
little overlapping of pressure regions; this corresponds to
extension/retraction motions that require coordinated actions
from all inputs. Figure 2F shows the group of neurons that
encode the maximum value qmax for deformations (i.e., the
longest and roundest configurations), which for our case
corresponds to right bendings. The identified maximum region
depends on the configurations available in the data set (in our
experiments, left bendings were not so prominent).

Figure 2G shows the U-matrix computed for the 60 × 60
network with symbols denoting the dominant deformation state
associated with each neuron. From this data, we can create
clusters to represent the most numerically distinct configurations
of the robot, namely, left and right large bendings, and central
positions3. The resulting deformation clusters are shown in
Figure 2H (where L, C, and R denote the left, center, and
right robot configurations, respectively). We can also create the
pressure clusters shown in Figure 2I, where 51, 52, and 53

denote areas of “mostly” p1, “mostly” p2,3, and combined pressure
actions, respectively.

The network can be used to relate a target deformation
q with its required pressure values p. By presenting a
partial vector x⊺ = [∗, ∗, q⊺]⊺ (for ∗ as unimportant
terms) to the network, we can find the weight wj that
best matches q, as done in Equation 5. The corresponding
pressure values are simply located in the other coordinates of
wj = [w1j,w2j, ∗, ∗]⊺ ≈ [p⊺, ∗, ∗]⊺. Using this prediction
approach, our trained network showed a maximum coordinate
error of (3.57%, 5.38%) for the q and of (17.3%, 15.1%) for
p.

Figures 2J–L depict examples of how the topologically
preserving network can capture incremental deformations of
the robot into adjacent neurons. These figures show that the
end points of the “deformation trajectories” correspond to the
high/low values of the performed motion. The computed maps
allow the characterization of the robot’s properties, including
fabrication errors, unbalanced pneumatic chambers (see the
slight bending in Figure 2J), or any other variation in the
sensorimotor conditions.

4. DISCUSSION

This brief research report presents a computational model that
approximates the steady-state pressure-deformation relations

3We used arbitrary threshold values to define these configurations.

(as described by Equation 3) of pneumatic continuum robots.
The method is based on a self-organizing network that discretises
the configuration space while preserving its topology. This allows
us to represent motions with contiguous nodes whose associated
weights smoothly change along the trajectory. To evaluate the
method’s performance, we conducted experiments with a robotic
prototype4.

The proposed method can be interpreted as an adaptive
lookup table that automatically organizes data according to
the similarity of its coordinates. Once the network is trained,
each weight vector provides an approximated relation between
deformations and pressures. Such relation can be re-trained
when necessary (e.g., based on metrics Polzlbauer, 2004), by
reinitializing the parameters in Equation 8 or by using dynamic
SOMs (Rougier and Boniface, 2011).

There are some limitations with this approach, e.g., the
accuracy of the sensorimotor model is directly dependant on
the dimension of the network and the representativeness of the
training data. Also, note that the computed model does not
capture any dynamical properties of the mechanism; it only
describes the sensorimotor relations in a static manner (see Sang
et al., 2009 for an SOM to represent dynamical systems).

As future work, we plan to evaluate the method with
3D motions of a soft manipulator (using a 3D camera). To
enable the use of sensor-based controls, we are currently
developing a similar network that associates local Jacobian-like
transformations to each node.
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