

Comparative Study of Immune Reaction Against Bacterial Infection From Transcriptome Analysis

Shun Maekawa¹, Pei-Chi Wang^{1,2*} and Shih-Chu Chen^{1,2,3,4*}

¹ Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan, ² Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan, ³ International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan, ⁴ Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan

OPEN ACCESS

Edited by:

Hetron Mweemba Munang'andu, Norwegian University of Life Sciences, Norway

Reviewed by:

Ming-Wei Lu, National Taiwan Ocean University, Taiwan Syarul Nataqain Baharum, National University of Malaysia, Malaysia,

*Correspondence:

Pei-Chi Wang pc921003@gmail.com Shih-Chu Chen scchen@mail.npust.edu.tw

Specialty section:

This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

Received: 29 October 2018 Accepted: 17 January 2019 Published: 05 February 2019

Citation:

Maekawa S, Wang P-C and Chen S-C (2019) Comparative Study of Immune Reaction Against Bacterial Infection From Transcriptome Analysis. Front. Immunol. 10:153. doi: 10.3389/fimmu.2019.00153

Transcriptome analysis is a powerful tool that enables a deep understanding of complicated physiological pathways, including immune responses. RNA sequencing (RNA-Seq)-based transcriptome analysis and various bioinformatics tools have also been used to study non-model animals, including aquaculture species for which reference genomes are not available. Rapid developments in these techniques have not only accelerated investigations into the process of pathogenic infection and defense strategies in fish, but also used to identify immunity-related genes in fish. These findings will contribute to fish immunotherapy for the prevention and treatment of bacterial infections through the design of more specific and effective immune stimulants, adjuvants, and vaccines. Until now, there has been little information regarding the universality and diversity of immune reactions against pathogenic infection in fish. Therefore, one of the aims of this paper is to introduce the RNA-Seg technique for examination of immune responses in pathogen-infected fish. This review also aims to highlight comparative studies of immune responses against bacteria, based on our previous findings in largemouth bass (Micropterus salmoides) against Nocardia seriolae, gray mullet (Mugil cephalus) against Lactococcus garvieae, orange-spotted grouper (Epinephelus coioides) against Vibrio harveyi, and koi carp (Cyprinus carpio) against Aeromonas sobria, using RNA-seq techniques. We demonstrated that only 39 differentially expressed genes (DEGs) were present in all species. However, the number of specific DEGs in each species was relatively higher than that of common DEGs; 493 DEGs in largemouth bass against N. seriolae, 819 DEGs in mullets against L. garvieae, 909 in groupers against V. harveyi, and 1471 in carps against A. sobria. The DEGs in different fish species were also representative of specific immune-related pathways. The results of this study will enhance our understanding of the immune responses of fish, and will aid in the development of effective vaccines, therapies, and disease-resistant strains.

Keywords: transcriptome, RNA-Seq, immune response, fish disease, bacteria

1

INTRODUCTION

Transcriptome analysis is used to study principal pathways of development, cellular fate, physiology, activity, and disease progression. RNA sequencing (RNA-Seq) is a modern technology for transcriptome profiling that uses next-generation sequencing (NGS). Advancements in bioinformatics has significantly supported RNA-Seq technology to accelerate the knowledge on transcriptomes (1).

In the aquaculture field, there is wide utility for RNA-Seq in various applications, such as understanding the development of embryo and larvae, toxicology, environmental stress, effect of dietary conditions, and discovery of novel transcripts (2-4). In addition, RNA-Seq has been used in many studies of fish immunology (5, 6). Pathogenic infection is a major concern for maintaining economic sustainability in natural and farmed fish; it results in high mortality and economical loss in aquaculture. An innate immunity is a front line of host defense, producing effectors that directly to the pathogen and attack it. An adaptive immune system is also present in teleost, including humoral and cellular mechanisms. To reduce disease outbreaks, it is essential to understand the immune mechanisms in fish during pathogenic infections. This knowledge will support the development of effective vaccines and adjuvants against pathogens. However, it has not been reported that the universality and diversity of immune reactions against pathogenic infection in fish.

In this paper, we firstly introduce the RNA-Seq technique and current knowledge for investigations of immune responses in pathogen-infected fish. This review also aims to highlight comparative studies of fish immune responses against bacteria based on our previous studies that we demonstrated the transcriptome of bacteria infected fish, largemouth bass (*Micropterus salmoides*) against Nocardia seriolae, gray mullet (*Mugil cephalus*) against Lactococcus garvieae, orange-spotted grouper (Epinephelus coioides) against Vibrio harveyi, and koi carp (Cyprinus carpio) against Aeromonas sobria.

ADVANTAGE OF RNA-seq ANALYSIS IN FISH AQUACULTURE

Since the 2000s, hybridization-based microarray has been used to examine fish immunology in aquacultures; some early examples included Japanese flounder (*Paralichthys olivaceus*) (7), rainbow trout (*Oncorhynchus mykiss*) (8), and Atlantic salmon (*Salmo salar*) (9). Although species-specific probes should be designed, microarray technology could provide us with high throughput gene expression data. For transcriptome analysis, series analysis of gene expression (SAGE) and cap analysis gene expression (CAGE) have also been utilized. SAGE and CAGE, which are tag-based technology, are more precise; however, the number of genes that can be analyzed at one time is lower as compared with that of microarrays. Recently, the number of reports that uses RNA-Seq in aquaculture studies has rapidly increased. For the complete detail of RNA-Seq methodology, please refer the nicely reviews focused on aquaculture field (3, 6). The advantage of RNA-Seq is that it could determine expression levels of lowlevel transcripts as well as each splice variant isoforms. Current focus in aquaculture fish research is to examine organisms that do not process reference gene sequences; unigenes are obtained via *de novo* assembly using Trinity or similar programs without requiring reference gene sequences (10). RNA-Seq could provide novel transcript sequences, thereby expanding our current list of known transcripts in fish.

ANNOTATION, ENRICHMENT ANALYSIS, AND PATHWAY ANALYSIS USING *DE NOVO* ASSEMBLY DATA

Although RNA-Seq technology could be applied to non-model animals, there are problems associated with the functional annotation and enrichment analysis of transcripts data. Transcripts sequences following assembly are usually searched via several databases, such as NCBI nucleotide sequences (NT), NCBI non-redundant protein (NR), Clusters of Orthologous Groups (COGs) (11), Kyoto Encyclopedia of Genes and Genomes (KEGG) (12, 13), gene ontology (GO) (14), and InterPro annotation (15). In our previous study on orangespotted grouper (Epinephelus coioides), a total of 79,128 unigenes were identified and aligned with each database; 58,926 (74.47%) in NT, 43,576 (55.07%) in NR, 14,750 (18.64%) in COG, 34711 (43.87%) in KEGG, and 4232 (5.35%) in GO (16). The number of genes aligned with existing genes in the database was the highest in NT, while gene alignment was the lowest in GO. Differences in the number of aligned genes between the databases were similar to those found in other aquaculture studies (17-19). Although the GO database could provide enrichment analysis and pathway analysis, due to low gene alignment, results may be limited to generalized conclusions. There are programs that can convert gene IDs from one database to those of another database. For example, DAVID and ID Converter Systems are able to change gene IDs from NT to that of GO. However, these systems are not very useful in genes of aquaculture species. Currently, the KEGG database shows a relatively high number of aligned genes, which allows for enrichment analysis of aquaculture species. To obtain generalized conclusions using transcriptome data, it is essential that systems are developed to describe non-model organisms. There are databases now under construction that contain transcriptome information of aquaculture species. In the European common carp (Cyprinus carpio), a wide range of data on tissue-specific gene expression and translation (20) has been presented. These datasets will allow us to investigate immune responses in aquaculture species via transcriptome analysis.

IMMUNE RESPONSES AGAINST PATHOGENS IN TELEOST USING RNA-seq

Although fish are constantly exposed to risk of microorganism pathogens, fish could keep in shape to act immune mechanisms against pathogens. In a first line of immune response, fish are protected by non-specific humoral factors including growth inhibiting substances (transferrin and antiproteases), lysins

(lysozyme, C-reactive protein, and bactericidal peptides), and making a link with non-specific phagocyte responses. Second, fish produce antibody constitutes for a specific humoral defense inhibiting bacterial adherence and invasion of non-phagocytic host cells and counteracting toxins from bacterial (21). After developing the technology of molecular biology, the immunerelated gene functions and responses against pathogens have been one of the major topic in fish immunology field. To investigate the expression pattern of immune-associated genes, real-time PCR is usually performed. However, this method is expensive and not recommended for a genome-wide survey of gene expression. As RNA-Seq could provide us with quantitative data on transcript expression levels, this technique has been commonly used to identify genes that respond to pathogenic conditions during exogenous challenge. Table 1 lists transcriptome analysis studies that examined immune regulations in teleost. In this review, we will also focus on studies that investigated immune responses to pathogen or their mimic molecules, using RNA-Seq analysis.

