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Pierre-Andre Maugis (France), Dominique Guegan (France) 

New prospects on vines 

Abstract 

In this paper, we present a new methodology based on vine copulas to estimate multivariate distributions in high 
dimensions, taking advantage of the diversity of vine copulas. Considering the huge number of vine copulas in 
dimension n, we introduce an efficient selection algorithm to build and select vine copulas with respect to any test T. 
Our methodology offers a great flexibility to practitioners to compute VaR associated to a portfolio in high dimension. 

Keywords: vines, multivariate copulas, model selection. 

Introduction © 

For almost ten years now, copulas have been used in 
econometrics and finance. They became an essential 
tool for pricing complex products, managing 
portfolios and evaluating risks in banks and 
insurance companies. For instance, they can be used 
to compute VaR (Value at Risk) and ES (Expected 
shortfall) (Artzner et al., 1997). Moreover, copulas 
appear to be a very flexible tool, allowing for semi-
parametric estimation, fast parameter optimization 
and time varying parameters. These advantages 
make them a very interesting tool, although one 
major shortcoming is their use in high dimensions. 
Indeed, elliptical copulas can be expended to higher 
dimension, but they are unable to represent financial 
tail dependences (Patton, 2009), and the 
Archimedean copulas are not satisfactory as models 
to describe multivariate dependence in dimensions 
higher than 2 (Joe, 1997). In this paper, we present a 
solution to this problem by using the vine copulas.  

Recently, Aas et al. (2009) produced a seminal 
paper presenting a method to build high dimension 
copulas using pair-copulas as building blocks. Such 
decompositions are called vine copulas. To build 
these copulas, the authors recursively decomposed 
the dependence of the variables as done in Joe 
(1997) and Bedford and Cooke (2002, 2001). 
Another possible way to build multivariate copulas 
is to use nested copulas. This last notion is defined 
as follows: if C1(.,.) and C2(.,.) are two bivariate 
copulas, then C1(C2(.,.),.) is a trivariate nested 
copula. In this paper, we only consider vine copulas, 
which appear richer than nested copulas for 
multivariate analysis, following Berg and Aas 
(2009), who show that nested copulas are less 
efficient than vine copulas to estimate densities and 
risk measures such as the VaR.  

Our purpose is to build all possible vine copulas in 
order to capture as much information as possible 
from a dataset. Indeed, a practitioner aims at finding 
the vine copula that characterizes correctly the 
behavior of the dataset under study: we call this true 
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copula C0. However, finding C0 is almost impossible 
for any real dataset. On the other hand, a vine 
copula could be described as a decomposition of an 
n-variate vector’s density using bivariate copula 
densities as building blocks. Such vine 
decomposition is not unique, and many different 
vine copulas exist in each dimension. Through an 
example in Section 3 we show that, given a dataset, 
each vine decomposition estimates specific 
dependence between the variables.  

This result highlights the importance of defining a 
strategy to find the vine copula that is closest to 
the true copula C0, according to any criterion 
retained by the practitioner. To do so we 
generated a large number of vine copulas using a 

simple algorithm that produces 
3

1
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n

i
inN  

different vine copulas in dimension n. Previously 
cited papers use n! vine copulas, but as our 
purpose is to find a copula closest to the copula 
C0, increasing the number of vine copulas under 
consideration is crucial. The size of the set of 
possible vine copulas necessitates a compu-
tationally efficient selection algorithm. We 
present an algorithm that has the advantage of 
selecting the best vine copula within a set of vine 
copulas, according to any criterion chosen by the 
practitioner without the requirement of having to 
test all the copulas. This algorithm is based on an 
underlying lattice structure inside the set of vine 
copulas.  

The paper is organized as follows: in Section 1, we 
introduce a new method to build vine copulas. 
Section 2 provides some characteristics of vine 
copulas that motivated our work. In Section 3, we 
describe the model selection procedure, relying on a 
lattice structure on the set of vine copulas. Section 4 
presents a numerical application and the last section 
concludes.  

1. The vine set 

In this section, we introduce a new algorithm to 
build vine copulas. It consists in a step-by-step 
factorization of the density function in a product of 
bivariate copulas. Our approach is different from the 
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methods developed by Bedford and Cooke (2002, 
2001) and is not related to them in any obvious way. 
Indeed, in Bedford and Cooke (2002, 2001) vine 
copulas are introduced as decomposition of the 
multivariate random vector density based on a type 
of graph structured called "vines", from which their 
denomination comes. Our approach has the 
advantage of being able to coherently describe a 
large set of vine copulas while also being a simple 
recursive algorithm.  

