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Abstract: The paper presents the comprehensive experimental 

study of radiation characteristics of a single slot in a coaxial cable 

shield. The slot was realized in four different embodiments, 

which varied by slot orientation and length. Three orthogonal 

polarizations of radiated electric field were analyzed along the 

axis perpendicular to cable, broadside to the slot, in a broadband 

frequency range (80-1000 MHz). The analysis was based on 

thorough measurements of the coupling loss, which is the 

common parameter for the leaky cable characterization. The 

obtained results showed that the electric field component 

longitudinal to the cable axis considerably dominates over other 

two orthogonal components, for all four slot types. Doubling the 

length of the slot caused a ca. 20 dB increase of the radiated field. 

Different slot orientations, having the same length in the cross-

section projection, yielded approximately equal field strengths. 

The results of this experimental study clearly and visibly 

demonstrate the radiating slot field dependence on polarization 

and slot geometry in a wide frequency range. Thus they are 

useful for planning of wireless communication systems based on 

radiating cables, as well as for understanding polarization related 

issues in such systems. 

 
Index terms: leaky radiating coaxial cable shield, slot length 

and orientation, coupling loss measurements, polarization 

 

I. INTRODUCTION 

 

A slot in an infinite PEC (perfect electric conductor) plane 

is a well-known theoretically analyzed radiation source [1]. A 

slot may also be cut in a coaxial cable shield, presenting a 

radiating element in a leaky or radiating cable system [2-5]. 

Leaky cables are slotted coaxial structures used as radiation 

sources for indoor wireless communications (buildings, 

tunnels, mines, subways, etc. [6-10]), where ordinary antennas 

present a less suitable solution.  

The comprehensive theoretical study of leaky cables [2-5], 

[11-13], accompanied with numerical and measurement results 

[14-20], can be found in literature. However, the rigorous 

analytical approach for a single slot mainly deals with electric 

field distribution on the slot [2, 4], without a clear insight into 

the electromagnetic (EM) fields radiated from a single slot. 

These fields could be of interest, as a single slot can 

subsequently be treated as an antenna array element on a 

coaxial cable with a large number of periodically arranged  
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slots. The radiated fields calculated by using cylindrical 

harmonic expansion [12], mode matching techniques 

combined with quasi static [11] or integral [17] methods, as 

well as numerical procedures [3, 5, 16] require self-developed 

codes, and their application in practice is not straightforward. 

On the other hand, a few experimental studies that can be 

found in literature [6, 7, 15], mainly deal with dominating 

polarization component that is measured at several cable-to-

receiver distances, in a narrow frequency range.  

Therefore, this paper presents a measurement-based 

comprehensive study of the radiation characteristics of a single 

slot in a coaxial cable shield. The study is based on extensive 

measurement results for four different slots, having different 

lengths and orientations, i.e. inclination angles with respect to 

the cable axis. Coupling loss was measured along the axis 

perpendicular to cable, broadside to the slot, for three 

orthogonal electric field polarizations, in a broadband 

frequency range from 80 MHz to 1000 MHz. The 

experimental results presented in this paper can be applied by 

communication engineers while planning leakage cable 

wireless systems, especially regarding signal coverage issues. 

The paper is structured as follows – the second chapter 

presents the detailed explanation of the materials and methods 

that were used to characterize radiation properties of a 

radiating slot, as well as detailed description of the 

measurement setup. At the end of the chapter the coupling loss 

calculation, based on the measured quantities, has been 

presented. The measurement results for the selected slot 

embodiments and receiving antenna positions were presented 

and discussed in the third chapter. The concluding remarks are 

given at the fourth chapter. 

 

II. MATERIALS AND METHODS 

 

A. Slot embodiments 

 

Each single slot was positioned in the midpoint of a 1 m 

long RG213 50 Ω coaxial cable with polyethylene dielectric 

(εr=2.25). The slot was realized in four different embodiments 

(Table 1), which varied by orientation (90º and 30º to the cable 

axis), and length (20% and 40% of the cable circumference, 

measured in the cross-section projection of the slot). 

