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ZZvika Afik (Israel), Rami Yosef (Israel) 

The fusion of insurance and financial structured products –  

a Monte Carlo valuation  

Abstract 

The paper presents the valuation of contracts that combine financial structured products and insurance policies - pure 
endowment insurance and risk insurance contracts. The embedded options in these products promise, upon exercise, 
the higher of either the future value of the invested fund in risk-free interest rates (which is defined in the option con-
tract), or the future value of the fund invested in a basket of risky assets. Whereas prior literature developed mathemat-
ical expressions for continuous processes, the study allows for jumps, admitting leptokurtic distributions of the risky 
assets stochastic processes. The authors solve the model numerically using Monte Carlo with parameters that are esti-
mated via MLE from real market data and conclude with numerical examples. 

Keywords: risk insurance, options, structured products, Monte Carlo, pure endowment insurance, risk insurance, jump 
diffusion process. 
 

Introduction 
©

 

Financial fund managers and insurance providers 
are constantly seeking new offerings and programs 
to attract new customers and retain their current 
clientele. Individuals, on the other hand, are becom-
ing more market savvy and require more creative 
solutions to their life insurance and retirement sav-
ings, especially in light of the recent market crashes, 
elongated life expectancy, and changes in govern-
ment regulations. This paper describes a hybrid ‒ a 
solution that fuses together an insurance program 
with a financial structured product (SP). It presents 
two alternative versions, then describes their valua-
tion model and provides numerical solutions of a 
few practical examples. Whereas prior literature on 
this topic was limited to analytically tractable distri-
butions, this paper uses a Monte Carlo approach that 
can easily accommodate a wide spectrum of sto-
chastic processes. 

An ongoing academic interest and market activity is 
evident in hybrid insurance solutions (see for exam-
ple, Broeders et al., 2011) and in growing demand 
for safer financial investments (e.g., Dichtl and 
Drobetz, 2011). Structured financial products are 
offered to investors interested in a relatively safe 
investment with a moderate upside. There is a large 
variety of SP alternatives that are issued by financial 
institutions worldwide. Hens and Rieger (2009), for 
example, describe the most popular SP types in the 
US, Germany and Switzerland. The most common 
SPs are those that promise investors a certain per-
centage of the returns on a portfolio of risky assets 
with a downside protection should that portfolio 
return be negative on the SP maturity date. The 
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risky assets often include leading indexes (S&P500, 
DAX, NIKKEI 225, etc.), precious materials, com-
modities, etc. Retail investors’ preferences and utili-
ty regarding SP investment are analyzed by Jessen 
and Jørgensen (2012), Hens and Rieger (2009) and 
others.  

Yosef, Benzion and Gross (2004) describe the mar-
ket and academic literature related to the evolution 
of integrated solutions bundling together financial 
type options and insurance programs. Motivated by 
the SP market, Yosef (2006) suggests an exotic op-
tion defined on SP and two types of life insurance 
contracts: pure endowment insurance and risk insur-
ance. In this paper we present similar life insurance 
contracts, described below, and extend the prior 
work of Yosef (2006) by allowing for a floating 
exercise price and by admitting more complex un-
derlying asset stochastic process, to exemplify the 
flexibility of our proposed Monte Carlo solution. 

In the first case, where the option is defined on the 
SP and on pure endowment insurance, option hold-
ers buy the contract and deposit an amount of mon-
ey, referred to as the invested fund. The seller of the 
contract invests the invested fund until a defined 
maturity date. In managing this investment, the goal 
of the option writer is to achieve a high excess re-
turn over the risk-free rate, which obviously could 
only be possible by investment in risky assets.  

If the option holders survive through the exercise 
date of the option, they could exercise the option 
contract and receive the higher of either the future 
value of the invested fund in risk-free interest rate 
(which is defined in the option contract) or the fu-
ture value of the invested fund which is invested in 
the basket of risky assets. The amount of money 
paid by the option writer upon exercise of the option 
contract is paid after deduction of a commission, 
which is a percentage of the difference between the 
future value of the invested fund in the risk-free 
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interest rate and the future value of the invested 
fund in the risky assets. Note that option holders 
will only exercise the option contract on the ma-
turity date if the value of the underlying asset (the 
invested fund in the risky assets) is, at that time, 
worth more than the future value of the invested 
fund earning the risk-free interest rate defined in 
the option contract. Also note that in the option 
contract suggested here, if option holders do not 
survive through the maturity date of the option, 
the value of the contract is zero and the benefi-
ciaries of the option holders do not get back the 
invested fund. The contract described above may 
be extended to include additional features, for 
example, a similar contract that pays the benefi-
ciaries the invested fund plus the accrued risk-free 
interest even if option holders do not survive 
through the exercise date.  