Aeromonus hydrophila is a Gram-negative bacterium, and causes a wide spectrum of diseases in vertebrates (69, 70). It is a major pathogen in aquaculture farms, and leads to high mortalities and economic losses worldwide (71, 72). In blunt snout bream (Megalobrama amblycephala), RNA-Seq analysis was conducted with RNA from several tissues, and 238 differentially expressed unigenes were identified in infected fish (22). In grass carp (Ctenopharygodon idella), 2121 DEGs were identified in spleens of A. hydrophila (6 hpi)-infected fish, some of which were involved in phagocytosis, the complement system, and cytokine production (25). Using transcriptome analysis, another study showed that A. hydrophila infected grass carp exhibited 2992 DEGs in the spleen, which were associated with the complement and coagulation cascades (26). In golden mahseer (Tor putitora), DEGs in A. hydrophila-infected livers were mainly associated with Th1/2 cell differentiation pathways, as well as in pathogen recognition and complement system (24).

Flavobacterium columnare is a Gram-negative bacterium, and causes columnaris in freshwater fish (73). This disease induces pathological changes, and damages epidermal tissues, gills, and the skin (74). In channel catfish (Ictalurus punctatus), the transcript profile of F. columnare-infected gills was examined using RNA-Seq to investigate differences in susceptibility to F. columnare (34). In resistant fish, the expression level of innate immune-associated genes (iNOS2b, lysozyme C, IL-8, and TNFa) was found to be elevated. In susceptible fish, the expression of secreted mucin forms, mucosal immune factors (CD103 and IL-17a), and rhamnose-binding lectin (34) was upregulated. The transcriptomic profiles of F. columnareinfected and non-infected mandarin fish (Siniperca chuatsi) have been reported using the head kidney F. columnare-infected and non-infected group (35). The results indicated that 1019 genes were differentially expressed between the two groups, of which 27 were immune-related (35). A similar study using the head kidney F. columnare-infected topmouth culter (Culter alburnus) (36) was also conducted. A total of 4037 DEGs (1217 upregulated and 2820 downregulated genes) were identified, and were found to be involved in phagosome formation, carbohydrate metabolism, amino acid metabolism, and lipid metabolism (36).

Streptococcus agalactiae, a Gram-positive round bacterium, is a harmful aquaculture pathogen that leads to enormous economic losses in various teleost (75-78). Transcriptome analysis of hybrid tilapia (Oreochromis spp.) after S. agalactiae infection was conducted, and results indicated that DEGs are mainly involved in immune-related pathways, especially Tolllike receptor signaling and leukocyte transendothelial migration (49). Moreover, time-course expression profile of genes suggested that induction of the NADPH oxidase complex and piscidin is mediated by Toll-like receptor pathways (49). Another research group conducted RNA-Seq analysis in tilapia (Oreochromis niloticus) spleens following S. agalactiae infections (51). A total of 2822 DEGs were detected, many of which were involved in pathogen attachment and recognition, antioxidant/apoptosis, cytoskeletal rearrangement, and immune activation (51). Wang et al. (50) focused on the relation between temperature and bacterial infection. They showed that temperature influences mRNA profiles of the spleen in tilapia during S. agalactiae infections. In addition, it was suggested that DEGs are involved in immune responses and oxygen related metabolisms (50).

Vibrio alginolyticus is a halophilic Gram-negative bacterium that causes septicemias, ulcers, exophthalmia, and corneal opaqueness in marine fish worldwide (79, 80). Transcriptome analysis in larvae of orange-spotted grouper (*Epinephelus coioides*) revealed that the expression of genes involved in the complement pathway and antimicrobial peptides is enhanced upon V. alginolyticus infection (39). In addition, transcriptome profiles of giant grouper (*Epinephelus lanceolatus*) larvae infected with Vibrio alginolyticus suggested that TLR5 signaling induces secretion of several cytokines (IL-1 β and IL-8) (40).

DIVERSITY OF IMMUNE RESPONSES AMONG SPECIES AND PATHOGENS

In the previous section, we introduced various RNA-seq analyses conducted in fish with bacterial infections. We have also previously published four research papers that conducted transcriptome analysis on infected fish, namely largemouth bass (Micropterus salmoides) against Nocardia seriolae (17), gray mullet (Mugil cephalus) against Lactococcus garvieae (18), orange-spotted grouper (Epinephelus coioides) against Vibrio harveyi (16), and koi carp (Cyprinus carpio) against Aeromonas sobria (19). Based on the transcriptome data from these reports, we gained a deeper understanding of immune responses to bacterial infections. However, there is little information regarding the universality and diversity of immune reactions of fish against pathogenic infections. Here, we investigated specific genes and pathways that are involved in each bacterial infection in various fish species. In this study, we used DEGs (transcripts from spleen at 1 dpi with $\log 2 > 1$ or < -1 between infected and control group) with KEGG-annotations. We first identified overlapping and specific genes that were up- or down- regulated in each species. Venn diagrams (Figure 1) showed that only 39 DEGs (25 up-regulated and 14 down regulated) were involved in all species. The number of specific DEGs in each species was

	IABLE 1 LIST OF ITANSCRIPTOME REPORT IN IMMUNE SYSTEMS OF TELEOST.			
Pathogen or stimulator	Fish	Target tissue or cell	Responding genes and pathways	References
GRAM-NEGATIVE BACTERIA				
Aeromonas hydrophila	Blunt snout bream (Megalobrama amblycephala)	Mixture of RNA sample form tissues	Toll-like receptor signaling, complement cascade.	(22)
Aeromonas hydrophila	Darkbarbel catfish (Pelteobagrus vachellii)	Spleen	Complement and coagulation cascades, pattern recognition pathways, Nk cell mediated cytotoxicity, Fcy receptor-mediated phagocytosis, B cell and T cell receptor signaling pathway.	(23)
Aeromonas hydrophila	Golden mahseer (Tor putitora)	Liver	Th1 and 2 cell differentiation, pathogen recognition, complement cascade pathways.	(24)
Aeromonas hydrophila	Grass carp (Ctenopharygodon idella)	Spleen	Antigen processing and presentation, Phagocytosis, Complement system, Cytokines	(25)
Aeromonas hydrophila	Grass carp (Ctenopharyngodon idella)	Spleen	Complement and coagulation cascades pathway.	(26)
Aeromonas salmonicida	Rainbow trout (Oncorhynchus mykiss)	Spleen	Hematopoietic cell lineage and complement and coagulation cascades.	(27)
Aeromonas sobria	Koi Carp (Cyprinus carpio)	Muscle, spleen	Toll-like receptor signaling and complement cascade pathway.	(19)
Edwardsiella ictaluri	Yellow catfish (Pelteobagrus fulvidraco)	Spleen	DEGs linked to several innate and adaptive immune related pathways.	(28)
Edwardsiella tarda	Japanese flounder (Paralichthys olivaceus)	Blood	A total of 30 immune related DEGs were extracted based on protein-protein interaction networks.	(29)
Edwardsiella tarda	Japanese flounder (Paralichthys olivaceus)	Gill	Based on protein-protein interaction networks, 24 genes were found as key regulators in immune responses.	(30)
Edwardsiella tarda	Japanese flounder (Paralichthys olivaceus)	Kidney	PI3K family, antigen processing and presentation.	(31)
<i>Edwardsiella tarda</i> (mutant with low virulence)	Zebrafish (Danio rerio)	Liver	Complement activation, antigen processing and presentation pathway.	(32)
Escherichia coli (Heat-killed)	Black rockcod (Notothenia coriiceps)	Liver	MHC class I and II antigen-processing moleules.	(33)
Flavobacterium columnare	Channel catfish (Ictalurus punctatus)	Gill	Innate immune genes (iNOS2b, lysozyme C, IL-8, and TNF- α) and mucosal immuen factors (CD103 and IL-17)	(34)
Flavobacterium columnare	Mandarin fish (Siniperca chuatsí)	Head kidney	Upregulated cytokine genes (IL-1β, IL-8, CXCL14, CCK3, CCL25, Angpt1, Thpo, MMP-9)	(35)
Flavobacterium columnare	Topmouth culter (Culter alburnus)	Head kidney	Phagosome pathway, complement activation	(36)
Piscirickettsia salmonis	Atlantic salmon (Salmo salar)	Brain, head kidney, spleen	Endocytosis, Phagosome, Heme metabolism	(37)
Pseudomonas fluorescens	Whitefish (Coregnous palaea)	Embryo	Ion binding, aminoacyI-tRNA-biosynthesis, complement cascade, MHC class I and II, TNF- α , T-cell differentiation.	(38)
Vibrio alginolyticus	Orange-spotted grouper (Epinephelus coioides)	Whole body of larvae	Complementation cascades, phagosome activity, antigen processing, antigen presentation pathway.	(39)
Vibrio alginolyticus	Giant grouper (Epinephelus lanceolatus)	Whole body of larvae	Inductions of TLR5, IL-1β, IL-8, hepcidin genes	(40)