Embodiments and relevant dimensions are shown in Fig. 1, 

where a and b are standard dimensions of the RG213 50 Ω 

coaxial cable, while the circumference C of the outer 

conductor is calculated as C=πb. The slots were made as 

narrow as possible, to achieve w << ls and w << li. 
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TABLE I SLOT EMBODIMENTS 

Embodiment 

Inclination angle 

with respect to 

cable axis  

Slot length 

1 normal, 90º ls=0.2C 

2 normal, 90º ls=0.4C 

3 inclined, 30º hi=0.2C 

4 inclined, 30º hi=0.4C 

  

        

Fig. 1. Left: normal slot; Right: inclined slot 

 

B. Measurement setup 

 

The radiation characteristics of a leaky (radiating) cable, 

having a large number of slots along a considerable cable 

length, are commonly measured in accordance with IEC 

61196-4 standard [21]. The standard describes coupling loss 

measurements along the cable axis, at a single predefined 

radial (broadside direction) distance of 2 m. Relying on the 

measurement method described in the standard, the intention 

of this study was to measure the coupling loss along the axis 

perpendicular to cable, broadside to the slot, varying the 

distance (i.e. height, according to Fig. 2) from 0.2 m to 2 m 

with a 10 cm step. Basically, this resulted with the radial 

coupling loss profiles in front of the slot, measured for three 

orthogonal polarizations shown in Fig. 2. 

 

       

Fig. 2. Three antenna orientations: a) radial; b) transversal;               

c) longitudinal 

 

The IEC 61196-4 standard [21] suggests two types of 

measurements methods: the free space method and the ground 

level method. In the free space method the radiating cable 

should be positioned on the non-metallic posts at a height of 

1.5 to 2 m. The monitoring antenna should be positioned at the 

same height as that of the examined cable, on the horizontal 

distance of 2 m from the cable. In the ground level method the 

cable should be positioned on the non-metallic posts, at a 

distance of 10-12 cm from the concrete floor. The coupling 

loss is then measured at the height of 2 m directly above the 

cable. Considering the available measurement surrounding, the 

measurements in this study were carried out according to the 

ground level method. 

Even though the given standard recommends the usage of 

half-wave dipole antenna for measurement purposes, other 

types of antennas can also be used, provided that their gain is 

known. For this broadband study, a biconical dipole was used 

(Fig. 3), as a more convenient broadband antenna. The 

measured coupling loss was then expressed with respect to the 

half-wave dipole antenna. 

The measurements were performed in the frequency range 

from 80 MHz to 1 GHz in 1001 discrete frequency points.  

The coupling loss was measured using a vector network 

analyzer Agilent FieldFox N9912A RF Combination Analyzer 

in CAT (Cable and Antenna Test) mode, measuring the 2-port 

insertion loss between the output and the input port of the 

device. Taking into account all the gains and losses in the 

system, the coupling loss was easily obtained.  

The analyzer itself has a nominal output power of +6 dBm, 

and the preliminary measurements using only that amount of 

input power showed that the slot generated very weak 

radiation, i.e. the resulting coupling loss, in addition to the 

system losses in the connection cables, was rather high 

compared to the system dynamic range. Therefore, the 

dynamic range had to be increased by additional gain achieved 

by a 150W broadband RF amplifier (Amplifier Research 

AR150W1000). The schematic layout of the measurement 

setup is shown in Fig. 4a.  
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Fig. 3. Gain of the calibrated broadband biconical dipole 

 
The output signal from the analyzer was amplified and fed 

to the slotted coaxial cable that was terminated by a high 

power 30 dB attenuator and a 50 Ω dummy load. The electric 

field radiated by the slot (DUT), was measured by a calibrated 

broadband biconical dipole antenna PCD 8250 placed directly 

above the DUT, mounted on the adjustable wooden tripod 

(Fig. 4b). The RX antenna height was varied from 0.2 m to 2 

m with a 10 cm step.  