A few pertinent issues: (a) this contract could only 

be exercised on the maturity date of the option; 

hence it is a European type option with a floor pro-
vision; (b) the option writer is motivated to maxim-

ize the returns on the investment as his commission 

is defined by a percentage of the difference between 

the invested fund gained on the basket of risky as-

sets and the invested fund earning the risk-free rate; 
(c) if option holders decide to exercise the option on 

the maturity date, they “buy” the underlying asset 

from the option writer for an exercise price which 

equals the invested fund earning the risk-free inter-

est rate plus a commission. Thus this contract is 
actually a version of a European call option settled 

in cash and contingent on the survival of the option 

holder; (d) we presume that individuals would pre-

fer investing in such contracts instead of the under-

lying SP offered by banks, similar to their prefer-
ence to invest in pure endowment insurance instead 

of investing in bank savings. 

In the second case we consider an option contract on 
an SP and a risk insurance contract. A risk insurance 
contract pays the beneficiaries a specified amount if 

the insured does not survive through the maturity 
date of the policy contract. Most of the above dis-
cussion regarding the first contract is also relevant 
for this second case. The option holder buys the 
contract for a fixed price and a specified sum of 
money is invested by the option writer in a basket 
of risky assets. Should the option holder die during 

the life of the option, his beneficiaries (who may be 
specified by name in the option contract) are entitled 
to exercise the option and receive from the option 
writer the higher of the risk-free interest rate or the 
returns on the investment in the basket of risky as-
sets, after commission deduction. If the option hold-
er survives through the maturity date, the option 

becomes worthless and expires1. Note that this exot-
ic option resembles an American call in terms of the 

early exercise option; here the early exercise is trig-
gered by the mortality of the option buyer. Prior 
studies in the actuarial literature integrating the 
mathematics of finance with the mathematics of 
insurance probably start with Brennan and Schwartz 
(1976) who identify the option structure of an equi-
ty-linked life insurance policy with an asset value 

guarantee, and analyze and price it. Briys and de 
Varenne (1994) deal with the bonus option of the 
policy holder and the bankruptcy option of the 
(owners of the) insurance company in terms of con-
tingent claims analysis. Later studies of the bonus 
option include Miltersen and Persson (1998) and 
Grosen and Jørgensen (2000).  

The study of options in other contexts, in which two 
or more stochastic processes govern the life of 
defaultable bonds or swaps is quite vast. In their 
seminal paper, Duffie and Singleton (1997) adjust 
the risk-free instantaneous interest rate by the de-
fault hazard of the firm issuing the bond or swap. 
Similar issues arise in the valuation of Asian options 
that are written on the exchange rate in a two-
currency economy. In pricing these options both the 
stochastic nature of the foreign and domestic zero-
coupon bond prices and the exchange rate process 
are modeled, see for example Nielsen and Sand-
mann (2001). 

Both discrete and continuous-time stochastic models 
for interest rate processes have been presented in the 
actuarial literature, primarily Gaussian autoregres-
sive processes. Examples include Panjer and 
Bellhouse (1980), Parker (1994) and references 
therein, Milevsky and Promislow (2001), and oth-
ers. More recent studies combining call options on 
pension annuity insurance plans include works by 
Ballotta and Haberman (2003) and Yosef, Benzion, 
and Gross (2004). 

This paper faces similar challenges, valuing contin-
gent future payoffs that are derived from the sto-
chastic process of risky asset returns and the mortal-
ity process of individuals. Unlike the bulk of prior 
research we base our solution on Monte Carlo simu-
lations and thus it can be easily adapted to various 
stochastic processes as required. We present a solu-
tion where the risky assets model is a jump-
diffusion process calibrated to actual market data. 
The same framework can be used for other process-
es such as stochastic volatility, stochastic volatility 
and jump diffusion, etc. Note that similar to prior 

                                                   
1 Another version to this contract (with different price obviously) pays 
the surviving option holder the invested amount plus the risk-free rate 
on the maturity date. 
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research we ignore expenses, profits, and other ad-
ministrative charges and thus present formulation 
and numerical results on a net basis, except for a 
performance based commission which is an integral 
part of the contracts in this paper. 

