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Abstract
Three members of the peroxisome proliferator-activated receptor (PPAR) family, PPARα, 
PPARγ, and PPARβ/δ, have been investigated widely over the past few decades. Although the 
roles of these PPARs and their agonists/antagonists were defined in clinical and basic studies, 
the conflicting results from these studies indicate that more analysis is needed to understand 
the roles of PPARs. PPARα is a ligand-activated transcription factor that contributes to the 
regulation of a variety of processes, ranging from inflammation and immunity to nutrient 
metabolism and energy homeostasis. In this review, we focus on the function and mechanisms 
of PPARα in the cardiovascular system under various pathological conditions, including 
vascular and heart injury, blood pressure regulation, and lipid disorder-related cardiovascular 
injury, as well as its polymorphisms and pharmacogenetic associations with cardiovascular 
diseases. The anti-inflammatory effect of PPARα in cardiovascular injury is mainly through 
inhibition of pro-inflammatory signaling pathways and improvement of the lipid profile. 
Moreover, PPARα also modulates the activity of endothelial nitric oxide synthase and resets 
the renin-angiotensin system to regulate vascular tone. PPARα gene variants appear to be 
associated with some cardiovascular risk factors, such as higher plasma lipid levels, cardiac 
growth, and increased risk of coronary artery disease. Nowadays, novel PPARα drugs with 
broad safety margins and therapeutic potential for metabolic syndrome and cardiovascular 
diseases are being developed and applied in the clinical setting. The insights from the current 
review shed new light on areas of further study and provide a better understanding of the role 
of PPARα in cardiovascular diseases.
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Introduction

After a mouse gene linked to peroxisome proliferation was first described in 1990 [1], 
an orphan nuclear hormone receptor named peroxisome proliferator-activated receptor 
(PPAR) was subsequently discovered. The original receptor, known as PPARα (also termed 
NR1C), was classified as a PPAR forming group C in subfamily 1 of the nuclear hormone 
receptor superfamily. cDNAs encoding two other isotypes of this nuclear receptor subfamily, 
PPARβ/δ (NR1C2) and PPARγ (NR1C3), were then identified. All three PPARs are encoded 
by separate genes and expressed in amphibians [2], rodents [3, 4], and humans [5, 6]. PPARα 
and PPARγ appear to be highly conserved across species, whereas PPARβ/δ has diverged 
considerably [4].

PPARα is expressed in skeletal muscle, liver, intestine, kidney, and heart [7, 8], with 
different patterns of protein and mRNA expression in mice, rats, and humans [9]. In the 
cardiovascular system, the activation of PPARα by its ligands inhibits the development and 
progression of atherosclerosis, plaque rupture, and thrombus formation [10, 11]. In this 
review, we focus on the advances in our understanding of the roles of PPARα in cardiovascular 
disorders, namely, vascular injury, heart diseases, lipid disorders, and hypertension.

General characteristics and roles of PPARα, PPARγ, and PPARβ/δ

All members of this PPAR superfamily have a similar structure. The N-terminal region 
allows ligand-independent activation, confers constitutive activity on the receptor, and is 
negatively regulated by phosphorylation. This region is followed by a DNA-binding domain 
(two zinc finger motifs separated by a linker region) and a C-terminal ligand-binding domain 
[12, 13]. The three members of the PPAR family are encoded by separate genes with distinct 
but overlapping interspecies sequences and exert distinct functions [14]. PPARs form 
heterodimers with another nuclear receptor partner, retinoid X receptor, and bind to specific 
PPAR response elements in the promoter region of their target genes, thereby regulating 
gene function (Fig. 1). PPARs can also repress gene expression in a DNA binding-independent 
manner by interfering with other signaling pathways [15].

PPARα, the first identified PPAR, is expressed abundantly in skeletal muscle, liver, 
intestine, kidney, and heart [9, 16], and regulates fatty acid (FA) transport, esterification, 
and oxidation [17, 18]. Moreover, it also plays a critical role in inhibiting cell proliferation 
and tumorigenesis via unidentified mechanisms. PPARγ is the best studied PPAR subtype 
and is expressed predominantly in brown and white adipose tissues and to a lesser extent 
in immune cells and the intestinal mucosa [19]. PPARβ/δ is expressed at high levels in most 
tissues, but especially in skeletal muscle, liver, intestine, kidney, and abdominal adipose 
tissue. Its activation results in increased FA oxidation (FAO) in skeletal and cardiac muscle 
and improves insulin sensitivity in insulin-resistant animal models [20, 21].