Besides the VNA's own limited dynamic range, the overall 

measurement system dynamic range was limited by two 

additional factors. The RX antenna (broadband biconical 

dipole) gain is shown in Fig. 3, showing a severe deficiency in 

the lower part of its frequency range, that eventually 

transforms to the system dynamics limitation. Also, 

considering the frequency range of interest (from 80 MHz to 1 

GHz), the dynamic range was compromised by the 

background noise and interference arising from various radio 

systems present in that range. After a comprehensive EM site 

survey, the measurement location was chosen in the faculty 

basement where no interference problems had been observed. 

    a)                           b)                          c) 
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Fig. 4. Measurement setup (DUT denotes the radiating slot) 

a) schematic layout, b) biconical dipole antenna above DUT (radial 

orientation) 

 

C. Coupling loss calculation 

 

Coupling loss CL is defined as the difference (in dB) 

between the power Pout in the radiating cable at the location of 

the slot, and the available power Prec measured at the receiving 

antenna (Fig.4), placed broadside to the slot, at a certain 

distance: 

      i out rec, idB dBm dBmCL P P  . (1) 

Index i stands for i-th polarization of the measured electric 

field. According to Fig. 2, and with respect to the cable axis, 

polarization can be measured as radial, transversal and 

longitudinal. According to [21], the receiving antenna is 

preferably a half-wave dipole, however, other type of antenna 

can be used, and its type and gain should be given with the 

results. If the cable attenuation constant α is known, as well as 

the power Pin at the cable input terminal, Pout can be calculated 

as: 

 
       

   
out in

in 4

dBm dBm dB/m m

dBm dB ,

P P x

P L

   

 
 (2) 

where x is the distance from the cable input terminal to the 

slot, and L4 denotes the cable loss calculated using the 

attenuation constant α previously measured in the frequency 

range of interest. The distribution of signal powers (Prec, PA, 

PB, Pin, Pout) and cable losses (L1, L2, L3, L4), at the points of 

interest along the system, is also indicated in Fig. 4. Taking 

into account the attenuation ATT of 6 dB, amplifier gain Gamp, 

cables losses L2 and L3, Pout can be expressed using PA: 
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 (3) 

Likewise, Prec can be expressed using PB: 

      rec B 1dBm dBm dBP P L  . (4) 

Hence the coupling loss can be calculated using (1), (3) and 

(4): 

 

         
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A 2 amp

3 4 B 1

dB dBm dB dB dB

dB dB dBm dB

CL P L ATT G

L L P L

    

   
. (5) 

All the losses and gains were known, since they had been 

previously measured in the frequency range of interest. The 

difference (PA - PB) was actually measured by the analyzer as 

the insertion loss IL (Fig.4):  

      A BdB dBm dBmIL P P  . (6) 

Thereby, the coupling loss CLbicon (measured by the biconical 

dipole) was finally deducted as: 

 

         
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2 amp

3 4 1
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    
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. (7) 

The coupling loss obtained by the biconical dipole can be 

easily converted to the coupling loss with respect to half-wave 

dipole. Using the Friis equation, Prec can be expressed as a 

function of the RX antenna gain (all quantities in dB): 
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 (9) 

for the biconical and half-wave dipole, respectively. Gbicon had 

been previously measured (shown in Fig.3), and Gλ/2 equals 

2.15 dB, the standard gain of the half-wave dipole. After 

subtracting (8) from (9), CLλ/2 can be calculated (in dB): 

        /2,i bicon,i bicon,i /2dB dB dB dBCL CL G G    . (10) 

Since the coupling loss was measured separately for each 

of the three orthogonal polarizations (Fig. 2), index i is shown 

in (10). Therefore, the standard [21] defines the mean coupling 

loss calculated by: 

  
i3

10
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1

1
dB 10log 10

3

CL

i

CL




 
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 
 . (11) 

 

a) 

b) 
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III. RESULTS AND DISCUSSION 

 

A. Noise level 

 

The measurement dynamics was limited by the instrument 

noise level. In order to observe this limitation, the noise level 

was measured in terms of insertion loss, by cutting off the 

power transmission. This was achieved by turning off the 

power amplifier, however keeping all the connections, 

including the RX antenna, to observe eventual background 

noise and interference received by the antenna.  