The rest of the paper proceeds as follows. Section 1 
presents the valuation models for the SP and pure 
endowment and SP with risk insurance contracts. 
Section 2 presents and discusses numerical results, 
and the final Section concludes the paper.  

11. The valuation model 

We start with a structured product with pure en-
dowment insurance policy. We present its model in 

details and discuss key issues that are common to 
              

modeling other similar policies, such as the choice 
of the probability measure and the details of the 
underlying risky asset stochastic process. We then 
develop the valuation model for a structure product 
with risk insurance policy. 

1.1. A structure product with pure endowment 
(SP-PE) insurance policy. SP-PE is a contract pay-
ing the insured a contingent amount at the maturity 
of the contract, in case he is alive at that time. It is 
a pure endowment insurance policy combined with 
an SP which pays the higher of a risk-free invest-
ment and the return on a portfolio of risky assets 
net of a commission. Assume that the risky asset 
portfolio gross returns are governed by the stochas-

tic process ( )R τ : 

( ) ( ) ( ) ( ){ }0 P 1 ,r r r

SP PEc T Be e k E R eτ τ ττ τ
+−

− ⎡ ⎤= > + − −⎣ ⎦        (1) 

where τ is the time from 0 to the end of the policy 

contract; ( )R τ  is the gross return on the risky asset 

portfolio from time 0 to τ; T is the remaining life-

time of an individual (from time 0), a random varia-

ble; B is the value of the invested fund at time 0; k is 

a constant rate denoting the commission of the op-

tion writer; r is the risk free rate, assumed constant 
in this model1. 

P (T > τ) is the probability that the individual sur-

vives through the life of the policy contract. This 

process is assumed to be independent of the finan-

cial market processes. The future payoffs at τ, con-
ditional on T > τ, for a unit of money invested at 

time 0, are written in the curly brackets. These pay-

offs are multiplied by B, the total investment fund 

value at time 0. These expected payoffs are dis-

counted to calculate their present value. Generally 
there are three approaches to discount such uncer-

tain future cash-flows: (1) the no-arbitrage pricing 

using the risk free rate to discount risk-neutral ex-

pected payoffs; (2) the equilibrium pricing using a 

risk-adjusted discount rate for the expectations un-
der the physical measure; (3) the actuarial approach 

using a risk-free discount rate for the expectations 

under the physical measure.  

Each of these approaches has its strengths and 

weaknesses. A complete discussion of this matter is 
beyond the scope of this paper. We present here 

only the key arguments guiding our choice of the 

                                                   
1 The discount rate can be generalized to follow a stochastic process, 

under certain assumptions. However, to simplify the presentation we 
assume it is a constant value. Furthermore, the promised floor risk-free 
rate may be different than the market risk-free rate, without loss of 

generality we present a model where both are the market rate. 

solution2. The commonly used no-arbitrage approach 

and its risk-neutral measure are appropriate when 

the market is complete. In reality this is a rare situ-

ation. Even for simple vanilla options, when the 

underlying process admits jumps, the market is 
incomplete and the option cannot be fully hedged. 

Whereas no-arbitrage models price one instrument 

by relating it to the prices of other instruments, equi-

librium models balance supply and demand and 

do not rely on market completeness. However 
they require knowledge of investor preferences 

and probabilities. Thus this approach, despite its 

theoretical appeal does not seem appropriate to 

our case. The actuarial approach, although often 

ignored in the financial engineering literature, has 
its solid theoretical and practical foundations in a 

long track of insurance mathematics and actual 

cumulative experience. It does not rely on market 

completeness or on the investor preferences. 

However, it seems inappropriate to a single occur-
rence; it relies on the central limit of many lotter-

ies. This is the case of life insurance and policy 

contracts of this paper3. Hence, we use the risk 

free rate to discount expectations under the physi-

cal measure.  