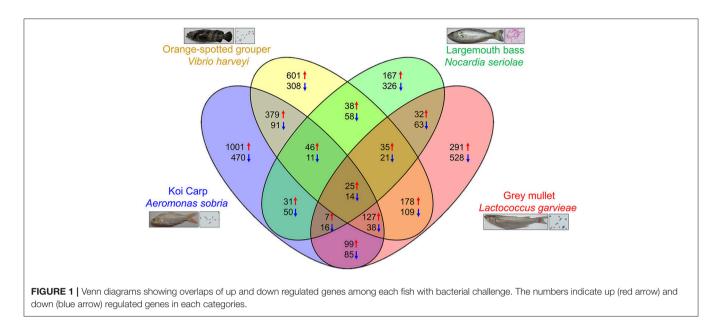
(Continued)

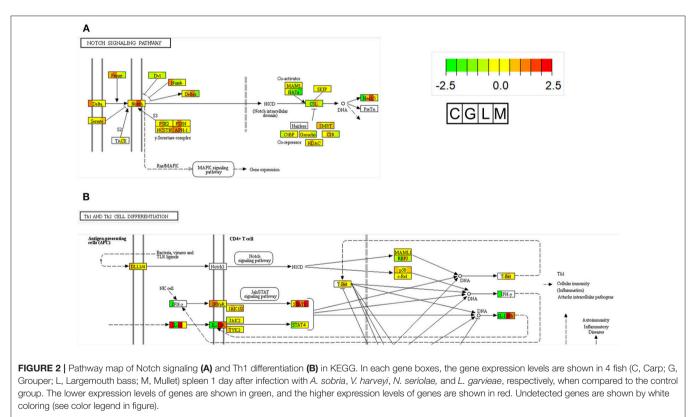
Pathogen or stimulator	Fish	Target tissue or cell	Responding genes and pathways	References
Vibrio anguilarum	Half-smooth tongue sole (C <i>ynoglossus semilaevis</i>)	Mixture of RNA sample form tissues	Complement cascades, antigen processing and presentation, toll-like receptor signaling, NOD-like receptor signaling	(41)
Vibrio anguilarum	Japanese seabass (Lateolabrax japonicas)	Head kidney, liver, spleen	Toll-like receptor signaling, NOD-like receptor signaling, RIG-I-like receptor signaling, T cell receptor signaling	(42)
Vibrio anguillarum	Miiuy croaker (<i>Miichthys miiuy</i>)	Spleen	Phagosome pathway, NF-ĸB signaling pathway, hematopoletic cell lineage, cytokine-cytokine receptor interaction.	(43)
Vibrio anguillarum	Southern flounder (Paralichthys lethostigma)	Liver	Upregulated hematopolesis related genes, β -hemoglobin and erythropolten.	(44)
Vibrio anguilarum	Turbot (Scophthalmus maximus)	Intestine	Pathogen attachment and recognition, antioxidant/apoptosis, mucus barrier modification, immune activation/inflammation	(45)
Vibrio harveyi	Orange-spotted grouper (Epinephelus coioides)	Head kidney, spleen	NOD-like receptor signaling, toll-like receptor signaling, NF-kB signaling, Jak-STAT signaling	(16)
Vibrio parahaemolyticus	Brown-marbled grouper (Epinephelus fuscoguttatus)	Spleen	Cell killing, antioxidant activity	(46)
Vibrio parahaemolyticus	Zebrafish (Danio rerio)	Whole body of larvae	Complement cascades, chemokine, TNF signaling, NF-kB signaling, JAK-STAT signaling	(47)
Yersinia ruckeri	Amur sturgeon (Acipenser schrenckii)	Spleen	Antigen processing and presentation, complement cascades, T cell receptor signaling, B and T cell receptor signaling.	(48)
GRAM-POSITIVE BACTERIA				
Lactococcus garvieae	Gray mullet (<i>Mugil cephalus</i>)	Head kidney, spleen	Complement and coagulation cascades, toll-like receptor signaling, antigen processing and presentation	(18)
Nocardia seriolae	Largemouth bass (Micropterus salmoides)	Spleen	Cytokines, toll-like receptor signaling, T cell receptor signaling, NF-kB signaling, JAK-STAT signaling	(17)
Streptococcus agalactiae	Hybrid tilapia (<i>Oreochromis</i> spp.)	Whole body of larvae	Toll-like receptor signaling, leukocyte transendothelial migration, TNF signaling, PI3K-Akt signaling, Jak-STAT signaling MAPK signaling	(49)
Streptococcus agalactiae	Mozambique tilapia (Oreochromis mossambicus)	Spleen	Toll-like receptor signaling, chemokine signaling, antigen processing and presentation, NF-kB signaling, TNF signaling, cytokines	(20)
Streptococcus agalactiae	Nile tilapia (Oreochromis niloticus)	Spleen	Pathogen attachment and recognition, antioxidant/apoptosis, cytoskeletal dynamics regulation, immune activation	(51)
Streptococcus dysgalactiae	Soiny mullet (Liza haematocheila)	Spleen	Complemen cascades, toll-like receptor signaling, chemokine signaling pathway, B snd T cell receptor signaling, antigen processing and presentation, natural killer cell mediated cytotoxicity	(52)
VIRUS				
Carassius auratus herpesvirus	Gibel carp (<i>Carassius gibelio</i>)	Head kidney	Chemokine signaling, toll-like receptor signaling, type I IFN, IL-6 etc.	(53)
Grass carp reovirus	Grass carp (Ctenopharyngodon idella)	Gill, intestine, liver, spleen	Complemen cascades, antigen presentation, Nk cell mediated cytotoxicity, proteasome, lysosome, peroxisome, phagosome	(54)
Grass carp reovirus	Grass carp (Ctenopharyngodon idella)	Spleen	Complement cascades, hematopoietic cell lineage, phagosome, cytokine-cytokine receptor interaction	(55)
Grass carp reovirus	Grass carp	Kidney	Complement and coagulation cascades, Glycolysis/gluconeogenesis	(26)

(Continued)

TABLE 1 Continued				
Pathogen or stimulator	Fish	Target tissue or cell	Responding genes and pathways	References
Grass carp reovirus	Grass Carp (Ctenopharyngodon idella)	Kidney cell line	Focal adhesion, ECM-receptor interactions in early stage of infection, phagosome, lysosome in the midle stage	(57)
Lymphocystis disease virus	Japanese flounder (Paralichthys olivaceus)	Gill	Cell cycle, DNA replication, proteasome, p53 signaling, TNF signaling	(58)
Nervous necrosis virus	Grouper (Epinephelus spp)	Kidney cell line	Endoplasmic reticulum stress response	(59)
Nervous necrosis virus	Asian seabass (Lates calcarifer)	Epithelial cell line	Upregulation of pro-inflammatory cytokines, type I interferon, chemokines	(60)
Salmon anemia virus	Atlantic salmon (Salmo salar)	Spleen	Protein translation; protein processing in endoplasmic reticulum, proteasome, phagosome, lysosome, antigen processing and presentation	(61)
Spring viraemia of carp virus	Fathead minnow (Pimephales promelas)	Epithelioma papulosum cyprinid (EPC) cell line	Oxidative stress, apoptosis, cytoskeleton, interferon system	(62)
Spring viraemia of carp virus	Zebrafish (Danio rerio)	Brain, spleen	Influenza A pathway, herpes simplex infection pathway, tuberculosis and toxoplasmosis pathways	(63)
MIMIC MOLECULES				
Lipopolysaccharide	Zebrafish (Danio rerio)	Whole body of larvae	Chemokines and G protein-coupled receptor signaling. (mild dose treatment). Down-modulated proinflammatory genes after sublethal dose treatment.	(64)
Lipopolysaccharide	Yellow catfish (Pelteobagrus fulvidraco)	Liver	Up-regulated expressions of CXOL2-like chemokine, goose-type lysozyme, and cathepsin K	(65)
Poly(I:C)	Large yellow croaker (Pseudosciaena crocea)	Spleen	Toll-like receptor signaling, RIC-I-like receptors signaling, JAK-STAT signaling, and T-cell receptor signaling	(99)
Poly(I:C)	Miiuy croaker (Miichthys miiuy)	Spleen	Cytokine-cytokine receptor interaction, complement cascades, NF-kB signaling, toll-like receptor signaling	(67)
Poly(I:C)	Black rockcod (Notothenia coriiceps)	Liver	Upregulation of TNF α and TNF2 expressions	(33)
Poly(I:C)	Schizothorax prenanti	Spleen	MDA5 and JAK mediated signaling pathways	(68)

relatively higher than that of common DEGs; 493 DEGs (167 upregulated and 326 down regulated) were found in largemouth bass against *N. seriolae*, 819 DEGs (291 up-regulated and 528 down regulated) were found in mullets against *L. garvieae*, 909 DEGs (601 up-regulated and 308 down regulated) were found in groupers (*Epinephelus coioides*) against *V. harveyi*, and 1471 DEGs (1,001 up-regulated and 470 down regulated) were found in carps against *A. sobria* (**Figure 1**).