1.1. Formula. Let us consider a vector X=(X1, X2,…, 
Xn) of random variables characterized by a joint 
distribution function Fx that we assume has a density 
function fx. We introduce the following notations:  

X-  = (X1,…, X -1, X +1,…,Xn) is the set of 
variables except the -th. 
We denote f  the density of X . In the same 
fashion f |  is the density of (X |X ), f-  is the 
density of X-  and f |-  is the density of X |X- . 

XXFXXFcc XXXXX XX
|,| ||,|, |

 is 

the copula density of (X ,X |X ) as defined        
in Sklar’s (1959) theorem. Similarly: 

.|,| |||,|, XXFXXFcc XXXXXXX  

Our objective is to compute c1,…,n, the copula 
density associated with the vector X. This will be 
done by factorizing fX in the following form: 

.
,...1

,...,1
ni

niX cff  

By construction for n = 2 we have: f ,  = f ·f ·c , ·. 
Using this property we consider the following 
factorization of the joint density fX: 

,,...,1,
2

n .

),(|

),(|,

|
f

f
ffff X  

.),(|,

),(

),(|,

),(|

),(|),(|
c

f

ff
c

f

ff
f   (1) 

Formula (1) allows the computation of an n-variate 
density with a bivariate copula, two (n-1)- and one (n-
2)-variate densities. Using this factorization 
recursively, insuring that the denominators cancel at 
each step, we produce a factorization of the n-variate 
density as a product of univariate and bivariate copula 
densities. Using this algorithm we can produce all N 
possible vine copulas (Napoles, 2007)1,2.  

                                                      
1 N is the number of "vine" type graphs with n nodes, which is also the 
number of vine copulas (see Bedford and Cooke, 2002, 2001). The proof of 
the formula relies heavily on the graph structure of vines. 
2 Our algorithm can produce more varied decomposition, however, 
we do not consider them as they are not efficient estimators 
(Bedford and Cooke, 2002, 2001). 

1.2. Example. In this example, we illustrate the 
unwinding of the previous algorithm for n = 4, 
providing the joint density function f1,2,3,4. Our 
aim is to compute c1,2,3,4: the joint copula density. 
We describe the two steps of the algorithm using 
the previous notations:  

First step:  

.2,1|4,3

2,121

4,2,13,2,1
2,1|4,3

2,1

4,2,13,2,1
4,3,2,1 c

cff

ff
c

f

ff
f  (2) 

Second step: we apply the relationship (1) to the 

densities f1,2,3 and f1,2,4:  

1|3,2

1

3,1312,121

1|3,2

1

3,12,1

3,2,1 c
f

cffcff
c

f

ff
f

,1|3,23,12,1321 cccfff      (3) 

and  

2|4,1

2

4,2422,121

2|4,1

2

4,22,1

4,2,1 c
f

cffcff
c

f

ff
f

.2|4,14,22,1421 cccfff      (4) 

By merging formulas (2), (3) and (4), we obtain the 
following factorization: 

.2,1|4,32|4,11|3,24,22,13,143214,3,2,1 ccccccfffff   (5) 

We have now factorized the density f1,2,3,4 into a 
product of four univariate densities and six 
bivariate copula densities. By construction, this 
means that the copula density of (X1, X2, X3, X4) 
can be factorized as follows: 

.2,1|4,32|4,11|3,24,22,13,14,3,2,1 ccccccc  

The unwinding of this algorithm can yield other 
vine copulas if other parameters are used. For 
instance, the copula density c1,2,3,4  has also the 
following decomposition:  

.4,3|2,14|3,13|4,24,14,33,24,3,2,1 ccccccc  

2. The vine copula estimator 

Using the previous algorithm for an n-variate 
density, we can construct the N different vine 
copulas in dimension n. In the following, using a 
real dataset as example, we show how each vine 
copula can yield different representations of the 
same dataset. We proceed in the following way.  

We estimate two different trivariate vine copulas 
from the same dataset and compare the tail 
dependence of the two estimated densities by 
observing in which quadrant of [0, 1]3 the density 



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 1, Issue 1, 2010 

 17

evolves1. The dataset is the daily Morgan Stanley 
evaluation of the French, German and British price 
indexes from 01/01/06 to 01/12/08 (Datastream). 
We denote them as X, Y and Z, respectively. In a 
first step, for X, Y and Z, we estimate separately 
GARCH (1, 1) models using pseudo-maximum 
likelihood methods (Ghysels et al., 1995). In a 
second step, using the residuals, we estimate the 
parameters of the vine copula using maximum 
likelihood (Chen and Fan, 2006). For each bivariate 
copula in the estimation procedure, we select among 
the Gaussian, Student, Clayton and Gumbel copulas, 
the one with higher likelihood. We choose these 
copulas because they characterize the main features 
detected in economic and financial time-series 
(Patton, 2009)2. In Figure 1, we plot the estimated 
copulas with uniform margins in three cases: 
(X,Y|z=0,1), (X,Y|z=0,5), and (X,Y|z=0,9) (from left 
to right).  