PPARs are involved in multiple physiological functions [22] that are regulated by 
a large number of endogenous and exogenous compounds, including FAs and their 
metabolites. A variety of ligands, including n-3 and n-6 FAs, eicosanoids, and a few 
endocannabinoids and phospholipids, have been identified as endogenous ligands of 
PPARs, including 8-epoxyeicosatrienoic acids (8-EETs), the arachidonic acid lipoxygenase 
metabolite leukotriene B4 (LTB4), and the arachidonate monooxygenase metabolites 
epoxyeicosatrienoic acids, which have been shown to potently activate PPARα [23-
25]. Besides these endogenous PPAR ligands, some exogenous PPAR ligands have been 
generated and applied in experimental studies and clinical practice. For example, fibrates, 
which are PPARα ligands, are used widely to ameliorate the microvascular risks associated 
with metabolic syndrome [26]. This class of exogenous PPARα ligands includes clofibrate, 
gemfibrozil, fenofibrate, bezafibrate, and ciprofibrate [27-32]. Furthermore, the synthetic 
compounds GW501516, GW0742, L-165041, and GW2433 have been defined as selective 
PPARβ/δ ligands [33, 34]. Natural PPARγ ligands include 15-deoxy-(12, 14)-prostaglandin 
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J2 [35] and the oxidized metabolites of linoleic acid 9-hydroxy- and 13-hydroxy-
octadecadienoic acids [36, 37]. Synthetic thiazolidinedione (TZD) compounds, including 
rosiglitazone, pioglitazone, and lobeglitazone, are potent selective PPARγ agonists and 
are very effective at controlling hyperglycemia, angiogenesis, and cardiac fibrosis [36-39]. 
Agonists of PPARs have arisen with the ability to bind to multiple isoforms, which are known 
as dual agonists or pan agonists, such as saroglitazar (PPARα and γ dual agonist) [40, 41], 
elafibranor (also known as GFT505; PPARα and δ dual agonist) [42, 43], and IVA337 (agonist 
of PPARα, β/δ, and γ) [44]. However, most of these agonists were later abandoned because 
of serious adverse effects [45, 46]. To solve this problem, a new generation PPARα-specific 
agonist, pemafibrate, was developed to maximize receptor-mediated effects and diminish 
side effects [47]. Furthermore, a recent study found that arjunolic acid (assigned as a PPARα 
agonist) regresses cardiac fibrosis by inhibiting non-canonical transforming growth factor-β 
signaling [48].

PPARs are gaining interest for the treatment of metabolic and cardiovascular 
diseases. Accumulating evidence has shown that the three PPAR subtypes function in the 
cardiovascular system and influence disease development [28, 38, 48-54]. However, the 
detailed mechanisms of PPARs in cardiovascular remodeling and dysfunction are still 
elusive. Over the past few decades, PPARs have been investigated extensively as therapeutic 
targets in cardiovascular diseases [49, 55, 56]. In this field, diverse approaches, such as 

Fig. 1. Schematic of peroxisome proliferator-activated receptors-(PPARs) in cardiovascular diseases. PPARs 
have three forms: α, β/δ, and γ. PPAR heterodimerizes with retinoid X receptor- (RXR) and binds to the 
specific region of DNA sequence known as the peroxisome proliferator receptor response element (PPRE) 
located in the promoters of PPAR target genes, which leads to initiation of transcription by recruiting RNA 
polymerase II (RNA Pol II) and other transcription factors. In pathological conditions, PPARs protect against 
the vascular injury through multiple actions.

Fig. 1. 
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transgenic animals with cardiac-restricted overexpression or deletion of PPAR genes or 
activation of PPARs with specific agonists in various models of cardiac diseases, have been 
used to define the roles of PPARs in the pathogenesis of cardiac disorders. Experimental 
studies in animal models of metabolic diseases also revealed that the activation of PPARs 
protects against vascular complications through anti-inflammatory, anti-atherogenic, and 
anti-oxidant actions. However, the molecular mechanisms mediating these protective effects 
are not understood fully.