Of the common DEGs, we found several immune-related genes that were upregulated, including C4 (complement component 4), CCL19 (C-C motif chemokine 19), and SOCS1 (suppressor of cytokine signaling 1) (Table S1). The complement system is an important innate immune system that functions to detect pathogenic infections in both vertebrates and invertebrates. C4 is an important part of the classical and lectin pathways, which form enzymes C3 and C5 convertases (81, 82). CCL19, a CC chemokine that is expressed in lymphoid organs, manages the migration of antigen presenting cells and lymphocytes (83). In teleost, there are also various reports that investigated potential chemokine genes and their chemotactic activity (84-86). SOCS1 is a regulator of JAK/STAT signaling, and is induced by type I interferon (IFN) and IFN-y via binding and blocking of JAK2 activation (87). It has been reported that SOCS1 acts as an inhibitor of IFN-mediated signaling in Atlantic salmon (Salmo salar) (88). From other reports of the transcriptome analysis (Table 1), complement system, JAK/STAT signaling and chemokine systems are also commonly appeared in responding pathways to bacterial infections. Therefore, it is suggested that these genes contribute to early immune responses following bacterial infections (within 24 h).


Nocardia seriolae is a filamentous Gram-positive bacterium that causes nocardiosis with high mortality in many fish species in Japan, Taiwan and Japan. The infected fish showed a lethal granulomatous disease of the skin, muscle, spleen, kidney, and liver tissues (89). Unlike other bacterial species from our previous studies, N. seriolae is an intercellular bacteria. To determine specific DEGs elicited by N. seriolae infections, we performed functional enrichment of the KEGG pathway for specific up-regulated genes in largemouth bass. As shown in Table S2, specific upregulated genes were assigned to 11 KEGG pathways; based on the enrichment analysis. From the enrichment analysis, Notch signaling pathway was focused and illustrated using expression levels of RNA-seq data from all four fish species (Figure 2A). Results indicated that Notch1 and HES1 (hairy and enhancer of split 1) were specifically upregulated in largemouth bass against N. seriolae. The Notch and HES1 axis present in hematopoietic cells and stroma of the thymus plays an important role in T cell development (90, 91). Additionally, in the "cytokine-cytokine receptor interaction" pathway, IL12RB1 (interleukin 12 receptor β-1) and IL12RB2 (interleukin 12 receptor β 2) in largemouth bass against *N. seriolae* were upregulated. IL12B is a ligand of IL12RBs, and is highly, but not specifically expressed, in largemouth bass (Figure 2B). IL-12, a heterodimetric cytokine consisting of p35 and p40 subunits, is a key regulator of T helper 1 development (Th1), which promotes cellular immunity against intracellular pathogens. In Amberjack (Seriola dumerili), administrated recombinant IL-12 and formalin-killed *N. seriolae* showed the higher survival rates after challenged with *N. seriolae*, compared to vehicle and FKC only groups (92). These pathways promote immune reactions against *N. seriolae* during early stages of the infection, and are candidates for infection prevention and adjuvants in fish.

Aeromonas sobria is a Gram-negative, motile, rod-shaped bacterium that has been isolated from many diseased fish (93-95). In the spleen and head kidney of disease fish, necrotized spleen cells and hemorrhagic pulps were observed (93). From the extracted data of specific up-regulated genes (1001 genes) in koi carp against A sobria (Figure 1), we performed functional enrichment of the KEGG pathway for specific up-regulated genes. As shown in Table S3, specific upregulated genes of koi carp against A. sobria are associated with 45 KEGG pathways. As shown in Figure S1, regulation of the actin cytoskeleton was activated during A. sobria infection. In addition, CXCL12 (C-X-C motif chemokine 12) and CXCR4 (C-X-C motif chemokine receptor 4) in were also up-regulated in koi carps during A sobria infections (Figure S1). The CXCL12-CXCR4 axis modulates various immune functions, such as induction of hematopoiesis and accumulation of immune cells in inflamed tissues (96). Therefore, the CXCL12-CXCR4 axis may function in reorganization of hematopoiesis in injured tissues during A. sobria infections.

Vibrio harveyi is one of the major photogenes of a luminescent Gram-negative bacterium, which impacts to wide range of aquaculture species (97-99). The 601 specific upregulated genes in orange-spotted grouper against Vibrio harveyi (Figure 1) were assigned to 8 KEGG pathways (Table S4). We focused on the ErbB signaling pathway, and found that expression of TGF α (transforming growth factor α) and its receptor, ERBB1 (epidermal growth factor receptor), were upregulated (Figure S2). Previous studies have shown that TGFa promotes the expression and activity of TLR5 and TLR9 in skin keratinocytes (100). In our previous study, expressions of TRL5 and its downstream genes in the spleen were found to be enhanced 2 days following V. harveyi infections (16). While the immunological function of TGF α in the spleen of fish is unclear, we hypothesize that TGF α is a key regulator for prevention of *V*. harveyi infection in fish.

Lactococcus garvieae is a Gram-positive, facultative anaerobic, non-motile bacterium, and affects freshwater and marine cultured fish species worldwide (101, 102). Functional enrichment analysis of the KEGG pathway was performed to determine specific upregulated genes (291 genes) in gray mullets against L. garvieae (Figure 1). Specific upregulated genes were mapped to 10 KEGG pathways during L. garvieae infection in gray mullets (Table S5). Results indicated that the IL-17 signaling pathway is clearly enhanced during the infection, as illustrated by Figure S3. IL-17 is composed of six ligands (IL-17A to F), and plays critical roles in inflammatory responses and host defenses during invasion by extracellular pathogens. Binding of IL-17s to its five perspective receptors (IL-17Rs; IL-17RA to E), induces inflammatory and immune responses (103). In vitro study, exogenous IL-17A induced bacterial clearance in F. tularensis LVS- live vaccine strain infected cells (104). Additionally, in mice model, it has been reported that in vivo

administration of IL-17A moderately delays time of death from lethal infection of *Francisella tularensis* live vaccine strain (105). While we did not detect expression of IL-17 ligands in this study, we found that expressions of IL-17RB, IL17RC, and IL-17RE were up-regulated in gray mullets infected with *L. garvieae*. There are studies that aimed to identify and characterize IL-17 and IL17Rs in fish (106, 107). However, functional differentiations of teleost IL-17s and these receptors remain elusive. Our findings on the expression pattern of IL17Rs will provide useful models that can be used to investigate immune functions of IL17s in teleost.

A. sobria and *V. harveyi* are classified to Gram-negative bacteria. Therefore, we approached to find the immune-related genes and pathways using commonly DEG (379 upregulated genes and 91 downregulated genes) of koi carp against *A. sobria* and orange-spotted grouper against *V. harveyi* (Figure 1).

However, any immune-related pathways were not assigned by KEGG enrichments analysis. TLR4, which is the pathogen recognized receptor for the Gram-negative bacteria specific lipopolysaccharide, is not highly expression in the spleen of koi carp against A. sobria and orange-spotted grouper against V. harveyi. While, we could find the up-regulated immune-related gene of these two species, such as pattern recognition receptors (TLR6 and TLR5), cytokines and chemokines (CSF3 and CCL21), lysosome related genes (LYPLA3 and SLC11A1) and caspase recruitment domain-containing protein (Card) 9 (Table S6). N. seriolae and L. garvieae are classified to Gram-positive bacteria. Therefore, we investigated to commonly immune-related genes and pathways in Gram-positive bacteria using commonly DEGs (32 upregulated genes and 63 downregulated genes) of largemouth bass against N. seriolae and gray mullet against L. garvieae (Figure 1). Up-regulated immune-related genes of these two species were identified, such as IL-6, TNF Receptor Superfamily Member 11b (TNFRSF11B), interferon regulatory factors (IRF4 and IRF8) and CD83 (Table S7). Although it is unclear the pathways to induce these up-regulated genes, these immune related genes may become the marker and immune factors in Gram-negative or positive bacterial infection.