By examining Figure 1, we observe that the two 
vine  copulas  describe  different tail dependences. 

According to the first vine copula, there is strong 
upper tail dependence (top-right plot) but no lower 
dependence (top-left plot). However, the second 
vine copula describes strong lower tail dependence 
(bottom left plot) but no upper tail dependence 
(bottom right plot). This difference in terms of tail 
dependence is solely caused by the vine copula, 
since in both cases we used the same estimation 
procedure and the same dataset.  

Taking this fact into account and to attain our 
purpose of finding the copula that is closest to the 
true one C0, according to a criterion chosen by the 
practitioner, we decided to consider the whole set of 
possible vine copulas. However, as there are N 
different vine copulas in dimension n, estimating 
and testing all of them is computationally 
intractable, thus we needed to develop an efficient 
search strategy. In the next section, we describe 
such an algorithm using a lattice structure. We 
denote T the test retained by the practitioner to make 
the selection.  

     
First trivariate vine 

 

   
Second trivariate vine 

 
Fig. 1. Two vines estimated on the same data set: slices at z = 10%, 50%, 90%  

3. Model selection 12 

In this section, we describe the search algorithm 
that finds the set of vine copulas accepted by the 
test T among all possible vine copulas. To this 
end, we introduce a lattice which is a partial order 
on the set of vine copulas. We proceed in two 
steps: we first introduce lattice theory and the 

                                                      
1 The two copulas used are: Vine 1 = c1,2, c1,3, c2,3 and Vine 2 = c1,3, c2,3, c1,2|3 
2 All computations are done in MatLab. 

implemented lattice structure, and then we 
describe the search algorithm. We illustrate our 
approach with an example in dimension n = 3.  

Lattice theory: A lattice is a set and a partial 
order. A partial order is a binary relation, for 
instance, denoted , that is reflexive, 
antisymmetric and transitive, i.e for all a , b, and 
c, we have that:  

a  a (reflexivity);  
if a  b and b  a then a = b (antisymmetric);  
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if a  b and b  c then a  c (transitive). 

For instance, the real numbers with binary relation  
is a lattice.  

The lattice structure we build from the set of all 
possible vines is based on increasing independence 
hypotheses. For instance, in the trivariate case when 
the random variables (X1|X2) and (X3|X2) are 

independent, the vine copula 2|3,13,22,13,2,1 cccc  

becomes 3,22,13,2,1 ccc . Thus, we will consider 

3,22,13,2,1 ccc  as being a vine copula and insert it 

into the lattice structure1. 

In dimension three we get the following lattice 
structure: 

 
"1" is the root of the lattice, and the arrow points from 
a general vine copula to a more specific one. We say 

that the vine copula " 3,1c " is more general than the 

vine copula " 3,12,1 cc " because the former vine copula 

defines a simpler relation between the variables and 
requires fewer parameters than the latter one. This kind 
of specification of the vine copulas is different from 
that introduced by Czado et al. (2009), which is based 
on a Bayesian selection framework.1 

We proceed now to construct the search algorithm 
based on the lattice structure in the general case. The 
use of lattices to organize large sets of models is not 
new, but lattice selection has never been used on vine 
copulas. Gabriel (1969) developed the principles and 
provided the theoretical groundwork for such a 
method. It relies on two tools, first, a test T to decide 
whether a model is accepted or rejected2, second, on 
the rule of coherence: "one ought not to accept a model 
while rejecting a more general model". When we 
apply the test T on a model, if the null of the model 
being the true model is retained then we accept all 
generalizations of this model, and if the null is rejected 
we reject all specifications of this model. In our case, 
the term "model" refers to vine copulas, and the rule of 
coherence could be restated as follows: "the gain in 
increased specification does not compensate for the 
loss of requiring more parameters".  

                                                      
1 This implies that the number of copulas we consider is greater than N. 
2 We do not specify T in this section, and instead describe the 
procedure for any test chosen by the practitioner, but we specify a 
possible test in Section 4. 