The measured insertion loss noise, averaged over 30 

frequency sweeps, is shown in Fig. 5, showing no background 

signals, thus approving the choice of measurement location in 

a quiet environment. The noise level remained practically 

unchanged for all polarizations. The measured insertion loss 

noise level was then converted to the coupling loss noise level 

(also displayed in Fig. 5) using equations (7) and (10), to 

observe the actual limitation of the measurement system for 

the quantity of interest. The dynamics starts to drastically 

decrease below 300 MHz, as a consequence of a very low RX 

antenna gain (observable in Fig. 3). 
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Fig. 5. Insertion loss and coupling loss noise levels 

 

B. Coupling loss frequency dependence 
 

Fig. 6 and Fig. 7 show the coupling loss in front of the 

normal slot, for ls=0.2C and ls=0.4C respectively, as a function 

of frequency, at three discrete distances: 20 cm, 1 m and 2 m. 

The figures show three orthogonal polarizations (according to 

Fig. 2), along with the noise level. Several observations can be 

made. The longitudinal polarization considerably dominated 

over the other two in all cases, by 10 to 20 dB. For the shorter 

slot and greater distances, the less pronounced polarizations 

approached the noise level. The coupling loss for the longer 

slot (0.4C) was considerably lower than for the shorter slot 

(0.2C) – most easily observable for the dominant polarization 

(the lowest curve). Fig. 8 and Fig. 9 show the coupling loss in 

front of the inclined slot, for hi=0.2C and hi=0.4C respectively, 

as a function of frequency, at three discrete distances: 20 cm, 1 

m and 2 m. The figures show three orthogonal polarizations 

(according to Fig. 2), along with the noise level. It can be 

observed that the coupling loss was very similar to the normal 

slot, for the dominant (longitudinal) polarization. Due to the 

slot inclination, the other two polarizations had a slightly 

lower coupling loss than with the normal slot. For the mean 

coupling loss defined by (11), this has no major consequence, 

since the major part of the mean value is the dominant 

(longitudinal) polarization, for both slot inclinations. 

However, this may be important for communication with an 

antenna polarized orthogonally to the longitudinal 

polarization, increasing its reception by a few dB. 

Generally, at lower heights, the radial component 

dominated over the transversal component. The certain 

conclusions about their relation at higher distances cannot be 

made since their values progressively oscillated with 

frequency close to the coupling loss noise limit.  

Fig. 10 shows only the dominant (longitudinal) 

polarization, at the height of 2 m (most interesting both for 

communications and with respect to [21]), for different types 

of slots. It can be easily noticed that the coupling loss was 

almost 20 dB lower for the longer slots, ls=0.4C and hi=0.4C, 

than for the shorter slots, ls=0.2C and hi=0.2C. On the other 

hand, there was no major difference between the slots of the 

same length, regardless of their inclinations.  

Fig. 11 shows only the dominant (longitudinal) 

polarization, at three different heights of 0.2 m, 1 m and 2 m. 

The graph is shown for the longer slot only, to achieve better 

visibility (lower coupling loss). Theoretically, as the distance 

increases from 0.2 m to 1 m by a factor of 5, the coupling loss 

should increase by 14 dB. Similar, as the distance increases 

from 1 m to 2 m by a factor of 2, the coupling loss should 

increase by 6 dB. The measurement results approximately 

followed this consideration. The graph is shown only for the 

normal slot, since Fig. 10 showed that the results for the 

inclined slot were very similar. 
 

C. Coupling loss profiles 
 

Fig. 12 shows the coupling loss profiles for the dominant 

(longitudinal) polarization, at three different frequencies (100 

MHz, 500 MHz and 1 GHz) for the normal slot, ls=0.4C. It is 

observable that the coupling losses at these three frequencies 

differed by less than 10 dB in any given point. Fig. 13 and Fig. 