CONCLUSION AND FUTURE PERSPECTIVES

In this review, we first introduced applications of the RNA-Seq technology in aquaculture studies. The RNA-Seq technology has allowed us to identify many novel genes, and to investigate the expression patterns at various conditions in non-model teleost. Therefore, findings based on this technology have accelerated research in the aquaculture field. Additionally, high throughput quantification by RNA-seq could be used to identify pathogen, and to evaluate the efficacy of vaccines and adjuvants against pathogen in vivo. We also summarized current knowledge on immune responses to pathogenic challenges via RNA-Seq in teleost. In this study, we could identify the specific pathway in each fish against bacteria species, Noth1 signaling and IL-12 signaling pathway in largemouth bass against N. seriolae, CXCL12 and CXCR4 signaling pathway in koi carp against A. sobria, TGFa signaling pathway in orange-spotted grouper against V. harveyi, and IL-17 signaling pathway in gray mullet against L. garvieae. These types of studies are increasing, and have enormously aided in our understanding of pathogenic strategies and immune defense systems in aquaculture fish. However, there remains certain limitations of RNA-Seq analysis in aquaculture species. Additionally, the RNA-seq technology could be used to expand existing datasets on splicing variants in mRNA and SNP. Currently, differences in immune response against different pathogens are not well-described. In this study, we attempted to investigate both species-specific and common immune related genes that are up-regulated during bacterial infections based on our previous RNA-seq data. Secondary use of RNA-seq datasets may be essential for preparation of future RNA-seq studies in aquaculture species, which can further deepen our understanding of specific immune functions against pathogens. In aquaculture field, these deep and particular understanding of immune response against each pathogens will provide us to more accurate diagnosis of disease and develop a more effective vaccine and adjuvant of each pathogens.

AUTHOR CONTRIBUTIONS

SM analyzed transcriptome data and wrote the paper. P-CW and S-CC reviewed the paper.

FUNDING

This research was funded by National Science Council, Taiwan, grant number NSC 104-2622-B-020-002-CC1 and MOST 107-2313-B-020-012 -MY3.

ACKNOWLEDGMENTS

We thank Genomics Bioscience Technology Co. Ltd. (Taipei, Taiwan) for assistance with transcriptome analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu. 2019.00153/full#supplementary-material

Figure S1 | Pathway map of Regulation of actin cytoskeleton in KEGG. In each gene boxes, the gene expression levels are shown in 4 fish (C, Carp; G, Grouper; L, Largemouth bass; M, Mullet) spleen 1 day after infection with *A. sobria, V. harveyi, N. seriolae,* and *L. garvieae,* respectively, when compared to the control group. The lower expression levels of genes are shown in green, and the higher expression levels of genes are shown in red. Undetected genes are shown by white coloring (see color legend in figure).

Figure S2 | Pathway map of ErbB signaling pathway in KEGG. In each gene boxes, the gene expression levels are shown in 4 fish (C, Carp; G, Grouper; L, Largemouth bass; M, Mullet) spleen 1 day after infection with *A. sobria, V. harveyi, N. seriolae,* and *L. garvieae*, respectively, when compared to the control group. The lower expression levels of genes are shown in green, and the higher expression levels of genes are shown in red. Undetected genes are shown by white coloring (see color legend in figure).

Figure S3 | Pathway map of II-17 signaling pathway in KEGG. In each gene boxes, the gene expression levels are shown in 4 fish (C, Carp; G, Grouper; L, Largemouth bass; M, Mullet) spleen 1 day after infection with *A. sobria, V. harveyi, N. seriolae,* and *L. garvieae*, respectively, when compared to the control group. The lower expression levels of genes are shown in green, and the higher expression levels of genes are shown in red. Undetected genes are shown by white coloring (see color legend in figure).

 Table S1 | Expression levels of commonly up or down regulated genes among 4

 fish infected with bacteria. Each expression data indicated fold-change (log2) of

 bacterial infection/control groups.

 Table S2 | Functional enrichment KEGG pathway for specific up-regulated genes

 of largemouth bass against N. seriolae.

Table S3 | Functional enrichment KEGG pathway for specific up-regulated genes of koi carp against *A. sobria*.

Table S4 | Functional enrichment KEGG pathway for specific up-regulated genes of orange-spotted grouper against *V. harveyi*.

 Table S5 | Functional enrichment KEGG pathway for specific up-regulated genes

 of gray mullet against Lactococcus garvieae.

 Table S6 | Expression levels of commonly up regulated immune-related genes among koi carp against *A. sobria* and orange-spotted grouper against *V. harveyi*.

 Each expression data indicated fold-change (log2) of bacterial infection/control groups.

REFERENCES

- Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. (2009) 10:57–63. doi: 10.1038/nrg2484
- Qian X, Ba Y, Zhuang Q, Zhong G. RNA-Seq technology and its application in fish transcriptomics. OMICS (2014) 18:98–110. doi: 10.1089/omi.2013.0110
- Martin SA, Dehler CE, Krol E. Transcriptomic responses in the fish intestine. Dev Comp Immunol. (2016) 64:103–17. doi: 10.1016/j.dci.2016.03.014
- Jacobson G, Muncaster S, Mensink K, Forlenza M, Elliot N, Broomfield G, et al. Omics and cytokine discovery in fish: presenting the Yellowtail kingfish (*Seriola lalandi*) as a case study. *Dev Comp Immunol.* (2017) 75:63–76. doi: 10.1016/j.dci.2017.04.001
- Petit J, David L, Dirks R, Wiegertjes GF. Genomic and transcriptomic approaches to study immunology in cyprinids: what is next? *Dev Comp Immunol.* (2017) 75:48–62. doi: 10.1016/j.dci.2017.02.022
- Sudhagar A, Kumar G, El-Matbouli M. Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: a comprehensive review. *Int J Mol Sci.* (2018) 19:245. doi: 10.3390/ijms19010245
- Byon JY, Ohira T, Hirono I, Aoki T. Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (*Paralichthys olivaceus*) following DNA vaccination. *Fish Shellfish Immunol.* (2005) 18:135–47. doi: 10.1016/j.fsi.2004.06.008
- MacKenzie S, Iliev D, Liarte C, Koskinen H, Planas JV, Goetz FW, et al. Transcriptional analysis of LPS-stimulated activation of trout (*Oncorhynchus mykiss*) monocyte/macrophage cells in primary culture treated with cortisol. *Mol Immunol.* (2006) 43:1340–8. doi: 10.1016/j.molimm.2005.09.005
- Martin SA, Blaney SC, Houlihan DF, Secombes CJ. Transcriptome response following administration of a live bacterial vaccine in Atlantic salmon (*Salmo salar*). *Mol Immunol.* (2006) 43:1900–11. doi: 10.1016/j.molimm.2005.10.007
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol.* (2011) 29:644–52. doi: 10.1038/nbt.1883
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. (1990) 215:403–10. doi: 10.1016/S0022-2836(05)80360-2
- Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Res.* (1999) 27:29–34. doi: 10.1093/nar/27.1.29
- Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Res.* (2016) 44:D457–62. doi: 10.1093/nar/gkv1070
- Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* (2005) 21:3674–6. doi: 10.1093/bioinformatics/bti610
- Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. *Nucleic Acids Res.* (2005) 33:W116-20. doi: 10.1093/nar/gki442
- Maekawa S, Byadgi O, Chen YC, Aoki T, Takeyama H, Yoshida T, et al. Transcriptome analysis of immune response against *Vibrio harveyi* infection in orange-spotted grouper (*Epinephelus coioides*). *Fish Shellfish Immunol.* (2017) 70:628–37. doi: 10.1016/j.fsi.2017.09.052
- Byadgi O, Chen CW, Wang PC, Tsai MA, Chen SC. *De novo* transcriptome analysis of differential functional gene expression in largemouth bass (*Micropterus salmoides*) after challenge with *Nocardia seriolae*. *Int J Mol Sci.* (2016) 17:1315. doi: 10.3390/ijms17081315
- Byadgi O, Chen YC, Barnes AC, Tsai MA, Wang PC, Chen SC. Transcriptome analysis of grey mullet (*Mugil cephalus*) after challenge

Table S7 | Expression levels of commonly up regulated immune-related genesamong largemouth bass against *N. seriolae* and gray mullet against *L. garvieae*.Each expression data indicated fold-change (log2) of bacterial infection/controlgroups.

with Lactococcus garvieae. Fish Shellfish Immunol. (2016) 58:593-603. doi: 10.1016/j.fsi.2016.10.006

