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Sleep is a physiological state that plays important role in the recovery of fatigue. However,

the relationship between the physiological status of sleep and subjective fatigue remains

unknown. In the present study, we hypothesized that the non-recovery of fatigue at wake

time due to non-restorative sleep might be ascribed to changes in specific parameters of

electroencephalography (EEG) and heart rate variability (HRV) in poor sleepers. Twenty

healthy female shift-working nurses participated in the study. Subjective fatigue was

assessed using the visual analog scale (VAS) at bedtime and wake time. During sleep

on the night between 2 consecutive day shifts, the EEG powers at the frontal pole,

HRV based on electrocardiograms, and distal-proximal gradient of skin temperature were

recorded and analyzed. The results indicated that the subjects with high fatigue on the

VAS at wake time exhibited (1) a decrease in deep non-rapid eye movement (NREM)

(stageN3) sleep duration in the first sleep cycle; (2) a decrease in REM latency; (3) a

decrease in ultra-slow and delta EEG powers, particularly from 30 to 65min after sleep

onset; (4) a decrease in the total power of HRV, particularly from 0 to 30min after sleep

onset; (5) an increase in the very low frequency component of HRV; and (6) a smaller

increase in the distal-proximal gradient of skin temperature, than those of the subjects

with low fatigue levels. The correlational and structural equation modeling analyses of

these parameters suggested that an initial decrease in the total power of HRV from 0 to

30min after sleep onset might inhibit the recovery from fatigue during sleep (i.e., increase

the VAS score at wake time) via its effects on the ultra-slow and delta powers from 30

to 65min after sleep onset, stageN3 duration in the first sleep cycle, REM latency, and

distal-proximal gradient of skin temperature. These findings suggest an important role of

these physiological factors in recovery from fatigue during sleep, and that interventions

to modify these physiological factors might ameliorate fatigue at wake time.
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INTRODUCTION

Sleep is a physiological state that plays important role in the
recovery of fatigue (1). Extensive studies have reported some
changes in the electroencephalography (EEG) power and heart
rate variability (HRV) in various diseases (e.g., chronic fatigue
syndrome, multiple sclerosis, and cancers) associated with sleep
disturbances and fatigue. In chronic fatigue syndrome, patients
exhibit sleep disturbance (2, 3), and changes in ultra-slow and
delta powers as well as changes in HRV during sleep (4–7).
Multiple sclerosis patients reported both sleep disturbance and
fatigue, in which the former significantly contributed to the latter
(8, 9). In cancer patients and cancer survivors, sleep disorders and
fatigue are prevalent, and cancer-related fatigue is correlated with
various subjective sleep parameters such as sleep quality (10).
Interventions for optimizing sleep quality could lower fatigue
in such patients (11). However, the direct relationship between
fatigue and the objectively measured quality and quantity of sleep
remains unknown (1, 12).

The association between shift work and fatigue in workers has
been examined extensively. The problems related to rotational-
shift work affect sleep and work performance (13–15). Nurses
with greater fatigue and poorer sleep quality more often made
decisions that they later regretted (16). However, there are
individual differences in the sensitivity to shift work among
shift workers (17). Our recent study on nurses found that the
subjective fatigue at wake time while they worked the day off to
day shift and day shift to day shift was significantly higher in
poor sleepers than in good sleepers (18). These results suggest
that certain physiological factors during sleep might be related to
individual differences (i.e., good vs. poor sleepers), which might
in turn affect subjective fatigue at wake time.

In the present study, we hypothesized that fatigue at wake time
might be ascribed to “non-restorative sleep,” which is linked to
specific changes in EEG and HRV parameters in poor sleepers.
To investigate this issue, we analyzed the relationship between
subjective fatigue at wake time and the physiological parameters
during sleep in shift nurses, in the same situation as in our
previous study (18) (i.e., the nurses worked the same shift
schedule and slept at home). For this purpose, the physiological
data were recorded from the nurses at their home while they
worked similar shift work schedules.

MATERIALS AND METHODS

Subjects
Twenty healthy female full-time nurses (mean age 35.0 ± 2.0
years; mean± SEM) working at the Toyama University Hospital
participated in the study. The nurses were neither pregnant nor
breastfeeding. They were instructed to refrain from drinks that
contain caffeine or alcohol after dinner. Data from one subject
who consumed alcohol on the night of recording were excluded
from the analysis, leaving a total of 19 subjects for further data
analysis (mean age 34.7 ± 2.1 years). The inclusion criteria
for subject selection were as follows: (1) female nurses who
worked in the university hospital in a specific shift work pattern
(see next section). The exclusion criteria for subject selection

were as follows: (1) subjects who routinely took medicines
such as sleeping pills; (2) subjects who were receiving medical
treatment; (3) subjects who could not attach probes on own
body by themselves; (4) subjects who had allergies to medical
tapes; (5) subjects whose sleep period time were <270min on
the experimental day; (6) subjects who took drinks including
caffeine or alcohol in and after the dinner on the experimental
day. All subjects were treated in strict compliance with the
Declaration of Helsinki and the U.S. code of Federal Regulations
for the Protection of Human Subjects. The experiments were
conducted with the understanding and informed written consent
of each subject, and approved by the Clinical Research and Ethics
Committee at the University of Toyama.

Study Schedule
The data were recorded from nurses who were engaged in the
following shift schedule; day off (day 1), 8 h day shift for 2
days (days 2 and 3), and one 18 h night shift (days 4 and 5)
(the day off—day shift—day shift—night shift [ODDN] schedule)
(Figure 1). Prior to the ODDN schedule, all subjects were trained
to attach an EEG/electrocardiogram (ECG) device and skin
temperature electrodes, and performed a trial night at home. We
confirmed that all subjects could correctly record EEGs and ECGs
in a trial recording. Furthermore, prior to the ODDN schedule,
the subjects completed three self-report questionnaires including
the Pittsburgh Sleep Quality Index (PSQI), and Morningness-
eveningness questionnaire (MEQ). On the night of day 2, EEGs,
ECGs, and skin temperature were recorded at home. On the
physiological recording days (before bedtime on day 2 and after
wake-up on day 3), the nurses rated their current anxiety using
the state anxiety questionnaires in State-Trait Anxiety Inventory
(STAI-S), subjective fatigue using the Visual Analog Scale (VAS),
and subjective sleepiness using the Karolinska sleepiness scale
(Japanese version) (KSS-J) before bedtime on day 2. Furthermore,
after they woke on day 3, they also assessed their subjective sleep
quality using the St. Mary’s hospital (SMH) sleep questionnaire,
and rated their subjective fatigue using the VAS and current
subjective level of sleepiness using the KSS-J. The subjects
were instructed to measure blood pressure on the physiological
recording days (before bedtime on day 2 and after waking on
day 3).

Questionnaires
The PSQI is widely used for clinical purposes in order to assess
subjective sleep quality over a 1 month period, and consists of
19 items in seven domains (19). The total score ranges from
0 to 21, with a lower score indicating better sleep quality. The
MEQ consists of 19 items measuring the degree to which the
respondent favors morning over evening (20), with high and low
scores representing morningness and eveningness, respectively.
The STAI-S is a commonly used inventory for measure of state
anxiety levels (21).

Subjective fatigue was rated using the VAS (18, 22,
23). Subjective sleep quality (e.g., sleep depth, sleep quality,
satisfaction) was rated using the SMH sleep questionnaire (24),
and the current subjective level of sleepiness was rated using
Karolinska sleepiness scale (Japanese version) (25).
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FIGURE 1 | Experimental and shift schedule during the survey. The EEGs, ECGs, and skin temperature (Skin temp) were recorded on the night between consecutive

dayshift (between day 2 and day 3). Fatigue and other subjective parameters were measured at bedtime on day 2 and at wake time on day 3, respectively. O, Day Off;

D, Day shift; N, Night shift; PSQI, Pittsburgh Sleep Quality Index; MEQ, Morningness-Eveningness Questionnaire; STAI-S, state anxiety questionnaires of State-Trait

Anxiety Inventory; VAS, visual analog scale; SMSH, Saint Mary’s Hospital Sleep Questionnaire; KSS-J, Karolinska Sleepiness Scale (Japanese version); BP, blood

pressure.

Physiological Recordings
The active/rest cycle and sleep/wake parameters were measured
throughout the study period using the Actiwatch Spectrum
Plus R© (Philips Respironics, Bend Oregon). EEGs and ECGs were
recorded during sleep at home using a single-channel portable
EEG device (Brainwave Sensor ZA R©; Proasist, Osaka, Japan) at a
sampling rate of 128Hz. The participants were instructed to place
disposable surface electrodes at the center of the forehead and
right mastoid process (for the EEG) and another two electrodes
were placed on the chest to record ECGs (lead II).

The nocturnal skin temperature was recorded on the same
night using nine temperature loggers (iButton R© DS1920; Maxim
Integrated, CA, USA). The temperature loggers were placed on
the bilateral subclavian regions, center of the abdomen at 1 cm
above the navel, bilateral lunate bones on the palmar side, center
of the thigh on the bilateral limbs, and bilateral regions below the
medial malleolus (26).