PPARα in vascular injury

In the circulatory system, PPARα is expressed by endothelial cells, vascular smooth muscle 
cells (VSMCs) [57], and monocytes/macrophages [58, 59]. Evidence from animal models and 
clinical studies has demonstrated a link between inflammation and vascular injury, which is 
a complex cascade of events involving endothelial denudation, the release of growth factors 
and cytokines, platelet activation, and smooth muscle cell proliferation and migration to 
the subendothelial space to form neointimal hyperplasia, leading to vascular stenosis [57, 
60, 61]. The inflammatory processes characterized by the adhesion of monocytes and the 
secretion of inflammatory cytokines alter vascular function [61]. PPARα activation limits 
the inflammatory response of endothelial cells and VSMCs by inhibiting pro-inflammatory 
signaling pathways and improving the lipid profile, thus contributing to the anti-atherogenic 
action of PPARα agonists [62]. The absence of PPARα in mice causes a prolonged response 
to inflammatory stimuli [63]. This anti-inflammatory effect of PPARα could result from its 
negative regulation of vascular inflammatory gene expression by interfering with nuclear 
factor (NF)-κB and activator protein-1 [64, 65]. Moreover, emerging evidence has also 
demonstrated that the ligand-activated transcription factor PPARα could act with the histone 
deacetylase sirtuin 1 (SIRT1) to regulate vascular pathophysiology. For example, Wang et 
al. reported that the activation of PPARα by fenofibrate inhibits cell apoptosis in vascular 
adventitial fibroblasts partly through the SIRT1-mediated deacetylation of FoxO1 [66]. In 
addition to modulating endothelial cell inflammatory processes, PPARα agonists enhance 
the expression of endothelial nitric oxide synthase (eNOS) and the release of nitric oxide 
(NO) [67, 68].

In the disease condition, some lipid metabolites such as eicosanoids and polyunsaturated 
FAs upregulate PPARα expression to modulate the expression of inflammatory cytokines and 
the proliferative response in smooth muscle cells [69]. Many contradictory effects have been 
ascribed to PPAR ligands in vascular and inflammatory cells. When the vasculature is damaged, 
VSMCs migrate into the intima of the arterial wall, where they subsequently proliferate and 
synthesize extracellular matrix, resulting in intimal hyperplasia. The activation of smooth 
muscle cell proliferation is a key event in the development of atherosclerotic complications. 
In such a case, the proliferative role of PPARα ligands might promote the entry of VSMCs 
into a proliferative state in spite of their anti-inflammatory action [70, 71]. On the contrary, 
studies from human and mouse primary VSMCs showed that PPARα can arrest the cell 
cycle in smooth muscle cells at the G1/S phase, thereby providing a molecular mechanism 
by which PPARα interferes directly with cell cycle progression [72, 73]. In vivo evidence 
demonstrated that p16 deficiency promotes smooth muscle cell proliferation and intimal 
hyperplasia, which were markedly enhanced in PPARα-deficient mice. Moreover, treatment 
with the PPARα agonist fenofibrate substantially reduces intimal hyperplasia [74]. These 
findings suggest a potential for PPARα agonism in preventing vascular restenosis. Further 
studies are necessary to clarify the discrepancies between these findings.

http://dx.doi.org/10.1159%2F000495969


Cell Physiol Biochem 2018;51:2760-2775
DOI: 10.1159/000495969
Published online: 12 December 2018 2764

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Li et al.: PPARα in Cardiovascular Diseases

PPARα in heart injury

Besides the known role of PPARα in the regulation of energy homeostasis, its 
involvement in modulating the cellular redox response and inflammation in the heart 
undergoing ischemia/reperfusion (I/R) injury, hypertrophy, and cardiac fibrosis has been 
documented in recent reports [48, 75-77]. Bulhak et al. reported that the PPARα agonist 
WY-14643 protects the myocardium of type 2 diabetic Goto-Kakizaki rats from I/R injury via 
the activation of the PI3K/Akt and NO pathway [78]. In addition, dual PPARα and γ agonists 
might have additive effects on myocardial protection against I/R injury. Qian et al. found that 
the non-thiazolidinedione dual PPARα and γ agonist aleglitazar protects cardiomyocytes and 
the heart against I/R injury [79]. Evidence has also shown that PPARα activation reduces 
myocardial infarct size and improves postischemic contractile recovery in animal and ex vivo 
models of I/R [80-82]. Furthermore, this cardioprotective effect was abolished in PPARα-/- 
mice [83]. However, other studies have reported conflicting results. The cardiac-restricted 
overexpression of PPARα leads to impaired cardiac recovery after ischemia [84-86], and 
the use of the PPARα agonist WY-14643 during repetitive I/R results in the intramyocardial 
triglyceride (TG) accumulation, increased generation of reactive oxygen species (ROS), 
and subsequent enhancement of inflammation, apoptosis, and contractile dysfunction 
[87]. The detrimental effect of PPARα may be attributed to the increased production of 
ROS and lipotoxicity due to a switch of metabolism from glucose to FA utilization [88]. 
The contradictory results from cardiac-restricted PPARα overexpression and systemic 
PPARα activation in I/R heart models might be due to the effect of non-cardiac cells such as 
inflammatory cells. Moreover, the non-specific effects of these PPARα agonists on the heart 
need to be investigated further.