- Byadgi O, Chen YC, Maekawa S, Wang PC, Chen SC. Immune-Related functional differential gene expression in Koi carp (*Cyprinus carpio*) after Challenge with *Aeromonas sobria*. Int J Mol Sci. (2018) 19:2107. doi: 10.3390/ijms19072107
- Kolder IC, van der Plas-Duivesteijn SJ, Tan G, Wiegertjes GF, Forlenza M, Guler AT, et al. A full-body transcriptome and proteome resource for the European common carp. *BMC Genomics* (2016) 17:701. doi: 10.1186/s12864-016-3038-y
- Ellis AE. Immunity to bacteria in fish. Fish Shellfish Immunol. (1999) 9:291– 308. doi: 10.1006/fsim.1998.0192
- Tran NT, Gao ZX, Zhao HH, Yi SK, Chen BX, Zhao YH, et al. Transcriptome analysis and microsatellite discovery in the blunt snout bream (*Megalobrama amblycephala*) after challenge with *Aeromonas hydrophila*. *Fish Shellfish Immunol.* (2015) 45:72–82. doi: 10.1016/j.fsi.2015.01.034
- Qin C, Gong Q, Wen Z, Yuan D, Shao T, Wang J, et al. Transcriptome analysis of the spleen of the darkbarbel catfish *Pelteobagrus vachellii* in response to *Aeromonas hydrophila* infection. *Fish Shellfish Immunol.* (2017) 70:498–506. doi: 10.1016/j.fsi.2017.09.042
- Kumar R, Sahoo PK, Barat A. Transcriptome profiling and expression analysis of immune responsive genes in the liver of Golden mahseer (*Tor putitora*) challenged with *Aeromonas hydrophila*. *Fish Shellfish Immunol*. (2017) 67:655–66. doi: 10.1016/j.fsi.2017.06.053
- Yang Y, Yu H, Li H, Wang A. Transcriptome profiling of grass carp (Ctenopharyngodon idellus) infected with Aeromonas hydrophila. Fish Shellfish Immunol. (2016) 51:329–36. doi: 10.1016/j.fsi.2016.02.035
- 26. Dang Y, Xu X, Shen Y, Hu M, Zhang M, Li L, et al. Transcriptome analysis of the innate immunity-related complement system in spleen tissue of *Ctenopharyngodon idella* Infected with *Aeromonas hydrophila*. *PLoS ONE* (2016) 11:e0157413. doi: 10.1371/journal.pone.0157413
- Long M, Zhao J, Li T, Tafalla C, Zhang Q, Wang X, et al. Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow trout (*Oncorhynchus mykiss*) infected by *Aeromonas salmonicida* subsp. salmonicida. J Proteomics (2015) 122:41–54. doi: 10.1016/j.jprot.2015.03.031
- Zhu R, Liu XX, Lv X, Li SY, Li YD, Yu XJ, et al. Deciphering transcriptome profile of the yellow catfish (*Pelteobagrus fulvidraco*) in response to *Edwardsiella ictaluri*. *Fish Shellfish Immunol*. (2017) 70:593–608. doi: 10.1016/j.fsi.2017.08.040
- 29. Li Z, Liu X, Liu J, Zhang K, Yu H, He Y, et al. Transcriptome profiling based on protein-protein interaction networks provides a core set of genes for understanding blood immune response mechanisms against *Edwardsiella tarda* infection in Japanese flounder (*Paralichthys olivaceus*). *Dev Comp Immunol.* (2018) 78:100–13. doi: 10.1016/j.dci.2017.09.013
- 30. Li Z, Liu X, Cheng J, He Y, Wang X, Wang Z, et al. Transcriptome profiling provides gene resources for understanding gill immune responses in Japanese flounder (*Paralichthys olivaceus*) challenged with *Edwardsiella tarda*. *Fish Shellfish Immunol*. (2018) 72:593–603. doi: 10.1016/j.fsi.2017.11.041
- 31. Liu X, Li Z, Wu W, Liu Y, Liu J, He Y, et al. Sequencing-based network analysis provides a core set of gene resource for understanding kidney immune response against *Edwardsiella tarda* infection in Japanese flounder. *Fish Shellfish Immunol.* (2017) 67:643–54. doi: 10.1016/j.fsi.2017. 06.051
- 32. Yang D, Liu Q, Yang M, Wu H, Wang Q, Xiao J, et al. RNA-seq liver transcriptome analysis reveals an activated MHC-I pathway and an inhibited MHC-II pathway at the early stage of vaccine immunization in zebrafish. *BMC Genomics* (2012) 13:319. doi: 10.1186/1471-2164-13-319
- 33. Ahn DH, Kang S, Park H. Transcriptome analysis of immune response genes induced by pathogen agonists in the Antarctic bullhead notothen

Notothenia coriiceps. Fish Shellfish Immunol. (2016) 55:315-22. doi: 10.1016/j.fsi.2016.06.004

- Peatman E, Li C, Peterson BC, Straus DL, Farmer BD, Beck BH. Basal polarization of the mucosal compartment in *Flavobacterium columnare* susceptible and resistant channel catfish (*Ictalurus punctatus*). *Mol Immunol*. (2013) 56:317–27. doi: 10.1016/j.molimm.2013.04.014
- 35. Zhou W, Zhang Y, Wen Y, Ji W, Zhou Y, Ji Y, et al. Analysis of the transcriptomic profilings of Mandarin fish (*Siniperca chuatsi*) infected with *Flavobacterium columnare* with an emphasis on immune responses. *Fish Shellfish Immunol.* (2015) 43:111–9. doi: 10.1016/j.fsi.2014.12.006
- 36. Zhao L, Tu J, Zhang Y, Wang J, Yang L, Wang W, et al. Transcriptomic analysis of the head kidney of Topmouth culter (*Culter alburnus*) infected with *Flavobacterium columnare* with an emphasis on phagosome pathway. *Fish Shellfish Immunol.* (2016) 57:413–8. doi: 10.1016/j.fsi.2016.09.001
- Valenzuela-Miranda D, Gallardo-Escarate C. Novel insights into the response of Atlantic salmon (*Salmo salar*) to *Piscirickettsia salmonis*: interplay of coding genes and lncRNAs during bacterial infection. *Fish Shellfish Immunol.* (2016) 59:427–38. doi: 10.1016/j.fsi.2016.11.001
- Wilkins LG, Clark ES, Farinelli L, Wedekind C, Fumagalli L. Embryonic gene expression of *Coregonus palaea* (whitefish) under pathogen stress as analyzed by high-throughput RNA-sequencing. *Fish Shellfish Immunol.* (2015) 47:130–40. doi: 10.1016/j.fsi.2015.08.035
- Wang YD, Huang SJ, Chou HN, Liao WL, Gong HY, Chen JY. Transcriptome analysis of the effect of *Vibrio alginolyticus* infection on the innate immunityrelated complement pathway in *Epinephelus coioides*. *BMC Genomics* (2014) 15:1102. doi: 10.1186/1471-2164-15-1102
- Wang YD, Wang YH, Hui CF, Chen JY. Transcriptome analysis of the effect of *Vibrio alginolyticus* infection on the innate immunity-related TLR5mediated induction of cytokines in *Epinephelus lanceolatus*. Fish Shellfish Immunol. (2016) 52:31–43. doi: 10.1016/j.fsi.2016.03.013
- Zhang X, Wang S, Chen S, Chen Y, Liu Y, Shao C, et al. Transcriptome analysis revealed changes of multiple genes involved in immunity in *Cynoglossus semilaevis* during *Vibrio anguillarum* infection. *Fish Shellfish Immunol.* (2015) 43:209–18. doi: 10.1016/j.fsi.2014.11.018
- Zhao C, Fu M, Wang C, Jiao Z, Qiu L. RNA-Seq analysis of immune-relevant genes in *Lateolabrax japonicus* during *Vibrio anguillarum* infection. *Fish Shellfish Immunol.* (2016) 52:57–64. doi: 10.1016/j.fsi.2016.02.032
- Chu Q, Song W, Cui J, Xu T. Genome-guided transcriptome analysis of miiuy croaker provides insights into pattern recognition receptors and cytokines in response to *Vibrio anguillarum. Dev Comp Immunol.* (2017) 73:72–8. doi: 10.1016/j.dci.2017.03.009
- 44. Bayha KM, Ortell N, Ryan CN, Griffitt KJ, Krasnec M, Sena J, et al. Crude oil impairs immune function and increases susceptibility to pathogenic bacteria in southern flounder. *PLoS ONE* (2017) 12:e0176559. doi: 10.1371/journal.pone.0176559
- 45. Gao C, Fu Q, Su B, Zhou S, Liu F, Song L, et al. Transcriptomic profiling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (*Scophthalmus maximus*) following *Vibrio anguillarum* challenge. *Dev Comp Immunol.* (2016) 65:159–68. doi: 10.1016/j.dci.2016.07.007
- 46. Low CF, Mariana NS, Maha A, Chee HY, Fatimah MY. Identification of immune response-related genes and signalling pathways in spleen of *Vibrio parahaemolyticus*-infected *Epinephelus fuscoguttatus* (Forskal) by nextgeneration sequencing. *J Fish Dis.* (2016) 39:389–94. doi: 10.1111/jfd.12359
- 47. Zhang Q, Ji C, Ren J, Dong X, Zu Y, Jia L, et al. Differential transcriptome analysis of zebrafish (*Danio rerio*) larvae challenged by *Vibrio parahaemolyticus*. J Fish Dis. (2018) 41:1049–62. doi: 10.1111/jfd.12796
- Li S, Zhang Y, Cao Y, Wang D, Liu H, Lu T. Trancriptome profiles of Amur sturgeon spleen in response to Yersinia ruckeri infection. Fish Shellfish Immunol. (2017) 70:451–60. doi: 10.1016/j.fsi.2017.09.033
- Ken CF, Chen CN, Ting CH, Pan CY, Chen JY. Transcriptome analysis of hybrid tilapia (*Oreochromis* spp.) with *Streptococcus agalactiae* infection identifies Toll-like receptor pathway-mediated induction of NADPH oxidase complex and piscidins as primary immune-related responses. *Fish Shellfish Immunol.* (2017) 70:106–20. doi: 10.1016/j.fsi.2017.08.041
- Wang L, Liu P, Wan ZY, Huang SQ, Wen YF, Lin G, et al. RNA-Seq revealed the impairment of immune defence of tilapia against the infection of *Streptococcus agalactiae* with simulated climate warming. *Fish Shellfish Immunol.* (2016) 55:679–89. doi: 10.1016/j.fsi.2016.06.058