Data Analysis
In accordance with the original criteria (27, 28), sleep stages were
determined by visual inspection of the EEG data recorded from
the frontal pole during each 30 s epoch by a clinical professional
technologist, and classified into the four sleep stages; (1) awake
(stageW), (2) rapid eye movement (REM) sleep (stageR), (3) light
non-REM (NREM) sleep (stageN1 and stageN2), and (4) deep
NREM sleep (stageN3). Simultaneous sleep recordings using the
single-channel EEG device with single-channel EOGs (Brainwave
Sensor ZA R©) and conventional polysomnography according to
the AASMManual Scoring rules Ver. 2.1 (29) indicated that sleep
stage scoring based on single channel EEGs using the same device
as that in the present study was comparable to the scoring based
on polysomnography according to the AASM Manual Scoring
rules Ver. 2.1 (28). Furthermore, sleep stage scoring based on
single-channel EEG recording from the frontal pole without EOG
and EMG recording was comparable to that with conventional
polysomnography, although the EEG device different from, but
very similar to, the present device was used (30), which has

been previously applied to measurements of REM latency (31).
Other sleep components including the time in bed (TIB) (time
elapsed from going to bed to final arising), sleep period time
(SPT) (time elapsed from sleep onset to the last epoch of sleep),
total sleep time (TST) (duration of time spent in NREM and REM
during SPT), sleep latency (time elapsed from going to bed to
sleep onset), wake time after sleep onset (WASO) (total time of
wake stage >60 s after sleep onset), and sleep efficiency (ratio of
TST/SPT) were calculated (27). REM sleep onset latency (REM
latency) was defined as the time interval between sleep onset
and the first occurrence of an epoch of REM sleep. The above
parameters to assess sleep architectures were derived from the
whole night recording. Based on the EEG sleep stage analysis, a
total of 250min of the data of EEGs, ECGs, and body temperature
around sleep onset (5min before sleep onset and 245min after
sleep onset) were further analyzed in the present study (see
below).

Spectral analysis of the EEGs using a fast Fourier transform
with a Hanning window was performed every 30 s using
commercial software (SleepSign-Lite; KISSEI COMTEC Co.,
Ltd., Matsumoto, Japan) in the following bands: ultra-slow
(0.3–0.8Hz), delta (0.8–4.0Hz), theta (4.0–8.0Hz), alpha (8.0–
12.0Hz), sigma (12.0–16.0Hz), and beta (16.0–30Hz). In the
individual bands, the mean spectral power density and standard
deviation (SD) were computed. The spectral power data in all
bands in the epoch in which the mean power of the delta wave
exceeded the mean+3SD were excluded from the analysis as
noise (32). The 30 s epochs that were assigned as the awake stage
were also excluded from the analysis. The mean power was then
computed in every 5min epoch in each band in each subject.
The power spectrum data in the 5min epochs were natural-log
transformed for further analyses. The data of the 5min epochs in
each band were also normalized by mean power density across
the total sleep period (33).

A total of 250min of data of the ECGs around sleep onset
(5min before sleep onset and 245min after sleep onset, i.e., 50
5min epochs) were analyzed. HRV based on the R-R intervals
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was analyzed using commercial software with the maximum-
entropy method (MemCalc/Win ver2.0; GMS Co., Ltd., Tokyo)
(34). Frequency domain spectral analysis of the HRV, which
was downsampled to generate a signal to be analyzed for the
spectral analysis, was performed on each 120 s epoch, which
was shifted by 30 s; the power spectrum was computed every
30 s in a 120 s window (33). The following four power spectrum
components were analyzed; very low frequency (VLF) (0.003–
0.04Hz), low frequency (LF) (0.04–0.15Hz), high frequency (HF)
(0.15–0.4Hz), and total power (0.003–0.4Hz). Furthermore, the
ratio of LF to HF power (LF/HF) was estimated. The mean power
spectrum or LF/HF ratio was then computed for every 5min
epoch. These data were natural-log transformed.

The skin temperature of each body region was averaged
for every 5min epoch. The distal-proximal gradient of
the skin temperature was calculated by subtracting the
proximal temperature (mean temperature between the bilateral
subclavicular regions) from the peripheral temperature (mean
temperature among the bilateral feet and hands). The difference
in distal-proximal gradient of the skin temperature (dDPG)
was then computed by subtracting the mean baseline data of
distal-proximal gradient of the skin temperature for 30min
before sleep onset from the data after sleep onset.

Grouping of the Subjects and Statistical
Analysis
The subjects were divided into two groups based on subjective
fatigue (as determined by the VAS) at wake time on day 3; the
low fatigue group (n = 12, fatigue VAS score of ≤5.0) and the
high fatigue group (n = 7, fatigue VAS score of >5.0). The
physiological data over 250min (50 5min epochs) were analyzed
by a two-way analysis of variance (ANOVA) with “group” and
“time” as factors. Furthermore, correlations between possible
two factors were analyzed by simple linear regression analysis.
The significance level was set at p < 0.05 except for post-
hoc multiple comparisons. Post-hoc multiple comparisons after
two-way ANOVA were performed using Bonferroni test with a
significant adjusted p< 0.05. The all data were presented as mean
values± standard error of the mean (SEM).

Based on the above correlation analyses, seven autonomic
and EEG-related variables were identified as potential factors
that might affect the VAS score at wake time (see Results).
Furthermore, based on the temporal relationships among these
eight variables, a path diagram for the hypothesized set of
relationships was created and analyzed by structural equation
modeling. Structural equation modeling is a collection of
statistical techniques that allow analysis of a set of relationships
amongmultiple factors ormeasured variables (35). The structural
equation modeling analyses were conducted using IBM SPSS
AMOS V. 20. To assess the fitness of the hypothetical model, the
root mean square error of approximation (RMSEA); comparative
fit index (CFI), which is identical to relative non-centrality index;
and Tucker-Lewis index (TLI), in addition to χ

2 values and
χ
2/df, were used (36). Furthermore, bootstrap resampling of

the original sample was performed using the same software,
and the resampled data were re-analyzed by structural equation

modeling. The sample size of the resampled data was set at n =

10,000 (37).

RESULTS

Baseline and Psychological Characteristics
The baseline and psychological data of the subjects are presented
in Table 1. There were no significant differences in the baseline
characteristics (age, height, body weight, and body mass index,
and blood pressure) between the low and high fatigue groups (t-
test, p> 0.05). Furthermore, there were no significant differences
in the PSQI, MEQ, and STAI-S scores as well as KSS-J scores at
bedtime and wake time between the two groups (t-test, p> 0.05).
In addition, there were no significant differences in sleepiness
(responses to SMH questionnaires) between the two groups (t-
test, p > 0.05) (Supplementary Table 1). The high fatigue group
reported higher VAS scores (Fatigue VAS) at wake time than did
the low fatigue group (t-test, p <0.0001) based on definition of
the two groups. However, there were no significant differences
in the VAS scores at bedtime between the two groups (t-test,
p > 0.05). Furthermore, statistical analysis of the VAS score at
bedtime and wake time by a two-way ANOVA with “group” (low
vs. high fatigue groups) and “time” (bedtime vs. wake time) as
factors indicated that there were significant main effects of group
[F(1,34) = 26.95, p < 0.0001] and time [F(1,34) = 32.24, p <

0.0001], and a significant interaction between group and time
[F(1,34) = 4.517, p = 0.0409] (Figure 2). Post-hoc tests indicated
that the VAS score in the low fatigue group was significantly
smaller at wake time than at bedtime (Bonferroni test, p <

0.0001), and that the VAS score at wake time was significantly
smaller in the low fatigue group than in the high fatigue group
(Bonferroni test, p < 0.05). However, there were no significant
differences in the VAS score between bedtime and wake time in

TABLE 1 | Comparison of the baseline characteristics between the LFG and HFG.

LFG (n = 12) HFG (n = 7)

Age 32.4 ± 2.7 38.7 ± 3.2

Height (cm) 157.2 ± 1.7 158.9 ± 1.5

Weight (kg) 49.7 ± 1.5 50.9 ± 1.1

BMI 20.1 ± 0.5 20.2 ± 0.6

SBP (mmHg) at bedtime 108.4 ± 4.2 111.9 ± 3.2

DBP (mmHg) at bedtime 69.4 ± 3.0 73.4 ± 2.9

SBP (mmHg) at wake time 111.7 ± 3.5 112.9 ± 4.5

DBP (mmHg) at wake time 68.9 ± 3.3 78.6 ± 4.2

PSQI 5.7 ± 0.6 5.1 ± 0.6

MEQ 54.8 ± 2.4 57.6 ± 3.7

STAI-S at bedtime 42.8 ± 1.7 46.6 ± 1.9

KSS-J at bedtime 5.6 ± 0.5 6.6 ± 0.5

KSS-J at wake time 4.9 ± 0.5 6.3 ± 0.7

Fatigue VAS at bedtime 6.44 ± 0.40 7.72 ± 0.46

Fatigue VAS at wake time 3.17 ± 0.33 6.24 ± 0.46****

LFG, low fatigue group; HFG, high fatigue group; SBP, systolic blood pressure; DBP,

diastolic blood pressure. Data are presented as mean values ± standard error of the

mean (SEM). ****Significant difference from LFG (p < 0.0001).
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the high fatigue group (Bonferroni test, p > 0.05). These findings
indicated that VAS fatigue was decreased at wake time after sleep
in the low fatigue group, but not in the high fatigue group.

Sleep Architectures and EEG Analysis
Table 2 presents the sleep architectures in the low and high
fatigue groups. There were no significant differences in the TIB,
SPT, TST, sleep efficiency, WASO, REM duration, and light
NREM duration between the low and high fatigue groups (t-test,
p> 0.05). However, the stageN3 sleep duration in the whole sleep
period tended to be shorter in the high fatigue group than the low
fatigue group (t-test, p= 0.0505), and the stageN3 sleep duration
in sleep cycle 1 was significantly shorter in the high fatigue group
than the low fatigue group (t-test, p < 0.05). Furthermore, the
REM latency was significantly shorter in the high fatigue group
than in the low fatigue group (t-test, p < 0.05).