PPARα is a potent antagonist of inflammation. The synthetic PPARα activator fenofibrate 
prevents the development of hypertension and improves myocardial inflammation and 
fibrosis in angiotensin II-infused rats [89]. All three PPARs exert an anti-inflammatory 
action by interfering with pro-inflammatory signaling pathways such as NF-κΒ. PPARα 
activation inhibits the cardiac expression of transforming necrosis factor-α partly by 
antagonizing nuclear NF-κB activity in neonatal rat cardiac myocytes [90]. Moreover, the 
decreased activation of protein kinases, such as extracellular signal-regulated kinase 1/2, 
c-Jun N-terminal kinase, Akt, and glycogen synthase kinase 3 beta, may also contribute to the 
effect of PPARα on the heart [91-96].

Fibrates are used clinically for the treatment of dyslipidemia. They have been shown 
to enhance FAO, improve endothelial cell function, and decrease myocardial fibrosis and 
hypertrophy in animal models of heart failure [97]. Moreover, fenofibrate plus metformin 
exert a cardio-protective effect in a type 2 diabetes and acute myocardial infarction model 
[98]. Another PPARα agonist, AVE8134, has been shown to regress cardiac hypertrophy 
and fibrosis [99]. As the natural ligands for PPARα, FAs were reported to be defective in 
hypertrophic cardiomyopathy due to the reduced expression of the FA transporter cluster 
of differentiation-36 (CD36) [100, 101]. Overall, the cardiac response to various agonists of 
PPARα might be different because of ligand-dependent variation.

PPARα in blood pressure regulation

PPARα is expressed in both the endothelium and VSMCs [58, 59], suggesting that it may 
have an effect on vascular tone. The reactivity of the arterial wall is controlled in part by 
biomechanical inputs, including blood flow and blood pressure [10]. As mentioned above, 
the activation of PPARα by its ligands is important in the uptake, utilization, and catabolism 
of FAs through the upregulation of genes involved in FA transport and peroxisomal and 
mitochondrial FA β-oxidation. Moreover, PPARα ligands exert other actions on the vasculature 
[102, 103].
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Blood vessel capacity and vasoconstriction are two important elements in the control 
of blood pressure. NO plays a significant role in the regulation of vascular tone, platelet 
aggregation, oxidative stress, leukocyte adherence, and smooth muscle cell mitogenesis 
[104]. Impairment of the NO/NOS system is one of the most important pathological events 
in the early phase of the development of hypertension. PPARs have been implicated as 
transcriptional regulators of the expression and activity of endogenous vasoconstrictors 
and their receptors. Therefore, it is possible that the induction of PPARα may attenuate the 
vasoconstriction response to major endogenous vasoconstrictors such as angiotensin II 
(Ang II), thromboxane A2 (TXA2), and endothelin 1 (ET-1) [102, 105]. The PPARα ligand 
clofibrate reduces high blood pressure and improves vascular reactivity in spontaneously 
hypertensive rats probably through the increased production of NO [106]. Some results have 
suggested that in the early stage of aortic coarctation-induced hypertension, stimulation of 
PPARα by clofibrate improves hypertension possibly by increasing antioxidant defenses, 
enhancing eNOS activity, and resetting the renin-angiotensin (RAS) system in the vasculature 
[105]. Overall, the blood pressure lowering effect of PPAR agonists are cardio-protective and 
could help to correct vascular structure and endothelial dysfunction in experimental models 
of hypertension [107].