We adopt here the commonly accepted jump dif-
fusion model of equation (2), which admits empirical 
leptokurtic distributions of many financial assets, 

                                                   
2 A more detailed discussion of this matter is available (though usually 
scattered) in many prior publications, often biased by the disciplinary 

background of the authors. We embrace the critical approach of 
Wilmott who seems to combine strong theoretical foundations, real 
market familiarity, and a good sense of criticism. See mainly Wilmott 

(2006 and 2009). 
3 For an interesting perspective on actuarial and risk-neutral approaches 
see Wilmott (2009) and his blog: http://www.wilmott.com/blogs/ 

paul/index.cfm/2008/11/17/Actuaries-Versus-Quants.  
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including equities, indexes, and foreign exchange 
rates1. Following Glasserman (2004) and others in the 
path laid out by Merton (1976) we assume2: 

( ) ( )( )  dR t dt dW t dJ tμ σ= + + ,    (2)  

where μ is the deterministic drift rate; σ is the 
deterministic volatility of the process; W(t) is the 
familiar Wiener process; J(t) is the univariate 
jump process defined by: 

 ( )

( )

1

( )  (   1) or ( ) ( 1) ( )
N t

j N t

j

J t Y dJ t Y dN t
=

= − = −∑ ,   (3) 

where Y1, Y2,… are random variables independent 
of N(t) which is a counting process. We also as-
sume that W(t) and J(t) are independent. Restrict-
ing Yi to positive values ensures that the gross 
returns (and thus the risky asset value) remain 
non-negative which is necessary for our model of 
long positions in the financial market. The solu-
tion of equation (2) is3: 

( )
( ) ( )

( )20.5

1

 .
N t

t W t

j

j

R t e Y
μ σ σ− +

=

= ∏      (4) 

To progress from equation (4) to a numerical so-

lution we need to define the distributions govern-
ing the jump arrival and the jump size. Following 

the common practice, we assume that N(t) is a 

homogeneous Poisson process with intensity λ, 
hence the jumps inter-arrival times tj+1 – tj are 

independent with exponential distribution P (tj+1 – 

tj ≤ ∆t) = 1 – e-λ ∆t , t ≥ 0, where tj is the arrival 

time of jump j. Adopting the Merton (1976) as-

sumption that the jump size is lognormally dis-

tributed, i.e. Yj ~ LN(μy,σy
2) leads to a compact 

solution which facilitates practical calibration of 
the model and the simulation of the pension con- 
 

tracts in this paper using market compatible pa-
rameters. The assumption Yj ~ LN(μy,σy

2) , i.e. 
ln(Yj) ~ N(μy,σy

2), results in the following uncon-
ditional distribution of the gross returns: 

( )
( )

( ),

0

  ,
!

n

t

n t

n

t
P R t x e F x

n

λ λ∞
−

=

⎡ ⎤≤ =⎣ ⎦ ∑     (5)  

where ( ),n t
F x ~ ( )2 2 21

2
,  .

y y
LN t n t nμ σ μ σ σ⎡ ⎤− + +⎣ ⎦

To complete the modeling of equation (1) we need 
to assume a distribution for the probability that the 
individual survives through the life of the policy 
contract P (T > τ). We consider two cases of T, the 
random variable of the total lifetime for an individu-
al. The first is an exponential lifetime distribution 
which is independent of individual age and is in-
cluded here as a benchmark: 

( )P  , T e ςττ −> =       (6) 

for positive constants ζ and τ (τ is defined in equa-
tion (1)). In the second case we model the individual 
lifespan by Gompertz law: 

( ) ( )P exp 1  , 
ln

ageT c c
c

τωτ ⎡ ⎤
> = − −⎢ ⎥⎣ ⎦

    (7) 

where c, ω are positive constants, T, τ are defined 
above, and age is the present age of the individual. 

1.2. A structure product with risk insurance 

(SP-RI) policy. Here we present a model for a 
contract paying the beneficiaries in case the op-
tion holder dies during the life of the option. It is 

a life insurance contract combined with an SP 
that, in the event of death, will pay the higher of 
either a risk-free investment or the (gross) return 
on a portfolio of risky asset, minus the commis-
sion. The price of such a contract is formulated in the 
following equation: 

( ) ( ) ( )( ){ }0 1 1 1 ,rT rT rT

SP RI T Tc Be e k E R T eτ τ

+−
− ≤ ≤

⎡ ⎤= + − −⎢ ⎥⎣ ⎦
      (8) 

where11T τ≤  is the usual indicator function having a 

value of 1 if the condition (T ≤ τ) is true and 0 oth-

erwise.2The other variables and parameters are de-

fined in equation (1). 3Equations (1) and (8) are 

very similar, yet differ in a few significant matters. 
 