Figure 3 provides the results derived from the power
spectrum analysis in each frequency band for the first 250min
of sleep. The data in each frequency band were natural-log

FIGURE 2 | Comparison of subjective feeling of fatigue between the low

fatigue and high fatigue groups. LFG, low fatigue group; HFG, high fatigue

group. *p < 0.05, ****p < 0.0001.

TABLE 2 | Comparison of sleep architectures between the LFG and HFG.

LFG HFG

Time in bed (min) 379.7 ± 11.6 367.9 ± 19.7

Sleep period time (min) 351.3 ± 10.3 349.9 ± 17.9

Total sleep time (min) 344.8 ± 9.9 332.3 ± 20.2

Sleep efficiency (%) 98.2 ± 0.2 94.9 ± 2.6

Sleep latency (min) 13.4 ± 2.7 11.1 ± 2.3

STAGE TIME (MIN)

WASO 3.5 ± 0.8 5.2 ± 1.2

REM 78.5 ± 5.6 76.7 ± 9.1

StageN1-2 181.4 ± 8.0 187.3 ± 16.7

StageN3 84.9 ± 4.6 68.3 ± 6.7#

StageN3 in sleep cycle 1 36.2 ± 2.0 25.5 ± 3.4*

REM latency (min) 72.6 ± 6.5 47.8 ± 7.5*

LFG, low fatigue group; HFG, high fatigue group. Data are presented as mean values ±

standard error of themean (SEM). #Marginal difference from LFG (p= 0.0505); *Significant

difference from LFG (p < 0.05).

transformed; beta power (Ln Beta) (Figure 3A), sigma power
(Ln Sigma) (Figure 3B), alpha power (Ln Alpha) (Figure 3C),
theta power (Ln Theta) (Figure 3D), delta power (Ln Delta)
(Figure 3E), and ultra-slow power (Ln US) (Figure 3F). The data
in each frequency band were analyzed by two-way ANOVA with
“group” and “time” as factors, and summary of the statistical
results was shown in Table 3. The results indicated that there
were significant main effects of group as well as time in Ln
Beta, Ln Theta, Ln Delta, and Ln US (Table 3). However, there
was no significant interaction between group and time in the
all frequency bands (Table 3). Furthermore, consistent with the
decreased stageN3 duration in sleep cycle 1 in the high fatigue
group (Table 2), the mean Ln Delta from 30 to 65min after sleep
onset (Ln Delta_30–65min) was significantly smaller in the high
fatigue group than in the low fatigue group (t-test, p = 0.0268)
(Figure 3E, inset). In addition, themean LnUS from 30 to 65min
after sleep onset (Ln US_30–65min) was significantly smaller in
the high fatigue group than in the low fatigue group (t-test, p =

0.0425) (Figure 3F, inset).
Figure 4 presents the normalized EEG powers, relative to

the mean power across the whole sleep, in each frequency
band across the three sleep cycles. The normalized data in each
frequency band were analyzed by two-way ANOVAwith “group”
and “sleep cycle” as factors, and summary of the statistical results
was shown in Table 4. The results indicated that there were
significant main effects of sleep cycle in the normalized US,
delta, theta, alpha, and sigma powers (Table 4). Post-hoc tests
for the normalized ultra-slow (US) power indicated that the
mean normalized US power was larger in sleep cycle 2 than in
sleep cycles 1 and 3 (Bonferroni test, p = 0.0104 and 0.0049,
respectively) (Figure 4A). Post-hoc tests for the normalized delta
power indicated that the mean normalized delta power was large
r in sleep cycle 1 than in sleep cycle 2, and larger in sleep cycle 2
than in sleep cycle 3 (Bonferroni test, p = 0.0020 and p <0.0001,
respectively) (Figure 4B). Post-hoc tests for the normalized theta
power indicated that themean normalized theta power was larger
in sleep cycle 1 than in sleep cycle 2, and larger in sleep cycle 2
than in sleep cycle 3 (Bonferroni test, p < 0.0001) (Figure 4C).
Post-hoc tests for the normalized alpha power indicated that
the mean normalized alpha power was larger in sleep cycle
1 than in sleep cycles 2 and 3 (Bonferroni test, p = 0.0019
and p <0.0001, respectively) (Figure 4D). Post-hoc tests for the
normalized sigma power indicated that the mean normalized
sigma power was larger in sleep cycle 1 than in sleep cycles 2 and
3 (Bonferroni test, p < 0.0001) (Figure 4E). Furthermore, there
was a significant interaction between group and sleep cycle only
in the normalized delta power (Table 4). The post-hoc test for the
interaction indicated that the mean normalized delta power was
significantly smaller in the high fatigue group than the low fatigue
group in sleep cycle 1 (Bonferroni test, p= 0.0312).

The above results indicated that there were significant
differences in the four parameters [the stageN3 sleep duration
in sleep cycle 1, REM latency, and slow waves (delta and
ultra-slow waves)] between the two groups. Figure 5 indicates
the relationships between these parameters. Statistical analyses
by simple regression analysis indicated that the stageN3 sleep
duration in sleep cycle 1 (stageN3 duration in cycle 1) was
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A

B

C

D

E

F

FIGURE 3 | Changes in the electroencephalography powers during sleep. (A) Changes in the natural-log transformed beta power (Ln Beta). (B) Changes in the

natural-log transformed sigma power (Ln Sigma). (C) Changes in the natural-log transformed alpha power (Ln Alpha). (D) Changes in the natural-log transformed theta

power (Ln Theta). (E) Changes in the natural-log transformed delta power (Ln Delta). The inset indicates the difference in the mean natural-log transformed delta

power from 30 to 65min (red-colored shaded area) after sleep onset (Ln Delta_30–65min) between the high fatigue group (HFG) and the low fatigue group (LFG). (F)

Changes in the natural-log transformed ultra-slow power (Ln US). The inset indicates the difference in the mean natural-log transformed ultra-slow power from 30 to

65min (red-colored shaded area) after sleep onset (Ln US_30–65min) between the HFG and LFG. *p < 0.05, **p < 0.01, ****p < 0.0001, respectively.
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significantly and positively correlated with the mean Ln US
in sleep cycle 1 (Ln US_cycle1) [F(1, 17) = 10.86, p = 0.0043]

TABLE 3 | Summary of the statistical results in the EEG data analyses by two-way

ANOVA with “group” and “time” as factors in each frequency band.

Variable Group Time Group × Time

F1, 867 P F50, 867 P F50, 867 P

Ln Beta 30.05 p < 0.0001 2.367 p < 0.0001 0.7825 0.8616

Ln Sigma 2.041 0.1534 1.131 0.2518 0.9275 0.618

Ln Alpha 1.786 0.1818 1.175 0.1936 0.4448 0.9997

Ln Theta 4.541 0.00334 3.695 p < 0.0001 0.5568 0.9946

Ln Delta 9.225 0.0025 5.174 p < 0.0001 0.9047 0.6621

Ln US 48.91 p < 0.0001 3.505 p < 0.0001 0.6254 0.9807

(Figure 5A) and those from 30 to 65min after sleep onset
(Ln US_30–65min) [F(1, 17) = 7.412, p = 0.0145] (Figure 5B).
Furthermore, statistical analyses by simple regression analysis
indicated that the stageN3 duration in cycle 1 was significantly
and positively correlated with the mean Ln Delta in sleep cycle
1 (Ln Delta_cycle1) [F(1, 17) = 6.128, p = 0.0241] (Figure 5C)
and the Ln Delta_30–65min [F(1, 17) = 7.027, p = 0.0168]
(Figure 5D). In addition, statistical analysis by simple regression
analysis indicated that the REM latency was significantly and
positively correlated with the stageN3 duration in cycle 1 [F(1, 17)
= 5.145, p = 0.0366] (Figure 5E). These results suggest that the
decrease in the stageN3 duration in sleep cycle 1 and the REM
latency in the high fatigue group (Table 2) might be ascribed to
the decrease in the ultra-slow and delta powers in the high fatigue
group.

A D

B E

C F

FIGURE 4 | Comparison of the normalized electroencephalography powers across the three initial sleep cycles. (A) The normalized ultra-slow (US) power. (B) The

normalized delta power. (C) The normalized theta power. (D) The normalized alpha power. (E) The normalized sigma power. (F) The normalized beta power. LFG, low

fatigue group; HFG, high fatigue group; cycle, sleep cycle. *p < 0.05, **p < 0.01, ****p < 0.0001, respectively. #Significant difference from the LFG (p <0.05).
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Autonomic Activity During Sleep
Figures 6A–E presents the changes in natural-log transformed
HRV parameters during sleep in the low and high fatigue groups.

TABLE 4 | Summary of the statistical results in the normalized EEG data analyses

by two-way ANOVA with “group” and “sleep cycle” as factors in each frequency

band.