- Zhu J, Fu Q, Ao Q, Tan Y, Luo Y, Jiang H, et al. Transcriptomic profiling analysis of tilapia (*Oreochromis niloticus*) following *Streptococcus* agalactiae challenge. Fish Shellfish Immunol. (2017) 62:202–12. doi: 10.1016/j.fsi.2017.01.023
- Qi Z, Wu P, Zhang Q, Wei Y, Wang Z, Qiu M, et al. Transcriptome analysis of soiny mullet (*Liza haematocheila*) spleen in response to *Streptococcus dysgalactiae*. Fish Shellfish Immunol. (2016) 49:194–204. doi: 10.1016/j.fsi.2015.12.029
- Gao FX, Wang Y, Zhang QY, Mou CY, Li Z, Deng YS, et al. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes. *BMC Genomics* (2017) 18:561. doi: 10.1186/s12864-017-3945-6
- 54. Shi M, Huang R, Du F, Pei Y, Liao L, Zhu Z, et al. RNA-seq profiles from grass carp tissues after reovirus (GCRV) infection based on singular and modular enrichment analyses. *Mol Immunol.* (2014) 61:44–53. doi: 10.1016/j.molimm.2014.05.004
- Xu BH, Zhong L, Liu QL, Xiao TY, Su JM, Chen KJ, et al. Characterization of grass carp spleen transcriptome during GCRV infection. *Genet Mol Res.* (2016) 15. doi: 10.4238/gmr.15026650
- 56. He L, Zhang A, Pei Y, Chu P, Li Y, Huang R, et al. Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing. *BMC Genomics* (2017) 18:452. doi: 10.1186/s12864-017-3824-1
- Chen G, He L, Luo L, Huang R, Liao L, Li Y, et al. Transcriptomics sequencing provides insights into understanding the mechanism of grass carp reovirus infection. *Int J Mol Sci.* (2018) 19:488. doi: 10.3390/ijms19020488
- Wu R, Sheng X, Tang X, Xing J, Zhan W. Transcriptome analysis of flounder (*Paralichthys olivaceus*) gill in response to Lymphocystis Disease Virus (LCDV) infection: novel insights into fish defense mechanisms. *Int J Mol Sci.* (2018) 19:160. doi: 10.3390/ijms19010160
- Lu MW, Ngou FH, Chao YM, Lai YS, Chen NY, Lee FY, et al. Transcriptome characterization and gene expression of *Epinephelus* spp in endoplasmic reticulum stress-related pathway during betanodavirus infection *in vitro*. *BMC Genomics* (2012) 13:651. doi: 10.1186/1471-2164-13-651
- Liu P, Wang L, Kwang J, Yue GH, Wong SM. Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. *Fish Shellfish Immunol.* (2016) 54:342–52. doi: 10.1016/j.fsi.2016.04.029
- Dettleff P, Moen T, Santi N, Martinez V. Transcriptomic analysis of spleen infected with infectious salmon anemia virus reveals distinct pattern of viral replication on resistant and susceptible Atlantic salmon (*Salmo salar*). *Fish Shellfish Immunol.* (2017) 61:187–93. doi: 10.1016/j.fsi.2017.01.005
- Yuan J, Yang Y, Nie H, Li L, Gu W, Lin L, et al. Transcriptome analysis of epithelioma papulosum cyprini cells after SVCV infection. *BMC Genomics* (2014) 15:935. doi: 10.1186/1471-2164-15-935
- Wang Y, Zhang H, Lu Y, Wang F, Liu L, Liu J, et al. Comparative transcriptome analysis of zebrafish (*Danio rerio*) brain and spleen infected with spring viremia of carp virus (SVCV). *Fish Shellfish Immunol.* (2017) 69:35–45. doi: 10.1016/j.fsi.2017.07.055
- 64. Dios S, Balseiro P, Costa MM, Romero A, Boltana S, Roher N, et al. The involvement of cholesterol in sepsis and tolerance to lipopolysaccharide highlighted by the transcriptome analysis of zebrafish (*Danio rerio*). *Zebrafish* (2014) 11:421–33. doi: 10.1089/zeb.2014.0995
- 65. Liu QN, Xin ZZ, Liu Y, Zhang DZ, Jiang SH, Chai XY, et al. De novo transcriptome assembly and analysis of differential gene expression following lipopolysaccharide challenge in Pelteobagrus fulvidraco. Fish Shellfish Immunol (2018) 73:84–91. doi: 10.1016/j.fsi.2017.11.045
- 66. Mu Y, Li M, Ding F, Ding Y, Ao J, Hu S, et al. *De novo* characterization of the spleen transcriptome of the large yellow croaker (*Pseudosciaena crocea*) and analysis of the immune relevant genes and pathways involved in the antiviral response. *PLoS ONE* (2014) 9:e97471. doi: 10.1371/journal.pone.0097471
- 67. Chu Q, Gao Y, Xu G, Wu C, Xu T. Transcriptome comparative analysis revealed poly(I:C) activated RIG-I/MDA5-mediated signaling pathway in miiuy croaker. *Fish Shellfish Immunol.* (2015) 47:168–74. doi: 10.1016/j.fsi.2015.08.032
- Du X, Li Y, Li D, Lian F, Yang S, Wu J, et al. Transcriptome profiling of spleen provides insights into the antiviral mechanism in *Schizothorax prenanti* after poly (I: C) challenge. *Fish Shellfish Immunol.* (2017) 62:13–23. doi: 10.1016/j.fsi.2017.01.004