                                                   
1 A more comprehensive model would include also stochastic vola-

tility which captures volatility clustering effects; however, this 

would require the estimation of additional market variables and 

calibration which may add rigor to the model, yet might introduce 

additional uncertainty to the results. See, for example, Wilmot 

(2009) on model calibration. 
2 See also Brigo et al. (2009). 
3 For a detailed development of the following expressions see for exam-

ple Glasserman (2004). 

In equation (8) the time at which discounting and fu-
ture values are calculated is the death of the insured T, 
while in equation it is the maturity of the contract τ. 
This leads to another matter – whereas in equation (1) 
the time variable is a constant allowing a simple sepa-
ration between the stochastic life span T and the sto-

chastic return ( )R τ , in equation (8) the return is ( )R T  

and the two random processes are combined, this in-
creases the complexity of the solution. 

The modeling of the risky asset returns are dis-
cussed in detail in the prior section on an SP and a 
pure endowment contract (SP-PE). In the case of an 
SP and a risk insurance (SP-RI), as the time of death 
T, a random variable, affects the stochastic return 
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( )R T , we need the appropriate distribution for the 

event T ≤ τ. Here again we consider two cases of T, 
the first is an exponential lifetime: 

( )P 1  , T e ςττ −≤ = −       (9) 

for positive constants ζ and τ as defined for equation 
(6). In the second case we model the individual 
lifespan by Gompertz law: 

( ) ( )1 exp 1  , 
ln

ageP T c c
c

τωτ ⎡ ⎤≤ = − − −⎢ ⎥⎣ ⎦
 (10) 

where the parameters are defined in equation (7). 

Given the above model and the assumption that 

individual death events are independent of the risky 

portfolio returns we can rewrite equation (8) using 

conditional expectations as follows: 

( ) ( ) ( ) ( )( ){ }0 1 1 1 1 | ,rT

SP RI T T TR T
c BE k E e R T Tτ τ

+−
− ≤ ≤

⎡ ⎤= + − −⎢ ⎥⎣ ⎦
                (11) 

where the expectations ET [·] and E )(
~

TR [·] are re-

spective to the random variables T and )(
~

TR  respec-

tively. Equation (11) can be straightforwardly 
solved numerically using Monte Carlo (MC) simula-
tions. Effectively it is a double integral where the 

inner integral is with respect to )(
~

TR  given T and 

the outer integral is with respect to T. 

2. Numerical examples and discussion 

The valuation of the options in equations (1) and (8) 
can be easily implemented using Monte Carlo simu-
lations. We use here the fixed interval solution simi-
lar to Glasserman (2004) and Brigo et al. (2009)1. 
As an example for the risky asset we arbitrary se-
lected the German index DAX. It can be naturally 
replaced by any other index or portfolio of indexes. 
Following Brigo et al. (2009), we use a maximum 
likelihood estimation (MLE) to estimate the risky 
asset parameters: μ* = 0.0488, σ = 0.215, λ = 2.122, 
μy = 0.0531, σy = 0.00527, where μ* = μ ‒0.5σ2 + 
λμy. For our estimation we use daily closing prices 
of the DAX in the period November 1983 to De-
cember 20112. The DAX price path is presented in 
Figure 1a and its returns QQ plot in Figure 1b which 
clearly shows the fat-tails of its empirical distribution 
(see Appendix). 

Since the maturity τ is a constant specified in the con-
tract we can rewrite equation (1) to simplify the nu-
merical calculations as follows:  

{ }
(0)

( ) 1 (1 ) ( ) 1

SP-PE

r

c

P T B k E e Rττ τ
+−

=

⎡ ⎤= > + − −⎣ ⎦
, (12)  

                                                   
1 This can be replaced by other models such as variable interval simula-
tions, see for example Glasserman (2004), or asymmetric up and down 
jumps model, see for example Chacko and Viceira (2003), etc. 
2 This period may of course be replaced by another. It was selected to 
include the significant booms and busts of recent decades. A much 
longer period, starting in October 1959 results in slightly different 

numbers: μ* = 0.0542, σ = 0.186, λ = 1.841, μy = 0.0496, σy = 0.00218. 
This confirms that recent decades are more volatile than earlier periods 
(mainly by the increase in the jump intensity λ and σ, σy  parameters). 