Variable Group Sleep cycle Group × Time

F1, 51 P F2, 51 P F2, 51 P

Normalized beta 0.0829 0.7746 3.004 0.0584 0.7885 0.4600

Normalized sigma 0.8852 0.3512 17.400 p < 0.0001 0.2265 0.7981

Normalized alpha 0.3687 0.5464 16.17 p < 0.0001 3.052 0.0560

Normalized theta 1.421 0.2387 70.65 p < 0.0001 1.245 0.2966

Normalized delta 1.254 0.2697 27.89 p < 0.0001 3.754 0.0301

Normalized US 0.2294 0.6340 7.974 0.0010 1.367 0.2641

The natural-log transformed HRV data were analyzed by two-
way ANOVAwith “group” and “time” as factors, and summary of
the statistical results was shown in Table 5. The statistical results
indicated that there were significant main effects of group in
the natural-log transformed LF (Ln LF), natural-log transformed
VLF (Ln VLF), and natural-log transformed total power (Ln
TP) (Table 5), while there were significant main effects of time
in the natural-log transformed HF (Ln HF), Ln VLF, and Ln
TP (Table 5). Furthermore, there was a significant interaction
between group and time only in Ln TP (Table 5). Post-hoc tests
for the interaction indicated that the Ln TP was smaller in the
high fatigue group than in the low fatigue group in the 7th
epoch (from 25 to 30min after sleep onset) (Bonferroni test, p
< 0.0001). In addition, the mean Ln VLF from 30 to 65min
after sleep onset (Ln VLF_30–65min) was significantly greater
in the high fatigue group than in the low fatigue group (t-test,
p = 0.0400) (Figure 6D, inset), while the mean Ln TP from 0
to 30min after sleep onset (Ln TP_0–30min) was significantly

A B

C D

E

FIGURE 5 | Correlation between the deep non-rapid eye movement sleep duration in sleep cycle 1 and the electroencephalography parameters. Correlations of the

stageN3 duration in sleep cycle 1 (stageN3 duration in cycle 1) with (A) the mean natural-log transformed ultra-slow powers in sleep cycle 1 (Ln US_cycle1), (B) the

mean natural-log transformed ultra-slow powers from 30 to 65min after sleep onset (Ln US_30–65min), (C) the mean natural-log transformed delta powers in sleep

cycle 1 (Ln Delta_cycle1), (D) the mean natural-log transformed delta powers from 30 to 65min after sleep onset (Ln Delta_30–65min), and (E) the REM latency.
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A

B

C

D

E

F

FIGURE 6 | Changes in the autonomic parameters during sleep. (A) Changes in the natural-log transformed high frequency (HF) (Ln HF). (B) Changes in the

natural-log transformed low frequency (LF)/HF (Ln LF/HF). (C) Changes in the natural-log transformed LF (Ln LF). (D) Changes in the natural-log transformed very low

frequency (VLF) (Ln VLF). The inset indicates the comparison of the mean Ln VLF from 30 to 65min (red-colored shaded area) after sleep onset (Ln VLF_30–65min)

between the low fatigue group (LFG) and the high fatigue group (HFG). (E) Changes in the natural-log transformed total power (Ln TP). The inset indicates the

comparison of the mean Ln TP from 0 to 30min (red-colored shaded area) after sleep onset (Ln TP_0–30min) between the HFG and the LFG. (F) Changes in the

difference distal-proximal gradient (dDPG). The inset indicates the comparison of the mean dDPG from 30 to 250min (red-colored shaded area) after sleep onset

(dDPG_30–250min) between the HFG and LFG. *p < 0.05, ****P < 0.0001, respectively.
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smaller in the high fatigue group than in the low fatigue group
(t-test, p= 0.0108) (Figure 6E, inset).

In the dDPG (Figure 6F), statistical analysis by two-way
ANOVA indicated that there was a significant main effect of
group, but no significant interaction between group and time
(Table 5). Furthermore, the mean dDPG from 30 to 250min after
sleep onset (dDPG_30–250min) was significantly greater in the
low fatigue group than in the high fatigue group (t-test, p =

0.0163) (Figure 6F, inset). These results indicated that there were
also significant differences in the autonomic parameters during
sleep between the low and high fatigue groups.

Relationships Between the VAS Score and
the EEG and Autonomic Parameters
We then analyzed the relationships between the fatigue VAS
score at wake time and the EEG and autonomic parameters with
significant differences between the low and high fatigue groups.
Statistical analyses by simple regression analyses indicated that
four parameters were found to be significantly correlated with
fatigue as evaluated by the VAS at wake time (Figure 7); fatigue
VAS at wake time was significantly and negatively correlated with
the stageN3 duration in cycle 1 [F(1, 17) = 10.02, p = 0.0056]
(Figure 7A) and the dDPG_30–250min [F(1, 17) = 9.006, p =

0.0080] (Figure 7B). Furthermore, fatigue VAS at wake time was
significantly and negatively correlated with the Ln TP_0-30min
[F(1, 17) = 10.83, p = 0.0043] (Figure 7C) and the REM latency
[F(1, 17) = 8.151, p= 0.0110] (Figure 7D).

The above data in Figure 7 indicate that fatigue VAS at wake
time was correlated with four parameters (stageN3 duration
in cycle 1, dDPG_30–250min, Ln TP_0–30min, and REM
latency). Furthermore, stageN3 duration in cycle 1 was correlated
to Ln US_cycle1, Ln US_30–65min, Ln Delta_cycle1, and Ln
Delta_30–65min (Figure 5). Among these parameters, the Ln
TP_0–30min underwent the earliest changes. This suggests
that changes in the remaining parameters might be induced
by changes in Ln TP_0–30min. We analyzed this possibility;
Figure 8 demonstrates the relationships between the Ln TP_0–
30min and other factors. Statistical analyses by simple regression
analysis indicated that the Ln TP_0–30min was significantly and
positively correlated with the stageN3 duration in cycle 1 [F(1, 17)
= 22.67, p = 0.0002] (Figure 8A), and tended to be positively
correlated with the dDPG_30–250min [F(1, 17) = 4.364, p =

0.052] (Figure 8B). The significant correlation of the Ln TP_0–
30min with the stageN3 duration in cycle 1 might be mediated
via the effect of the Ln TP_0–30min on the ultra-slow and delta
powers. Consistent with this notion, the Ln TP_0–30min tended
to be positively correlated with the Ln US_30–65min [F(1, 17) =
4.079, p= 0.0595] (Figure 8C), and with the mean Ln US_cycle1
[F(1, 17) = 4.431, p = 0.0505] (Figure 8D). Furthermore, the Ln
TP_0–30min was significantly and positively correlated with the
Ln Delta_30–65min [F(1, 17) = 6.585, p = 0.0200] (Figure 8E),
and tended to be positively correlated with the Ln Delta_cycle1
[F(1, 17) = 3.795, p= 0.0681] (Figure 8F).

The above results identified the six possible variables (the
Ln TP_0–30min, Ln US_30–65min, Ln Delta_30–65min,
dDPG_30–250min, stageN3 duration in cycle 1, and REM

latency) with an additional factor of LnVLF_30–65min that
was increased in the high fatigue group, which might affect
fatigue VAS at wake time. Based on the time when the variables
changed and the linear relationships between the variables, we
hypothesized that the initial decrease in the Ln TP_0–30min
might increase fatigue VAS at wake time via the changes in the
Ln US_30–65min, Ln Delta_30–65min, dDPG_30–250min, Ln
VLF_30–65min, stageN3 duration in cycle 1, and REM latency
(Figure 9) (see the Discussion). This hypothetical model was
analyzed by structural equation modeling. The overall fit indices
of the model indicated that fitting with the data was acceptable
[χ2 = 14.623, (p = 0.479); df = 15; χ2/df = 0.975; CFI =

1.000; RMSEA = 0.000; TLI = 1.013]. However, it was noted
that the path from the Ln US_30–65min to the stageN3 duration
in cycle1 and another path from the REM latency to fatigue
VAS at wake time was not significant (p > 0.05). We then
analyzed the modified model in which these two paths were
deleted (Figure 10). The results indicated that fitting with the
data was acceptable [χ2 = 17.756, (p = 0.404); df = 17; χ

2/df
= 1.044; CFI = 0.986; RMSEA = 0.050; TLI = 0.977]. All paths
aside from the Ln TP_0–30min to the Ln VLF_30–65min path
were significant (p < 0.05). We further analyzed this modified
model by bootstrapping (n = 10,000). The bootstrapping data
confirmed the same results as those in the original data (n =

19); all paths aside from the Ln TP_0–30min to the Ln VLF_30–
65min path were significant.

DISCUSSION

Physiological Differences Between the
Low and High Fatigue Groups
In the present study, the fatigue VAS score was lower at wake
time in the low fatigue group, but not in the high fatigue group,
suggesting that the low fatigue group recovered from fatigue
during sleep, but the high fatigue group did not recover; i.e.,
“non-restorative sleep” occurred in the high fatigue group. The
high fatigue group exhibited the following changes compared to
the low fatigue group; (1) a decrease in the stageN3 sleep duration
in sleep cycle 1; (2) a decrease in the ultra-slow, delta, theta, and
beta powers; (3) a decrease in the REM latency; (4) a decrease
in the LF and total power of HRV; (5) an increase in the VLF;
and (6) a smaller increase in the dDPG. Consistent with the
present results, previous studies reported that a decrease in the
ultra-slow and delta powers occurs in chronic fatigue syndrome
(CFS) (6, 38). These findings suggest that the changes in the
EEG powers in the high fatigue group might affect recovery from
fatigue during sleep.

In addition to the decreased mean REM latency in the high
fatigue group, the one subject showed very short REM latency
(<8min) in the high fatigue group (Figure 7D), and could be
narcoleptic. However, it is unlikely since the decreased REM
latency in the high fatigue group could be ascribed to sleep
loss (Total sleep time <6 h) and/or shift work in the present
study. Previous studies reported that both sleep loss and shift
work were significantly associated with short onset of REM
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sleep (<8–15min) in a nocturnal polysomnography and Sleep-
Onset REM (SOREM) in a daytime multiple sleep latency test
(MSLT) (39, 40), which can lead to a false positive diagnosis for
narcolepsy (39, 40). Thus, the present results are consistent with
these previous studies, and the given subject with short REM
latency <8min in the present study might be non-narcoleptic
since majority of subjects with positive findings in the MSLT
seemed to be false positive in diagnosis of narcolepsy especially
in female subjects (39). However, it is noted that the sleep stage
scoring in the present study was based on single-channel EEGs,
and the present results should be interpreted with caution (see
Conclusions and limitations).