We now develop the search algorithm based on the 
rule of coherence. Within the set of models, it selects 
the subset of all possible vine copulas composed of the 
most complex models accepted by a test T:  

1. We randomly build a set S of possible models and 
classify them into two sets according to the test T: 
A, the set of accepted models, and R, the set of 
rejected models.  

2. i) If A  Ø: let DA be the set composed of the most 
complex models that are not in A or R. If DA  Ø 
we stop; otherwise, we test with T the models in 
DA. If we do not retain any model, we stop. 
Otherwise, we update A and R accordingly and 
iterate.  
ii) If A  Ø: let DR be the set composed of the 
most simple models that are not in A or R. If DR  
Ø we stop; otherwise, we test with T the models in 
DR. If we accept all models, we stop. Otherwise, 
we update A and R accordingly and iterate. 

Edwards and Havranek (1987) study a similar 
algorithm and prove that the algorithm reaches its 
purpose efficiently. This means that given a set of 
models of size p it will only require o(log(p)) steps to 
find the optimum.  

We give a step-by-step illustration of how the previous 
algorithm could unwind in the case of our trivariate 
example. Let X be a trivariate dataset and T a test. 
First, two vine copulas are selected randomly to be 

tested, 3,23,1 cc  and 3,12,1 cc . The former is accepted 

(solid line) while the latter is rejected (in black) by the 
test T, as can be seen in the upper left diagram. 
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The consequence of 3,23,1 cc  being accepted 

according to the rule of coherence is that three more 

vine copulas are accepted: 1, 3,2c and 3,1c  (dashed 

lines in the upper right diagram). Similarly, the 

consequence of 3,12,1 cc  being rejected is that 

1|3,23,12,1 ccc  is also rejected (in grey in the upper 

right diagram). The next step of the algorithm is to 
test using T the most complex vine copulas that are 

not accepted or rejected: 3|2,13,23,1 ccc and 

2|3,13,22,1 ccc  (underlined in the upper right 

diagram). The former copula is refused, and the 
latter one is accepted (in the lower left diagram) by 

the T-test. By the rule of coherence, we accept: 2,1c  

and 3,22,1 cc . In summary, the research algorithm 

keeps the most complex among the accepted vine 

copulas, which is 2|3,13,22,1 ccc  (double lines in the 

lower right diagram).  

The advantage of this lattice structure is that it presents 
a high connectivity inside the set of all possible vine 

copulas. For instance, 2,1c  is connected directly or 

indirectly to five other vine copulas. This means that 
each step of the algorithm is very useful for the search, 
because it allows us to accept or reject many other 
copulas by using the rule of coherence.  

4. Application to the CAC40 index 

Here we estimate the joint density of the five 
main assets composing the CAC40, the French 
leading index, using the methodology described 
above, and we use this estimated joint density to 
compute the VaR of a portfolio composed of the 
five assets.  

The dataset is taken from Datastream, daily 
quotes from Total, BNP – Paribas, Sanofi – 
Synthelabo, GDF-Suez and France Telecom from 
25/4/08 to 21/11/08. This period is marked by the 
2008 crisis, and our purpose is to test the 
resilience of our model to this shock and change 
of regimes. We estimate the parameters and select 
the vine copula based on the data ranging from 
25/4/08 to 9/12/08, while the VaR is computed 
from the remaining dates. The portfolio we 
consider is as follows: Total (33%), BNP – 
Paribas (20%), Sanofi – Synthelabo (20%), GDF-
Suez (14%) and France Telecom (13%).  

For each dataset a GARCH (p,q) process is selected 
using the AIC criterion (Akaike, 1974) and 
estimated using pseudo likelihood. On the residual 
we estimated the vine copula parameters using 
maximum likelihood. The parametric copula 
families used in this exercise are the Clayton, 
Gumbel, Student and Gaussian copulas.  
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The selection process has been described in Section 
3. The test T we used is an Anderson-Darling (A-D) 
type test modified for use with copulas in high 
dimension. It is described in Chen et al. (2004) and 
shown through Monte-Carlo simulation of 
possessing significant power even in high 
dimension. We recall that this test associates to each 
estimated density a 2 sample. A complete 
presentation of the test is detailed in the Appendix.  

In dimension five, the lattice structure contains 8536 
different vine copulas. Using our lattice-based 
algorithm in order to select the best vine copula 
according to the A-D test, we only needed to test 
1423 vine copulas (less than 17% of them). In fine, 
the retained vine copula is1:  

.5|2,14|5,15,13,15,45,25,4,3,2,1 ccccccc  

The fact that this vine copula was selected implies 
that the vine copulas presented in Aas et al. 
(2009) were rejected by the test, and hence were 
unable to represent the dependence between the 
five assets properly. This example shows the 
necessity of using the whole set of vine copulas 
for time series applications.  