PPARα in lipid disorder-related cardiovascular injury

PPARα regulates cardiac energy and lipid metabolism and plays a role in mitochondrial 
FA β-oxidation, which is critical for fuel generation in the heart through the transcriptional 
activation of carnitine palmitoyl transferase I [108]. The heart primarily relies on 
mitochondrial FAO to ensure ATP generation, but has metabolic flexibility to switch to 
other energy substrates, mainly glucose. This switch in substrate preference is observed 
in myocardial ischemia, cardiac hypertrophy, and heart failure [109]. The best evidence to 
support a causal role for metabolic disturbances in the development of cardiac dysfunction 
is the observation that children with genetic defects in FAO enzymes, which force the heart 
to rely on glucose, often develop cardiomyopathy [110]. However, PPARα expression can be 
downregulated by glucose, which can reduce FAO levels [107].

In addition to their direct anti-inflammatory and anti-atherosclerotic effects on the 
artery wall, PPARα and its agonists show a beneficial action on the metabolism of lipids 
and lipoproteins [111]. PPARα may alter lipid metabolism through multiple mechanisms 
that facilitate the transfer of FAs into mitochondria [108, 112]. Moreover, PPARα binds to 
synthetic and natural ligands to reduce the half-life of the PPARα receptor and finally alters 
lipid metabolism for the treatment of dyslipidemia, a major risk factor of cardiovascular 
diseases. Fibrates, which are PPARα agonists, are prescribed widely to reduce TG levels and 
raise high-density lipoprotein (HDL) levels with a modest effect on lowering low-density 
lipoprotein (LDL) levels. In the clinical setting, the recognized synthetic PPARα ligands for 
treating hyperlipidemia include clofibrate, ciprofibrate, fenofibrate, and gemfibrozil [113]. 
Fenofibrate therapy retards the development of atherosclerosis in ApoE−/− and LDLR−/− mice 
[114, 115]. Meanwhile, natural ligands, such as LTB4, and FAs, are enriched in tissues with 
a high capacity for FAO, including the heart, brown adipose tissue, and liver, and to a lesser 
extent in the kidney and skeletal muscle [8, 116]. During left ventricular hypertrophy, PPARα 
downregulation leads to a decrease of FAO and an increase of lipid accumulation in cardiac 
myocytes [17]. Moreover, the PPARα activator LTB4 regulates lipid metabolism and NO 
production in term placentas of diabetic rats, thereby regulating placental growth [117]. In 
addition, some novel dual PPAR agonists targeting both PPARα and PPARγ have beneficial 
effects on lowering glucose and maintaining lipid homeostasis.

The mechanisms mediating the hypolipidemic effects of PPARα may include: (1) the 
regulation of FAO metabolism and reduction of very low-density lipoprotein production; 
and (2) PPARα and their ligands reduce the expression of genes governing the intravascular 
hydrolysis of TG and LDLs, while they increase the expression of genes governing HDL 

http://dx.doi.org/10.1159%2F000495969


Cell Physiol Biochem 2018;51:2760-2775
DOI: 10.1159/000495969
Published online: 12 December 2018 2766

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Li et al.: PPARα in Cardiovascular Diseases

production. In short, PPARα upregulates lipoprotein lipase and preserves HDLs [118, 119] 
by remodeling the size and composition of HDLs and facilitating TG metabolism through the 
increased transfer of unesterified cholesterol to HDLs [120-123].

Association of PPARα polymorphisms with cardiovascular diseases

Recently, reports have suggested a close relationship between PPARα polymorphisms 
and cardiovascular diseases (Table 1), including rs4253623, rs1800206 (L162V), rs4253778, 
rs135539, and rs135551 [124-127]. In the Lipid Coronary Angiography Trial, the V162 allele 
of L162V was associated with the reduced progression of angiographically assessed diffuse 
atherosclerosis, whereas the prospective Northwick Park Heart Survey found no impact of 
the L162V variant on the risk of ischemic heart disease [128]. In addition, subjects with 
the V162 allele are more likely to have high blood pressure [129]. Compared with L162 
homozygotes, V162 allele carriers are more likely to develop diabetes mellitus or insulin 
resistance, but are associated with a reduced risk of cardiovascular events among the 
population of patients with diabetes mellitus/insulin resistance [130]. Another study found 
that the V162 allele of the human PPARα gene was a new risk factor for the development 
of stage C heart failure, likely via depressed cardiac PPARα activity [131]. Additionally, 
some data have suggested that the PPARα L162V polymorphism might protect against the 
development of atherosclerosis or coronary heart disease in patients with type 2 diabetes 
mellitus [132].