Interestingly, Ln TP and Ln LF, which were significantly
decreased in the high fatigue group, were relatively stable over
250min. In contrast, Ln HF showed cyclic changes similar

TABLE 5 | Summary of the statistical results in the autonomic data analyses by

two-way ANOVA with “group” and “time” as factors in each frequency band.

Variable Group Time Group × Time

F1, 867 P F50, 867 P F50, 867 P

Ln HF 0.9834 0.3216 1.758 0.0012 0.6499 0.9715

Ln LF/HF 3.522 0.0609 1.228 0.1377 0.5173 0.9978

Ln LF 34.03 p < 0.0001 1.036 0.4074 0.4802 0.9992

Ln VLF 17.36 p < 0.0001 1.674 0.0028 0.6568 0.9685

Ln TP 36.31 p < 0.0001 1.808 0.0007 1.475 0.0195

dDGP 222.5 p < 0.0001 0.7557 0.8907 1.055 0.3737

to Ln Delta that correlates with sleep depth or sleep stage
by definition, while Ln LF/HF and Ln VLF showed opposite
patters to that of Ln Delta. These findings are consistent with
previous studies in which sympathetic-dominant activity (e.g., Ln
LF/HF, Ln VLF) was negatively correlated with sleep stages, while
vagal-dominant activity (e.g., Ln HF) was positively correlated
with sleep stages (41, 42). Since LF and total power of HRV
include both parasympathetic and sympathetic activity (43–45),
these two variables could be less prone to show sleep stage-
related changes. Second, some studies reported changes in total
power of HRV, which was negatively correlated with urine
levels of cortisol and noradrenaline and saliva cortisol levels
(46), and a decrease in the LF and total power of HRV in
athletes with fatigue and patients with CFS (4, 47), suggesting
that total power of HRV is reduced in stressed or exhausted
conditions.

Furthermore, the distal-proximal gradient of the skin
temperature is an indirect measure of heat dissipation or heat
loss from the core (brain) to the periphery (hand and leg skin)
due to vasodilation in the peripheral skin, which is associated
with sleepiness and the body’s readiness for sleep as well as
NREM (48–50). The smaller increase in the dDPG in the high
fatigue group suggests that heat dissipation to lower the core
temperature leading to NREM sleep was less evident in the high
fatigue group. Furthermore, the VLF was increased in the high
fatigue group. It is reported that an increase in the VLF reflects
thermogenesis by an increase in metabolism (51, 52), suggesting
that thermogenesis was increased in the high fatigue group. These

A B

C D

FIGURE 7 | Parameters correlated with fatigue as determined by the visual analog scale at wake time (Fatigue VAS at waketime). (A) Correlation with the stageN3

duration in sleep cycle 1 (stageN3 duration in cycle 1). (B) Correlation with the mean difference distal-proximal gradient (dDPG) from 30 to 250min after sleep onset

(dDPG_30–250min). (C) Correlation with the mean natural-log transformed total power from 0 to 30min after sleep onset (Ln TP_0–30min). (D) Correlation with the

rapid eye movement (REM) latency.
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FIGURE 8 | Parameters correlated with total power during the initial phase of sleep (Ln TP_0–30min). (A) Correlation with the stageN3 duration in sleep cycle 1

(stageN3 duration in cycle 1). (B) Correlation with the mean difference distal-proximal gradient (dDPG) from 30 to 250min after sleep onset (dDPG_30–250min).

(C) Correlation with the mean natural-log transformed ultra-slow power (Ln US) from 30 to 65min after sleep onset (Ln US_30–65min). (D) Correlation with the mean

Ln US in sleep cycle 1 (Ln US_cycle1). (E) Correlation with the mean natural-log transformed delta power (Ln Delta) from 30 to 65min after sleep onset (Ln

Delta_30–65min). (F) Correlation with the mean Ln Delta in sleep cycle 1 (Ln Delta_cycle1).

two physiological processes (an increase in thermogenesis and
lowered heat dissipation) might increase the core temperature,
which might in turn have decreased NREM sleep in the high
fatigue group.

Physiological Mechanisms of Fatigue at
Wake Time
The difference in the EEG and autonomic parameters between
the low and high fatigue groups may be due to the individual
differences in physiological reactions to shift-work conditions.
The above inference suggests that the non-recovery from
fatigue due to “non-restorative sleep” in the high fatigue
group might be ascribed to the changes in the EEG and
HRV parameters. Consistent with this notion, fatigue as
determined by the VAS at wake time was negatively correlated
with (1) the mean Ln TP_0–30min), (2) stageN3 duration
in cycle 1, (3) mean dDPG_30–250min, and (4) REM

latency (Figure 7). Among these four factors correlated with
fatigue as determined by VAS, Ln TP_0–30min underwent
the earliest changes, and was correlated with the stageN3
duration in cycle 1 and dDPG_30–250min (Figures 8A,B).
Furthermore, (1) the Ln TP_0–30min was correlated with the
EEG parameters in NREM sleep in sleep cycle 1 (Ln US_30–
65min, Ln US_cycle1, Ln Delta_30–65min, Ln Delta_cycle1)
(Figures 8C–F), and (2) the stageN3 duration in cycle 1 was
correlated with the REM latency (Figure 5E). These findings
suggest that the Ln TP_0–30min might affect fatigue VAS
at wake time indirectly, via the remaining five factors (the
dDPG_30–250min, Ln US_30–65min, Ln Delta_30–65min,
stageN3 duration in cycle 1, and REM latency). In addition,
the Ln VLF_30–65min, which was also increased in the high
fatigue group, might also mediate effects of the Ln TP_0–
30min. The structural equation modeling results support this
initial hypothesized model (Figure 9). However, the modified
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FIGURE 9 | Diagram and results derived from structural equation modeling with eight observed variables. Single-headed arrows (paths) indicate the causal

relationships in the model, with the variable at the tail of the arrow causing the variable at the point. Double-headed arrows indicate covariances or correlations,

without a causal interpretation. Statistically, the single-headed arrows (paths) represent regression coefficients, while the double-headed arrows represent

covariances. e1-8, measurement errors. Values near the arrows indicate standardized regression coefficients. *p < 0.05, **p < 0.01, #p < 0.1.

model indicated that the Ln US_30–65min and REM latency
might not be directly related to fatigue VAS at wake time
(Figure 10).

There is some evidence that pro-inflammatory cytokines (e.g.,
IL-1β, TNF-α, IL-6) reduce HRV including HF, LF, and total
power of HRV (53–56), and extensive studies have reported
that various cytokines are associated with the pathogenesis
of fatigue in various diseases such as CFS, cancers, and
multiple sclerosis (57–59). Although the subjects in the present
study were healthy adult women without such diseases, it is
reported that the serum levels of cytokines increase in response
to various stresses including psychological stress (60), and
serum cytokine levels are also affected by circadian rhythms
and increase as early as 30min after sleep onset in healthy
subjects (61). Furthermore, administration of IL-6 resulted in
a decrease in the first half of NREM sleep in humans (62),
which was consistent with the decrease in the stageN3 sleep
duration in sleep cycle 1 in this study. IL-6 was also found
to increase body temperature in humans (62), and IL-6 levels

in the cerebrospinal fluid were correlated with an increase in
body temperature in rats (63), which was consistent with the
reported increase in the VLF associated with thermogenesis
(51, 52). In addition, animal experiments suggest that sleep,
body temperature, and cardiovascular functions are controlled
by distinct groups of neurons within the preoptic area of the
hypothalamus, and different information from these groups
of neurons are integrated within this nucleus as well as
by an interaction with global networks for homeostasis (64,
65). Furthermore, a complex interaction between brain areas
controlling autonomic nervous system and those controlling
sleep-wake state has been proposed (66). These findings suggest
that increased levels of pro-inflammatory cytokines in response
to various stressors during the day might induce a decrease
in the total power of HRV during the initial phase of sleep,
which in turn might induce various changes in the EEG
and autonomic parameters as well as fatigue VAS at wake
time through activity changes in the preoptic area of the
hypothalamus.
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FIGURE 10 | Modified diagram and results derived from structural equation modeling with eight observed variables. Description is the same as that for Figure 9. *p <

0.05, **p < 0.01.

CONCLUSIONS AND LIMITATIONS

The present results indicated that the high fatigue group did
not recover from fatigue, which might be mediated through the
following sequential three processes. First, the present results
along with the previous studies suggest that an increase in
peripheral pro-inflammatory cytokines might suppress total
power of HRV, which might be mediated through their direct
effects on the autonomic control areas such as the hypothalamus
and/or indirect effects via peripheral afferent nerves (67, 68).
Second, the correlational and structural equation modeling
analyses indicated that an initial decrease in total power of HRV
decreased the stageN3 sleep duration in sleep cycle 1 via its
effects on other autonomic and EEG parameters including delta
power and dDPG. It is reported that the autonomic nervous
system densely interacts with the hypothalamus including the
preoptic area controlling wakefulness-sleep cycle as well as body
temperature (64–66). Therefore, the initial decrease in total
power of HRV might affect dDPG and stageN3 sleep duration in
sleep cycle 1 through the complex interactive pathways between
the two systems. Third, the decrease in the stageN3 sleep duration

in sleep cycle 1 might inhibit the recovery from fatigue during
sleep (see below).