- Cascon A, Yugueros J, Temprano A, Sanchez M, Hernanz C, Luengo JM, et al. A major secreted elastase is essential for pathogenicity of *Aeromonas hydrophila*. *Infect Immun.* (2000) 68:3233–41. doi: 10.1128/IAI.68.6.3233-3241.2000
- Gong YX, Zhu B, Liu GL, Liu L, Ling F, Wang GX, et al. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effects of a recombinant vaccine against *Aeromonas hydrophila*. *Fish Shellfish Immunol*. (2015) 42:213–20. doi: 10.1016/j.fsi.2014.11.004
- Kozinska A. Dominant pathogenic species of mesophilic aeromonads isolated from diseased and healthy fish cultured in Poland. J Fish Dis. (2007) 30:293–301. doi: 10.1111/j.1365-2761.2007.00813.x
- Hossain MJ, Sun D, McGarey DJ, Wrenn S, Alexander LM, Martino ME, et al. An Asian origin of virulent *Aeromonas hydrophila* responsible for disease epidemics in United States-farmed catfish. *MBio* (2014) 5:e00848–00814. doi: 10.1128/mBio.00848-14
- 73. Decostere A. *Flavobacterium columnare* infections in fish: the agent and its adhesion to the gill tissue. *Verh K Acad Geneeskd Belg.* (2002) 64:421–30.
- Wakabayashi H. Effect of environmental conditions on the infectivity of Flexibacter columnaris to fish. J Fish Dis. (1991) 14:279–90. doi: 10.1111/j.1365-2761.1991.tb00825.x
- Duremdez R, Al-Marzouk A, Qasem JA, Al-Harbi A, Gharabally H. Isolation of *Streptococcus agalactiae* from cultured silver pomfret, *Pampus argenteus* (Euphrasen), in Kuwait. *J Fish Dis.* (2004) 27:307–10. doi: 10.1111/j.1365-2761.2004.00538.x
- 76. Jafar QA, Sameer AZ, Salwa AM, Samee AA, Ahmed AM, Al-Sharifi F. Molecular investigation of *Streptococcus agalactiae* isolates from environmental samples and fish specimens during a massive fish kill in Kuwait Bay. *Pak J Biol Sci.* (2008) 11:2500–4. doi: 10.3923/pjbs.2008.2500.2504
- 77. Amal MN, Zamri-Saad M, Iftikhar AR, Siti-Zahrah A, Aziel S, Fahmi S. An outbreak of *Streptococcus agalactiae* infection in cage-cultured golden pompano, *Trachinotus blochii* (Lacepede), in Malaysia. J Fish Dis. (2012) 35:849–52. doi: 10.1111/j.1365-2761.2012.01443.x
- Bowater RO, Forbes-Faulkner J, Anderson IG, Condon K, Robinson B, Kong F, et al. Natural outbreak of *Streptococcus agalactiae* (GBS) infection in wild giant Queensland grouper, *Epinephelus lanceolatus* (Bloch), and other wild fish in northern Queensland, Australia. *J Fish Dis.* (2012) 35:173–86. doi: 10.1111/j.1365-2761.2011.01332.x
- 79. Cai SH, Wu ZH, Jian JC, Lu YS. Cloning and expression of the gene encoding an extracellular alkaline serine protease from *Vibrio alginolyticus* strain HY9901, the causative agent of vibriosis in *Lutjanus erythopterus* (Bloch). *J Fish Dis.* (2007) 30:493–500. doi: 10.1111/j.1365-2761.2007.00835.x
- Liang HY, Wu ZH, Jian JC, Huang YC. Protection of red snapper (*Lutjanus sanguineus*) against Vibrio alginolyticus with a DNA vaccine containing flagellin flaA gene. *Lett Appl Microbiol.* (2011) 52:156–61. doi: 10.1111/j.1472-765X.2010.02981.x
- Muller-Eberhard HJ. Molecular organization and function of the complement system. Annu Rev Biochem. (1988) 57:321–47. doi: 10.1146/annurev.bi.57.070188.001541
- Boshra H, Gelman AE, Sunyer JO. Structural and functional characterization of complement C4 and C1s-like molecules in teleost fish: insights into the evolution of classical and alternative pathways. *J Immunol.* (2004) 173:349– 59. doi: 10.4049/jimmunol.173.1.349
- Takamura K, Fukuyama S, Nagatake T, Kim DY, Kawamura A, Kawauchi H, et al. Regulatory role of lymphoid chemokine CCL19 and CCL21 in the control of allergic rhinitis. *J Immunol.* (2007) 179:5897–906. doi: 10.4049/jimmunol.179.9.5897
- Khattiya R, Ohira T, Hirono I, Aoki T. Identification of a novel Japanese flounder (*Paralichthys olivaceus*) CC chemokine gene and an analysis of its function. *Immunogenetics* (2004) 55:763–9. doi: 10.1007/s00251-003-0638-x
- Li YX, Sun JS, Sun L. An inflammatory CC chemokine of Cynoglossus semilaevis is involved in immune defense against bacterial infection. *Fish Shellfish Immunol.* (2011) 31:446–52. doi: 10.1016/j.fsi.2011.06.017
- Chen C, Hu YH, Xiao ZZ, Sun L. SmCCL19, a CC chemokine of turbot Scophthalmus maximus, induces leukocyte trafficking and promotes antiviral and anti-bacterial defense. Fish Shellfish Immunol. (2013) 35:1677–82. doi: 10.1016/j.fsi.2013.08.020

- Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T, et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. *EMBO J.* (1999) 18:1309–20. doi: 10.1093/emboj/18.5.1309
- Sobhkhez M, Joensen LL, Tollersrud LG, Strandskog G, Thim HL, Jorgensen JB. A conserved inhibitory role of suppressor of cytokine signaling 1 (SOCS1) in salmon antiviral immunity. *Dev Comp Immunol.* (2017) 67:66– 76. doi: 10.1016/j.dci.2016.11.001
- Maekawa S, Yoshida T, Wang PC, Chen SC. Current knowledge of nocardiosis in teleost fish. J Fish Dis. (2018) 41:413–9. doi: 10.1111/jfd. 12782
- Wong GW, Knowles GC, Mak TW, Ferrando AA, Zuniga-Pflucker JC. HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRbeta-selected mouse thymocytes. *Blood* (2012) 120:1439–48. doi: 10.1182/blood-2011-12-395319
- Rani A, Greenlaw R, Smith RA, Galustian C. HES1 in immunity and cancer. *Cytokine Growth Factor Rev.* (2016) 30:113–7. doi: 10.1016/j.cytogfr.2016.03.010
- Matsumoto M, Araki K, Hayashi K, Takeuchi Y, Shiozaki K, Suetake H, et al. Adjuvant effect of recombinant interleukin-12 in the Nocardiosis formalin-killed vaccine of the amberjack Seriola dumerili. Fish Shellfish Immunol. (2017) 67:263–9. doi: 10.1016/j.fsi.2017. 06.025
- Yu J, Koo BH, Kim DH, Kim DW, Park SW. Aeromonas sobria infection in farmed mud loach (*Misgurnus mizolepis*) in Korea, a bacteriological survey. *Iran J Vet Res.* (2015) 16:194–201.
- 94. Dar GH, Dar SA, Kamili AN, Chishti MZ, Ahmad F. Detection and characterization of potentially pathogenic Aeromonas sobria isolated from fish Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae). Microb Pathog. (2016) 91:136–40. doi: 10.1016/j.micpath.2015. 10.017
- Zhu M, Wang XR, Li J, Li GY, Liu ZP, Mo ZL. Identification and virulence properties of *Aeromonas veronii* bv. sobria isolates causing an ulcerative syndrome of loach Misgurnus anguillicaudatus. *J Fish Dis* (2016) 39:777–81. doi: 10.1111/jfd.12413
- Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol. (2004) 35:233–45. doi: 10.1023/B:HIJO.0000032355. 66152.b8
- Zhang X, Austin B. Pathogenicity of Vibrio harveyi to salmonids. J Fish Dis. (2000) 23:93–102. doi: 10.1046/j.1365-2761.2000.00214.x
- Lee K, Liu P, Chuang W. Pathogenesis of gastroenteritis caused by Vibrio carchariae in cultured marine fish. *Marine Biotechnology* (2002) 4:267–77. doi: 10.1007/s10126-002-0018-9
- Pujalte M, Sitjà-Bobadilla A, Macián M, Belloch C, Alvarez-Pellitero P, Pérez-Sánchez J, et al. Virulence and molecular typing of *Vibrio harveyi* strains isolated from cultured dentex, gilthead sea bream and European sea bass. *Syst Appl Microbiol.* (2003) 26:284–92. doi: 10.1078/072320203322 346146
- 100. Miller LS, Sorensen OE, Liu PT, Jalian HR, Eshtiaghpour D, Behmanesh BE, et al. TGF-alpha regulates TLR expression and function on epidermal keratinocytes. *J Immunol.* (2005) 174:6137–43. doi: 10.4049/jimmunol.174.10.6137
- Vendrell D, Balcazar JL, Ruiz-Zarzuela I, de Blas I, Girones O, Muzquiz JL. Lactococcus garvieae in fish: a review. *Comp Immunol Microbiol Infect Dis.* (2006) 29:177–98. doi: 10.1016/j.cimid.2006.06.003
- 102. Meyburgh CM, Bragg RR, Boucher CE. Lactococcus garvieae: an emerging bacterial pathogen of fish. Dis Aquat Org. (2017) 123:67–79. doi: 10.3354/dao03083
- Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. *Cytokine Growth Factor Rev.* (2003) 14:155–74. doi: 10.1016/S1359-6101(03)00002-9
- 104. Lin Y, Ritchea S, Logar A, Slight S, Messmer M, Rangel-Moreno J, et al. Interleukin-17 is required for T helper 1 cell immunity and host resistance to the intracellular pathogen *Francisella tularensis. Immunity* (2009) 31:799–810. doi: 10.1016/j.immuni.2009. 08.025

- 105. Markel G, Bar-Haim E, Zahavy E, Cohen H, Cohen O, Shafferman A, et al. The involvement of IL-17A in the murine response to sub-lethal inhalational infection with *Francisella tularensis*. *PLoS ONE* (2010) 5:e11176. doi: 10.1371/journal.pone.0011176
- Kono T, Korenaga H, Sakai M. Genomics of fish IL-17 ligand and receptors: a review. Fish Shellfish Immunol. (2011) 31:635–43. doi: 10.1016/j.fsi.2010. 11.028
- 107. Ding Y, Ai C, Mu Y, Ao J, Chen X. Molecular characterization and evolution analysis of five interleukin-17 receptor genes in large yellow croaker *Larimichthys crocea*. Fish Shellfish Immunol. (2016) 58:332–9. doi: 10.1016/j.fsi.2016.09.017

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Maekawa, Wang and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.