Our final objective is to use this estimated vine 
copula density to compute the 10% VaR2. We 
computed it from 9/12/08 to 21/11/08 using 
Monte-Carlo based integration and optimization 
(see Figure 5). We compared it to a univariate 
model-based estimate of the VaR computed 
directly on the portfolio value time series. To 
discriminate between the two approaches, we use 
the Kupiec test (Kupiec, 1995). The Kupiec 
statistic is the number Q of time the out-sample 
time-series is below the predicted 10% VaR. Under 
the null of the prediction being a true 10% VaR the 
sampling distribution of the statistic follows a 
binomial distribution of parameter 0.1.  

In our example the vine copula-VaR has a p-value of 
0.96 for the Q statistic, so it is accepted as a true 
VaR, while the GARCH-VaR has a p-value of 0.00 
and is rejected according to this test3. Nevertheless, 
the vine copula approach fails to predict the major 
drop during the crisis, but the prediction remains 
solid before and after the crisis. These results make 
the vine copula methodology we described an 
interesting approach for risk management in order to 
estimate the multivariate (n > 2) density of a 
portfolio and to compute its associated VaR.  

                                                      
1 The computation took one hour on a 1,5Ghz processor computer. 
2 Given a random variable X, the 10% VaR of X is the value  such that: 

1.0XRaVXP . 
3 Q for the vine copula-VaR is equal to 5 and for the GARCH-V a R is 
equal to 21. 

Fig. 2. Dotted line: the CAC40, squared line: Vine VaR 

estimation, continuous line: GARCH VaR estimation  

Conclusion 

In this paper, we estimated multivariate distributions 
in high dimensions using a new vine copula-based 
approach that builds upon the work of Aas et al. 
(2009) by taking advantage of the diversity of 
vine copulas. We introduced an algorithm using a 
large number of vine copulas from which we were 
able to retain the "best" one according to a 
predefined test T, using a lattice structure, which 
makes the research simple and fast. The 
methodology we developed offers great flexibility 
for the practitioners in terms of the choice of the 
set of vine copulas, choice of bi-variate copulas, 
usefulness of the lattice structure, and the test T 
for the selection procedure.  

It appears necessary to have a great number of vine 
copulas to be able to take into account the most 
important features of the dataset to be analyzed: 
indeed, through a simple example we have highlighted 
the importance of finding the vine copula that takes 
into account most of the information contained in the 
dataset, particularly the behavior of the tails. Finally, 
the VaR computation based on our methodology 
provides interesting results compared with the classical 
parametric approach.  

However, some questions remain. First is the problem 
of devising a test to decide whether a vine copula 
represents a dataset dependence correctly or not. Chen 
et al. (2004) and Chen and Fan (2006) produced 
interesting tests, but for an optimum use of vine 
copulas a simpler and more efficient test needs to be 
built. Another question concerns the quality of the 
estimates, on which we did not focus in this paper. 
Instead, we applied a classical maximum likelihood 
estimation approach as developed, for instance, in Aas 
et al. (2009) to estimate the vine copula parameters. 
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Results on the efficiency of the estimates have to be 
established. We address this question in a companion 
paper, (Guégan and Maugis, 2009).  
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Appendix 

The modified Anderson-Darling test (Chen et al. (2004) 

The test is the following: we are testing the null hypothesis H0 against the alternative hypothesis H1: 

1,...,,...,Pr: 1010 nn UUCUUCH , 

1,...,,...,Pr: 1011 nn UUCUUCH , 

where C is the true copula and C0 is the estimated copula. We define {Zi}i<n and W as:  

11,...,| iii UUUFZ  and 
2

1

1
n

jZW , 

where  is the standard normal distribution function. Then W follows a 2
d

 distribution; our test will be based on this 

result. For this purpose, we use the univariate boundary kernel yxKh , : 
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in which k  is the quartic kernel: 
1||

22 11
16

15
uuuk and h is fixed using the rule of thumb: 5/1nWVarh . 

Then we define gW as a kernel estimation of the inverse density of W:  

T

t
thW WFK

hn
g

d
2,

.

1 . 

Finally, the test is based on the statistics Jn:  

dgJ Wn

21

0
1 . 

Then under the null we have that:  

ondistributiinN
rJnh

Stat nn
n 1,0

2/1

, 

where:  
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0 1
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