Sleep is important for homeostasis as a restorative process
(69–71); cell damages are repaired, brain wastes are cleared,
and macromolecules/neurotransmitters are restored during
sleep. The present results indicated that the high fatigue
group with short stageN3 sleep duration in sleep cycle 1
did not recover from fatigue. These findings suggest that
stageN3 sleep in sleep cycle 1 is important for recovery from
disturbed physiological conditions in the brain and body due
to activity during wakefulness (e.g., cell damages, increases in
wastes, shortages of macromolecules/neurotransmitters), while
the disturbed physiological conditions did not fully recover,
and the physiological conditions remained disturbed until
wake time in the high fatigue group with short stageN3
sleep duration in sleep cycle 1. The sleep cycle 1 might be
important for the recovery since stageN3 sleep period is usually
longest in this sleep cycle. Consistent with this notion, protein
synthesis during sleep was positively correlated to ratios of deep
NREM (stageN3) sleep in that sleep although differences in
protein synthesis among different sleep cycles remain unknown,
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suggesting that stageN3 sleep is important for restorative sleep
(72). Furthermore, previous studies have reported that warming
of the periocular and posterior cervical regions increased the
delta power in the first 90min of the sleep episode and decreased
fatigue at wake time (73, 74). Further studies are required to
investigate the selective role of sleep cycle 1 in recovery from
fatigue.

However, the present study has several limitations. The
number of enrolled subjects was relatively small. Second, sleep
scoring was performed based on a single EEG derivation
instead of conventional polysomnography in the present study.
Third, since the physiological recordings were performed at
home instead of in a temperature-controlled room to avoid
psychological stress due to the new environment, differences
in the environmental conditions across the subjects might
have affected the results. Fourth, since the data in fixed
length epochs of 5min were quantitatively analyzed in the
present study, different data during different sleep (REM and
NREM) stages could be mixed in the same epochs. Fifth,
we recorded only the limited number of the variables; other
factors including the serum cytokine levels of the subjects
and neural activity in various brain areas controlling sleep-
wakefulness and autonomic activity (66, 75) were not measured.
Sixth, we used the subjects with relatively short sleep period
time (<6 h) in the present study. Nurses in the high fatigue
group, who could sleep for longer than 6 h in different shift
work situations, could recover from fatigue at bedtime. Seventh,
effects of prior shift works were not considered in the present
study. Previous studies suggest that balance between NREM

and REM sleeps is homeostatically controlled (76, 77), and
homeostatic and circadian systems combine to affect awake-sleep
cycle (13, 78). Therefore, prior shift works could affect fatigue
recovery during sleep through a complex interaction between
these two systems. Further studies with a larger number of
subjects of different sexes, occupations, and work shift patterns
including no shift work as well as those with conventional
polysomnography are required in order to generalize the
present results of the relationships between fatigue and sleep
parameters. Nevertheless, the present results provide clues to
the underlying mechanisms and treatment of fatigue after
sleep.

AUTHOR CONTRIBUTIONS

TI and HisN designed research. SG and HisN performed
research. SG, TI, JM, YT, EH, YN, TT, TO, and HisN analyzed
data. SG, TI, HirN, and HisN wrote the manuscript.

FUNDING

The study was supported partly by research funds from
University of Toyama and KAO Corp.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2019.00066/full#supplementary-material

REFERENCES

1. Ancoli-Israel S, Moore PJ, Jones V. The relationship between fatigue and
sleep in cancer patients: a review. Eur J Cancer Care (2001) 10:245–55.
doi: 10.1046/j.1365-2354.2001.00263.x

2. Fossey M, Libman E, Bailes S, Baltzan M, Schondorf R, Amsel R, et al. Sleep
quality and psychological adjustment in chronic fatigue syndrome. J Behav
Med. (2004) 27:581–605. doi: 10.1007/s10865-004-0004-y

3. Pedersen M, Ekstedt M, Småstuen MC, Wyller VB, Sulheim D, Fagermoen
E, et al. Sleep-wake rhythm disturbances and perceived sleep in
adolescent chronic fatigue syndrome. J Sleep Res. (2017) 26:595–601.
doi: 10.1111/jsr.12547

4. Boneva RS, Decker MJ, Maloney EM, Lin JM, Jones JF, Helgason HG, et al.
Higher heart rate and reduced heart rate variability persist during sleep in
chronic fatigue syndrome: a population-based study. Auton Neurosci. (2007)
137:94–101. doi: 10.1016/j.autneu.2007.08.002

5. Jackson ML, Bruck D. Sleep abnormalities in chronic fatigue
syndrome/myalgic encephalomyelitis: a review. J Clin Sleep Med. (2012)
8:719–28. doi: 10.5664/jcsm.2276

6. Le Bon O, Neu D, Berquin Y, Lanquart JP, Hoffmann R, Mairesse O, et al.
Ultra-slow delta power in chronic fatigue syndrome. Psychiatry Res. (2012)
200:742–7. doi: 10.1016/j.psychres.2012.06.027

7. Meeus M, Goubert D, De Backer F, Struyf F, Hermans L, Coppieters I,
et al. Heart rate variability in patients with fibromyalgia and patients with
chronic fatigue syndrome: a systematic review. Semin Arthritis Rheum. (2013)
43:279–87. doi: 10.1016/j.semarthrit.2013.03.004

8. Sater RA, Gudesblatt M, Kresa-Reahl K, Brandes DW, Sater PA. The
relationship between objective parameters of sleep and measures of fatigue,
depression, and cognition in multiple sclerosis. Mul Scler J Exp Transl Clin.

(2015) 1:2055217315577828. doi: 10.1177/2055217315577828

9. Strober LB. Fatigue in multiple sclerosis: a look at the role of poor sleep. Front
Neurol. (2015) 6:21. doi: 10.3389/fneur.2015.00021

10. Roscoe JA, Kaufman ME, Matteson-Rusby SE, Palesh OG, Ryan JL, Kohli S,
et al. Cancer-related fatigue and sleep disorders. Oncologist (2007) 12(Suppl.
1):35–42. doi: 10.1634/theoncologist.12-S1-35

11. Berger AM,Mitchell SA. Modifying cancer-related fatigue by optimizing sleep
quality. J Natl Compr Canc Netw. (2008) 6:3–13. doi: 10.6004/jnccn.2008.0002

12. Richardson A.Measuring fatigue in patients with cancer. Support Care Cancer
(1998) 6:94–100. doi: 10.1007/s005200050141

13. Åkerstedt T. Shift work and disturbed sleep/wakefulness. Occup Med. (2003)
53:89–94. doi: 10.1093/occmed/kqg046

14. Josten EJ, Ng A, Tham JE, Thierry H. The effects of extended workdays on
fatigue, health, performance and satisfaction in nursing. J Adv Nurs. (2003)
44:643–52. doi: 10.1046/j.0309-2402.2003.02854.x

15. Chien PL, Su HF, Hsieh PC, Siao RY, Ling PY, Jou HJ. Sleep quality
among female hospital staff nurses. Sleep Disord. (2013) 2013:283490.
doi: 10.1155/2013/283490

16. Scott LD, Arslanian-Engoren C, EngorenMC. Association of sleep and fatigue
with decision regret among critical care nurses. Am J Crit Care (2014)
23:13–23. doi: 10.4037/ajcc2014191

17. Wickwire EM, Geiger-Brown J, Scharf SM, Drake CL. Shift work and shift
work sleep disorder: clinical and organizational perspectives. Chest (2017)
151:1156–72. doi: 10.1016/j.chest.2016.12.007

18. Ichiba T, Gorlova S, Nagashima Y, Aitake M, Hori E, Nishijo H. Association
between sleep quality and subjective fatigue in night-shift nurses with good
and poor sleep. Sleep Vigil. (2018) 2:63–9. doi: 10.1007/s41782-018-0036-y

19. Buysse DJ, Reynolds CFIII, Monk TH, Berman SR, Kupfer DJ. The
Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice
and research. Psychiatry Res. (1989) 28:193–213. doi: 10.1016/0165-1781(89)
90047-4

Frontiers in Neurology | www.frontiersin.org 15 February 2019 | Volume 10 | Article 66

https://www.frontiersin.org/articles/10.3389/fneur.2019.00066/full#supplementary-material
https://doi.org/10.1046/j.1365-2354.2001.00263.x
https://doi.org/10.1007/s10865-004-0004-y
https://doi.org/10.1111/jsr.12547
https://doi.org/10.1016/j.autneu.2007.08.002
https://doi.org/10.5664/jcsm.2276
https://doi.org/10.1016/j.psychres.2012.06.027
https://doi.org/10.1016/j.semarthrit.2013.03.004
https://doi.org/10.1177/2055217315577828
https://doi.org/10.3389/fneur.2015.00021
https://doi.org/10.1634/theoncologist.12-S1-35
https://doi.org/10.6004/jnccn.2008.0002
https://doi.org/10.1007/s005200050141
https://doi.org/10.1093/occmed/kqg046
https://doi.org/10.1046/j.0309-2402.2003.02854.x
https://doi.org/10.1155/2013/283490
https://doi.org/10.4037/ajcc2014191
https://doi.org/10.1016/j.chest.2016.12.007
https://doi.org/10.1007/s41782-018-0036-y
https://doi.org/10.1016/0165-1781(89)90047-4
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gorlova et al. Autonomic/EEG Parameter Dysfunction Causes Fatigue

20. Horne JA, Östberg O. A self assessment questionnaire to determine
Morningness Eveningness in human circadian rhythms. Int J Chronobiol.