14 show the coupling loss profiles at three frequencies (100 

MHz, 500 MHz and 1 GHz) along the axis perpendicular to 

the cable, in front of the slot, for the normal and the inclined 

slot, respectively. Figures refer to the longer slots, ls=0.4C and 

hi=0.4C, to achieve better visibility (lower coupling loss). All 

three polarizations are shown, along with the noise level 

associated with each frequency. In the radiating far field of the 

source (slot), a steady increase of the coupling loss is expected 

as the distance increases. However, graphs show the decrease 

of the coupling loss for the dominant (longitudinal) 

polarization at 100 MHz as the distance increases above 120 

cm, suggesting that the RX antenna was still in the near field 

of the source, where such variations commonly occur. This is 

not strange since the wavelength of  3 m (at 100 MHz) is 

greater than the distance from the source. At frequencies of 

500 MHz and especially at 1 GHz, for the dominant 

(longitudinal) polarization, there were still some fluctuations 

of the coupling loss with the distance, probably due to the 

measurement uncertainty, but the trend is acceptable. It is 

worth repeating that, theoretically, the coupling loss should 

increase by 14 dB from 20 cm to 1 m, and by only 6 dB from 

1 m to 2 m. This was practically achieved at 500 MHz.  
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Fig. 6. Coupling loss frequency dependence at specific heights, for 

normal slot, lS=0.2C (lower coupling loss is better, in all figures)  
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Fig. 7. Coupling loss frequency dependence at specific heights, for 

normal slot, lS=0.4C  
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Fig. 8. Coupling loss frequency dependence at specific heights, for 

inclined slot, hi=0.2C  
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Fig. 9. Coupling loss frequency dependence at specific heights, for 

inclined slot, hi=0.4C  
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Fig. 10. Coupling loss frequency dependence, longitudinal 

polarization, height h=2 m, for different slots  
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Fig. 11. Coupling loss frequency dependence, longitudinal 

polarization, normal slot, lS=0.4C, for three different heights 
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Fig. 12. Coupling loss profiles for the longitudinal polarization, 

normal slot, ls=0.4C, for three different frequencies 
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Fig. 13. Coupling loss profiles for all three polarizations, normal slot, 

lS=0.4C, for three different frequencies 
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Fig. 14. Coupling loss profiles for all three polarizations, inclined 

slot, hi=0.4C, for three different frequencies 

 

For the full insight into the measurement results, the 3D 

graphs of the mean coupling loss, calculated using (11), for all 

frequencies, heights and slot embodiments, are presented in 

Fig. 15. 

 

 
 

 
 

 
 

 
Fig. 15. Mean coupling loss for all slot types 

  Normal 

  Normal 

A. ŠAROLIĆ et al.: RADIATING SLOT IN THE COAXIAL CABLE SHIELD: MEASUREMENT BASED CHARACTERIZATION 143



IV. CONCLUDING REMARKS  

 

A single slot in a coaxial cable shield is a variation of the 

slot antenna, and can be used both for transmitting EM waves 

from the cable, and receiving EM waves into the cable. Cables 

having a large number of periodically arranged slots are 

commonly used as distributed antennas, so called "leaky 

cables". Understanding of a single slot radiation is therefore 

important for the understanding of a leaky cable behavior.  

This study consisted of coupling loss measurements for 

four different embodiments of a single slot in a coaxial cable 

shield. The slot length and inclination with respect to the cable 

axis were varied. 

According to the results, the strongest electric field 

polarization was the one longitudinal to the cable axis. This 

can be explained by the fact that the slot was oriented normal 

to the cable axis, thus cutting the longitudinal current flow, 

breaking the longitudinal current lines and creating the 

potential difference between the opposite edges of the 

narrower slot dimension.  

Inclining the slot with respect to the cable axis did not 

yield any major changes for the dominant longitudinal 

polarization, as long as the length of the slot (measured in the 

cross-section projection of the slot) remained unchanged. On 

the other hand, the other two orthogonal polarizations gained 

several dB from the slot inclination, which could be important 

for communication between the cable and an arbitrarily 

polarized antenna. 

The most dramatic effect occurred as the consequence of 

extending the length of the slot by a factor of 2, from 20% to 

40% of the shield circumference. This yielded a 20 dB 

increase of the radiated fields, resulting with 20 dB lower 

coupling loss. Hence the slot length plays a major factor in 

designing the slot. 
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