rs4253778 G>C is a polymorphism located in intron 7 of PPARα. Carriers of the C 
allele have significantly increased progression of coronary atherosclerosis compared with 
G allele homozygotes [128]. Studies revealed that 78% of V162 alleles are in combination 
with the intron 7 C allele, and the atheroprotective V162 allele strongly attenuates the 
proatherosclerotic effect of the intron 7 C allele [128]. PPARα intron 7 G/C was also associated 
with physiological and pathological left ventricular hypertrophy in 144 young male British 
Army recruits undergoing a 10-week physical training program and in 1148 men and 
women participating in the echocardiographic substudy of the Third Monitoring Trends 
and Determinants in Cardiovascular Disease Augsburg study [133]. In these studies, C allele 
homozygotes had a significantly greater left ventricular mass index compared with G allele 
homozygotes and C allele heterozygotes, which was greater in hypertensive subjects [133]. 
Moreover, Halder et al. found that the presence of the G allele of rs135542 was associated 
with higher cardiometabolic risk [134]. Another report found a significant association 
between rs135551 and myocardial infarction and an association trend between rs135543 
and myocardial infarction [135]. The above evidence indicates that polymorphisms of the 
PPARα gene may influence the risk of developing cardiovascular diseases.

Table 1. PPARα polymorphisms associated with cardiovascular diseases

PPARα Leu 162 Val (rs1800
PPARα Leu 162 Val (rs1800206)
PPARα Leu 162 Val (rs1800206
PPARα intron 7 G>C (rs4253778)
PPARα intron 7 G>C (rs4253778)

PPARα rs135551/rs135543
PPARα rs4253623
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Pharmacogenetic associations of PPARα with cardiovascular diseases

PPARs play important roles in many physiological and pathological processes including 
the modulation of cellular differentiation, metabolism of carbohydrates, lipids, and proteins, 
and tumorigenesis. All PPARs share the same structure comprising of a ligand-binding domain 
and a DNA-binding domain. In the clinical setting, PPAR agonists have been used to treat 
some diseases. PPARα is activated by fibrate hypolipidemic drugs and PPARγ is activated by 
insulin sensitizers of TZDs. No marketed drug is yet available for PPARβ/δ. The identification 
of fibrates and TZDs as respective ligands for PPARα and PPARγ was a groundbreaking 
finding that sparked notable pharmaceutical interest in PPARs as potential drug targets 
for the treatment of metabolic syndrome. One important study enrolled 5518 patients and 
analyzed the effects of combination therapy with fenofibrate and simvastatin; however, there 
was no beneficial effect of combined treatment with fenofibrate and simvastatin as compared 
with simvastatin alone in reducing cardiovascular risk in the majority of high-risk patients 
with type 2 diabetes [136]. Another study found that fibrates may decrease the incidence 
of combined cardiovascular outcomes according to meta-analysis of six clinical trials [137]. 
However, side effects associated with the clinical use of these ligands have emerged. In recent 
years, new and novel PPAR drugs with broad safety margins and therapeutic potential for 
metabolic syndrome are being developed, including partial, dual, and pan PPAR agonists, 
PPAR antagonists, and selective PPAR modulators.

Perspectives of PPARα in research and the clinical setting

The activation of PPARα by its agonists exerts a broad spectrum of biological actions 
in the vasculature and heart by regulating lipid metabolism and energy homeostasis, 
reducing inflammation, inhibiting oxidative stress and apoptosis, and improving contractile 
function. Such pleiotropic activity of PPARα makes it an interesting therapeutic target for the 
treatment of various pathologies, especially those linked to dyslipidemia and atherosclerosis 
that are frequently associated with cardiovascular diseases. Numerous studies using animal 
or specific cell models with genetic and/or pharmacological interventions have contributed 
to a better understanding of the pleiotropic effects of PPARα and have highlighted its 
protective role in the cardiovascular system under diverse pathological settings (Table 2). 
However, some aspects of the function of PPARα are still understood poorly and require 
further exploration via clinical and basic studies.
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