(1976) 4:97–110.
21. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA.Manual for the

State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press
(1983).

22. Mizuno K, Tanaka M, Yamaguti K, Kajimoto O, Kuratsune H, Watanabe
Y. Mental fatigue caused by prolonged cognitive load associated
with sympathetic hyperactivity. Behav Brain Funct. (2011) 7:17.
doi: 10.1186/1744-9081-7-17

23. Mizuno K, Tajima K, Watanabe Y, Kuratsune H. Fatigue correlates with
the decrease in parasympathetic sinus modulation induced by a cognitive
challenge. Behav Brain Funct. (2014) 10:25. doi: 10.1186/1744-9081-10-25

24. Ellis BW, John MW, Lancaster R, Raptopoulos P, Angelopoulos N, Priest RG.
The St. Mary’s hospital sleep questionnaire; a study of reliability. Sleep (1981)
4:93–7.

25. Kaida K, Takahashi M, Åkerstedt T, Nakata A, Otsuka Y, Haratani T., et al.
Validation of the Karolinska sleepiness scale against performance and EEG
variables. Clin. Neurophysiol. (2006) 117:1574–81. doi: 10.1016/j.clinph.2006.
03.011

26. van Marken Lichtenbelt WD, Daanen HA, Wouters L, Fronczek R,
Raymann RJ, Severens NM, et al. Evaluation of wireless determination
of skin temperature using iButtons. Physiol Behav. (2006) 88:489–97.
doi: 10.1016/j.physbeh.2006.04.026

27. Matsushita C, Torimoto K, Goto D, Morizawa Y, Kiba K, Shinohara
M, et al. Linkage of lower urinary tract symptoms to sleep quality
in elderly men with nocturia: a community based study using home
measured electroencephalogram data. J Urol. (2017) 197:204–9.
doi: 10.1016/j.juro.2016.07.088

28. Nonoue S, Mashita M, Haraki S, Mikami A, Adachi H, Yatani H, et al. Inter-
scorer reliability of sleep assessment using EEG and EOG recording system
in comparison to polysomnography. Sleep Biol. Rhythms (2017) 15:39–48.
doi: 10.1007/s41105-016-0078-2

29. Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, et al.
The AASM Manual for the Scoring of Sleep and Associated Events: Rules,

Terminology and Technical Specifications, Version 2.1. Darien, IL: American
Academy of Sleep Medicine (2014).

30. Nakamura H, Kashiwagi K, Yoshida M. Sleep stage automatic classification
with single channel sleep EEG signals (in Japanese). IEICE Tech. Rep. (2011)
111:33–6.

31. Yoda K, Inaba M, Hamamoto K, Yoda M, Tsuda A, Mori K, et al. Association
between poor glycemic control, impaired sleep quality, and increased arterial
thickening in type 2 diabetic patients. PLoS ONE (2015) 10:e0122521.
doi: 10.1371/journal.pone.0122521

32. Monoi N, Matsuno A, Nagamori Y, Kimura E, Nakamura Y, Oka K, et al.
Japanese sake yeast supplementation improves the quality of sleep: a double-
blind randomised controlled clinical trial. J Sleep Res. (2016) 25:116–23.
doi: 10.1111/jsr.12336

33. Jurysta F, van de Borne P, Migeotte PF, Dumont M, Lanquart JP, Degaute
JP, et al. A study of the dynamic interactions between sleep EEG and heart
rate variability in healthy young men. Clin Neurophysiol. (2003) 114:2146–55.
doi: 10.1016/S1388-2457(03)00215-3

34. Kanaya N, Hirata N, Kurosawa S, NakayamaM, Namiki A. Differential effects
of propofol and sevoflurane on heart rate variability. Anesthesiology (2003)
98:34–40. doi: 10.1097/00000542-200301000-00009

35. Ullman P, Bentler M. Structural equation modeling. In Weiner IB, editor.
Handbook of Psychology, 2nd ed. Hoboken, NJ: JohnWiley & Sons, Inc. (2013).
p. 661–690. doi: 10.1002/9781118133880.hop202023.

36. Sharma S, Mukherjee S, Kumar A, Dillon WR. A simulation
study to investigate the use of cutoff values for assessing model
fit in covariance structure models. J Bus Res. (2005) 58:935–43.
doi: 10.1016/j.jbusres.2003.10.007

37. Hesterberg TC. What teachers should know about the bootstrap: Resampling
in the undergraduate statistics curriculum. Am Statist. (2015) 69:371–86.
doi: 10.1080/00031305.2015.1089789

38. Decker MJ, Tabassum H, Lin JM, Reeves WC. Electroencephalographic
correlates of Chronic Fatigue Syndrome. Behav Brain Funct. (2009) 5:43.
doi: 10.1186/1744-9081-5-43

39. Mignot E, Lin L, Finn L, Lopes C, Pluff K, Sundstrom ML, et al. Correlates
of sleep-onset REM periods during the Multiple Sleep Latency Test in
community adults. Brain (2006) 129:1609–23. doi: 10.1093/brain/awl079

40. Goldbart A, Peppard P, Finn L, Ruoff CM, Barnet J, Young T, et al. Narcolepsy
and predictors of positive MSLTs in the Wisconsin Sleep Cohort. Sleep (2014)
37:1043–51. doi: 10.5665/sleep.3758

41. Toscani L, Gangemi PF, Parigi A, Silipo R, Ragghianti P, Sirabella E, et al.
Human heart rate variability and sleep stages. Italian J Neurol Sci. (1996)
17:437–9. doi: 10.1007/BF01997720

42. Bušek P, Van̆ková J, Opavský J, Salinger J, Nevšímalová S. Spectral analysis of
heart rate variability in sleep. Physiol Res. (2005) 54:369–76.

43. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger RD, Cohen
RJ. Power spectrum analysis of heart rate fluctuation: a quantitative
probe of beat-to-beat cardiovascular control. Science (1981) 213:220–2.
doi: 10.1126/science.6166045

44. Pomeranz B, Macaulay MA, Kurtz I, Adam D, Gordon D, Kilborn KM, et al.
Assessment of autonomic function in humans by heart rate spectral analysis.
Am J Physiol. (1985) 248:H151–3. doi: 10.1152/ajpheart.1985.248.1.H151

45. Chouchou F, Desseilles M. Heart rate variability: a tool to explore the sleeping
brain? Front Neurosci. (2014) 8:402. doi: 10.3389/fnins.2014.00402

46. Eller NH. Total power and high frequency components of heart rate variability
and risk factors for atherosclerosis. Auton Neurosci. (2007) 131:123–30.
doi: 10.1016/j.autneu.2006.08.002

47. Schmitt L, Regnard J, Desmarets M, Mauny F, Mourot L, Fouillot JP, et al.
Fatigue shifts and scatters heart rate variability in elite endurance athletes.
PLoS ONE (2013) 8:e71588. doi: 10.1371/journal.pone.0071588

48. Kraüchi K, Wirz-Justice A. Circadian rhythm of heat production, heart rate,
and skin and core temperature under unmasking conditions in men. Am J

Physiol. (1994) 267(3 Pt 2):R819–29. doi: 10.1152/ajpregu.1994.267.3.R819
49. Kraüchi K, Cajochen C, Wirz-Justice A. A relationship between heat loss and

sleepiness: Effects of postural change and melatonin administration. J Appl
Physiol. (1997) 83:134–9. doi: 10.1152/jappl.1997.83.1.134

50. Kräuchi K, Deboer T. Body temperature, sleep, and hibernation. In:
Kryger MH, Roth T, Dement WC, editors. Principles and Practice of

Sleep Medicine. 5th ed. Philadelphia, PA: Elsevier Inc. (2011). p. 323–334.
doi: 10.1016/B978-1-4160-6645-3.00028-1

51. Matsumoto T, Miyawaki T, Ue H, Kanda T, Zenji C, Moritani T. Autonomic
responsiveness to acute cold exposure in obese and non-obese young women.
Int J Obes Relat Metab Disord. (1999) 23:793–800. doi: 10.1038/sj.ijo.0
800928

52. Millis RM, Austin RE, Hatcher MD, Bond V, Goring KL. Metabolic energy
correlates of heart rate variability spectral power associated with a 900-calorie
challenge. J Nutr Metab. (2011) 2011:715361. doi: 10.1155/2011/715361

53. Janszky I, Ericson M, Lekander M, Blom M, Buhlin K, Georgiades
A, et al. Inflammatory markers and heart rate variability in women
with coronary heart disease. J Intern Med. (2004) 256:421–8.
doi: 10.1111/j.1365-2796.2004.01403.x

54. Fairchild KD, Saucerman JJ, Raynor LL, Sivak JA, Xiao Y, Lake DE, et al.
Endotoxin depresses heart rate variability in mice: cytokine and steroid
effects. Am J Physiol Regul Integr Comp Physiol. (2009) 297:R1019–R1027.
doi: 10.1152/ajpregu.00132.2009

55. Papaioannou V, Pneumatikos I, Maglaveras N. Association of heart rate
variability and inflammatory response in patients with cardiovascular
diseases: current strengths and limitations. Front Physiol. (2013) 4:174.
doi: 10.3389/fphys.2013.00174

56. Ye J, Zhu R, He X, Feng Y, Yang L, Zhu X, et al. Association of plasma IL-6 and
Hsp70 with HRV at different levels of PAHs metabolites. PLoS ONE (2014)
9:e92964. doi: 10.1371/journal.pone.0092964

57. Schubert C, Hong S, Natarajan L, Mills PJ, Dimsdale JE. The
association between fatigue and inflammatory marker levels in cancer
patients: a quantitative review. Brain Behav Immun. (2007) 21:413–27.
doi: 10.1016/j.bbi.2006.11.004

58. Malekzadeh A, Van de Geer-Peeters W, De Groot V, Teunissen CE,
BeckermanH, TREFAMS-ACE StudyGroup. Fatigue in patients withmultiple
sclerosis: is it related to pro- and anti-inflammatory cytokines? Dis Markers

(2015) 2015:758314. doi: 10.1155/2015/758314
59. Montoya JG, Holmes TH, Anderson JN, Maecker HT, Rosenberg-Hasson Y,

Valencia IJ, et al. Cytokine signature associated with disease severity in chronic

Frontiers in Neurology | www.frontiersin.org 16 February 2019 | Volume 10 | Article 66

https://doi.org/10.1186/1744-9081-7-17
https://doi.org/10.1186/1744-9081-10-25
https://doi.org/10.1016/j.clinph.2006.03.011
https://doi.org/10.1016/j.physbeh.2006.04.026
https://doi.org/10.1016/j.juro.2016.07.088
https://doi.org/10.1007/s41105-016-0078-2
https://doi.org/10.1371/journal.pone.0122521
https://doi.org/10.1111/jsr.12336
https://doi.org/10.1016/S1388-2457(03)00215-3
https://doi.org/10.1097/00000542-200301000-00009
https://doi.org/10.1002/9781118133880.hop202023.
https://doi.org/10.1016/j.jbusres.2003.10.007
https://doi.org/10.1080/00031305.2015.1089789
https://doi.org/10.1186/1744-9081-5-43
https://doi.org/10.1093/brain/awl079
https://doi.org/10.5665/sleep.3758
https://doi.org/10.1007/BF01997720
https://doi.org/10.1126/science.6166045
https://doi.org/10.1152/ajpheart.1985.248.1.H151
https://doi.org/10.3389/fnins.2014.00402
https://doi.org/10.1016/j.autneu.2006.08.002
https://doi.org/10.1371/journal.pone.0071588
https://doi.org/10.1152/ajpregu.1994.267.3.R819
https://doi.org/10.1152/jappl.1997.83.1.134
https://doi.org/10.1016/B978-1-4160-6645-3.00028-1
https://doi.org/10.1038/sj.ijo.0800928
https://doi.org/10.1155/2011/715361
https://doi.org/10.1111/j.1365-2796.2004.01403.x
https://doi.org/10.1152/ajpregu.00132.2009
https://doi.org/10.3389/fphys.2013.00174
https://doi.org/10.1371/journal.pone.0092964
https://doi.org/10.1016/j.bbi.2006.11.004
https://doi.org/10.1155/2015/758314
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gorlova et al. Autonomic/EEG Parameter Dysfunction Causes Fatigue

fatigue syndrome patients. Proc Natl Acad Sci USA. (2017) 114:E7150–E7158.
doi: 10.1073/pnas.1710519114

60. Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress
on circulating inflammatory factors in humans: a review and meta-
analysis. Brain Behav Immun. (2007) 21:901–12. doi: 10.1016/j.bbi.2007.
03.011

61. Redwine L, Hauger RL, Gillin JC, Irwin M. Effects of sleep and sleep
deprivation on interleukin-6, growth hormone, cortisol, and melatonin
levels in humans. J Clin Endocrinol Metab. (2000) 85:3597–603.
doi: 10.1210/jc.85.10.3597

62. Späth-Schwalbe E, Hansen K, Schmidt F, Schrezenmeier H,Marshall L, Burger
K, et al. Acute effects of recombinant human interleukin-6 on endocrine and
central nervous sleep functions in healthy men. J Clin Endocrinol Metab.

(1998) 83:1573–9. doi: 10.1210/jc.83.5.1573
63. LeMay LG, Vander AJ, Kluger MJ. Role of interleukin 6 in fever in

rats. Am J Physiol. (1990) 258(3 Pt 2):R798–803. doi: 10.1152/ajpregu.1990.
258.3.R798

64. Mallick HN, Kumar VM. Basal forebrain thermoregulatory mechanism
modulates auto-regulated sleep. Front Neurol. (2012) 3:102.
doi: 10.3389/fneur.2012.00102

65. McKinley MJ, Yao ST, Uschakov A, McAllen RM, Rundgren M, Martelli D.
Themedian preoptic nucleus: front and centre for the regulation of body fluid,
sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol.

(2015) 214:8–32. doi: 10.1111/apha.12487
66. de Zambotti M, Trinder J, Silvani A, Colrain IM, Baker FC. Dynamic

coupling between the central and autonomic nervous systems
during sleep: a review. Neurosci Biobehav Rev. (2018) 90:84–103.
doi: 10.1016/j.neubiorev.2018.03.027

67. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. (2009) 9:418–28.
doi: 10.1038/nri2566

68. Fernandez R, Nardocci G, Navarro C, Reyes EP, Acuña-Castillo C, Cortes
PP. Neural reflex regulation of systemic inflammation: potential new targets
for sepsis therapy. Front Physiol. (2014) 5:489. doi: 10.3389/fphys.2014.
00489

69. Mignot E. Why we sleep: the temporal organization of recovery. PLoS Biol.

(2008) 6:e106. doi: 10.1371/journal.pbio.0060106
70. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep

drives metabolite clearance from the adult brain. Science (2013) 342:373–7.
doi: 10.1126/science.1241224

71. Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting
from sleep loss and sleep recovery in laboratory rats. Sleep (2014) 37:1929–40.
doi: 10.5665/sleep.4244

72. Nakanishi H, Sun Y, Nakamura RK, Mori K, Ito M, Suda S, et al.
Positive correlations between cerebral protein synthesis rates and
deep sleep in Macaca mulatta. Eur J Neurosci. (1997) 9:271–9.
doi: 10.1111/j.1460-9568.1997.tb01397.x

73. Sakamoto I, Igaki M, Ichiba T, Suzuki M, Kuriyama K, Uchiyama M.
Effects of bedtime periocular warming on sleep status in adult female
subjects: a pilot study. Evid Based Compl Alternat Med. (2017) 2017:6419439.
doi: 10.1155/2017/6419439

74. Igaki M, Suzuki M, Sakamoto I, Ichiba T, Kuriyama K, Uchiyama M. Effects
of bedtime periocular and posterior cervical cutaneous warming on sleep
status in adult male subjects: a preliminary study. Sleep Biol Rhythms (2018)
16:77–84. doi: 10.1007/s41105-017-0129-3

75. Nobili L, De Gennaro L, Proserpio P, Moroni F, Sarasso S, Pigorini A, et al.
Local aspects of sleep: observations from intracerebral recordings in humans.
Prog Brain Res. (2012) 199:219–32. doi: 10.1016/B978-0-444-59427-3.00013-7

76. Benington JH, Heller HC. REM-sleep timing is controlled homeostatically
by accumulation of REM-sleep propensity in non-REM sleep.
Am J Physiol Regul Integr Comp Physiol. (1994) 266:R1992–2000.
doi: 10.1152/ajpregu.1994.266.6.R1992

77. Phillips AJK, Robinson PA, Klerman EB. Arousal state feedback as a potential
physiological generator of the ultradian REM/NREM sleep cycle. J Theor Biol.
(2013) 319:75–87. doi: 10.1016/j.jtbi.2012.11.029

78. Dijk DJ, Archer SN. Light, sleep, and circadian rhythms: together again. PLoS
Biol. (2009) 7:e1000145. doi: 10.1371/journal.pbio.1000145

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Gorlova, Ichiba, Nishimaru, Takamura, Matsumoto, Hori,

Nagashima, Tatsuse, Ono and Nishijo. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 17 February 2019 | Volume 10 | Article 66

https://doi.org/10.1073/pnas.1710519114
https://doi.org/10.1016/j.bbi.2007.03.011
https://doi.org/10.1210/jc.85.10.3597
https://doi.org/10.1210/jc.83.5.1573
https://doi.org/10.1152/ajpregu.1990.258.3.R798
https://doi.org/10.3389/fneur.2012.00102
https://doi.org/10.1111/apha.12487
https://doi.org/10.1016/j.neubiorev.2018.03.027
https://doi.org/10.1038/nri2566
https://doi.org/10.3389/fphys.2014.00489
https://doi.org/10.1371/journal.pbio.0060106
https://doi.org/10.1126/science.1241224
https://doi.org/10.5665/sleep.4244
https://doi.org/10.1111/j.1460-9568.1997.tb01397.x
https://doi.org/10.1155/2017/6419439
https://doi.org/10.1007/s41105-017-0129-3
https://doi.org/10.1016/B978-0-444-59427-3.00013-7
https://doi.org/10.1152/ajpregu.1994.266.6.R1992
https://doi.org/10.1016/j.jtbi.2012.11.029
https://doi.org/10.1371/journal.pbio.1000145
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Non-restorative Sleep Caused by Autonomic and Electroencephalography Parameter Dysfunction Leads to Subjective Fatigue at Wake Time in Shift Workers
	Introduction
	Materials and Methods
	Subjects
	Study Schedule
	Questionnaires
	Physiological Recordings
	Data Analysis
	Grouping of the Subjects and Statistical Analysis

	Results
	Baseline and Psychological Characteristics
	Sleep Architectures and EEG Analysis
	Autonomic Activity During Sleep
	Relationships Between the VAS Score and the EEG and Autonomic Parameters

	Discussion
	Physiological Differences Between the Low and High Fatigue Groups
	Physiological Mechanisms of Fatigue at Wake Time

	Conclusions and Limitations
	Author Contributions
	Funding
	Supplementary Material
	References