Bloomberg is the source of the DAX closing price data in our example. 

To exemplify the numerical valuation of the contracts 
in this paper we look at young males aged 30 and 40 
years. The risk-free rate (r) is assumed either 0.03 or 
0.05. We assume the commission is k = 10% and that 
the invested amount is B = $1. For the survival distri-
bution we use ζ = 0.01 and 0.015 for the exponential 
distribution and c = 1.1, ω = 10-4 for Gomprtz3. The 
survival probabilities are depicted in Figure 2 (see 
Appendix). 

The results for the structured product with pure 
endowment (SP-PE), using equation (12) for τ = 5, 15, 
and 30 years, are presented in Table 1. The numbers, 
in $ amount for B = $1, are each the mean of 100 MC 
runs, each run includes 1000 price paths of the risky 
asset portfolio. The italic number below each mean is 
the standard deviation of the MC simulation results. 
Hence, an estimate for the standard deviation of the 

mean is 10% of the italicized number (1/ 100 ). This 

dispersion, measure for the error of the calculated val-
ues, seems well below 1%, mostly a few tenths of a 
percent. 

As expected, the value of the SP-PE depends on the 
time to contract expiration (maturity). Take for ex-
ample the case of Gompertz law and a 30 year old 
insured. Even for a long contract of 30 years, his 
survival probability is 74% (see Figure 2b) which 
immediately sets the floor value of his contract at 
0.74B. To this value we need to add the possible 
upside of the investment in the risky asset. This 
upside is essentially a call option (less commission) 
which increases with the length of its duration. A 30 
year call option on a volatile asset is quite valuable. 
Hence no wonder the value of this contract is 2.75B 
and 1.67B (see Table 1) for a risk-free rate of 0.03 
and 0.05 respectively. For a vanilla call option the 
value increases as the risk-free rate increases. How-
ever, in the option embedded in this contract the 
relevant exercise price is a risk-free gross return. A 
higher risk-free rate reduces the moneyness of this 
exotic call option. Increasing the age of the insured 

                                                   
3 Similar to Yosef (2006). 
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to 40 years old reduces the survival probability to 
less than 46% (see Figure 2b). Hence, ceteris pari-
bus, the value of the same contract for the older 
person reduces to 1.71B and 1.03B for a risk-free 
rate of 0.03 and 0.05 respectively. Therefore, time to 
maturity affects the value of the contract in a com-
plex manner where the two main effects are the 
survival probability function and the time value of 
the option. Whereas in the examples of Table 1 for 
the case of the exponential distribution the value 
monotonically increases with maturity, in the case 
of the Gompertz distribution it increases initially 
(for short maturities), reaches a peak, and then de-
creases (for long maturities). 

For the numerical solution of equation (11), valuing 
the SP with risk insurance contract (SP-RI), we 
need to draw random numbers from the appropriate 
distribution of T. We use the common procedure, 
see for example Glasserman (2004), drawing uni-
formly distributed numbers u~U (0,1) and finding 
the random draws for T via the appropriate inverse 
cumulative distribution function (CDF). For the 
exponential distribution the inverse CDF is: 

( )1 ln 1  , T uζ= − −     (13)  

and for the Gompertz law it is: 

( )ln1
ln ln 1 ln 1  .age

c
c c

T u
ϖ

⎡ ⎤= − −⎣ ⎦    (14)  

For each draw of T one needs to draw (Nitr) sample 

paths of ( )R T , to calculate an average for the sam-

pled payoffs of T, approximating
( ) [ ]R T

E ⋅ given T 

(assigning zero value to payoffs if T > τ). This pro-
cess is repeated NT times averaging these estimated 

conditional expectations to approximate [ ]T
E ⋅ . Such 

a procedure becomes computationally long and te-
dious. We have chosen to alleviate it by performing 
a simple numerical integral over T ≤ τ using the 
appropriate life distribution, using 50 subdivisions 
of the time to maturity. Finally, to further reduce the 
computation load, for each contract maturity, in 
each MC run, we generated a single set of Nitr sam-

ple paths of daily ( )R t , instead of generating Nitr 

samples of ( )R T  for each T value. The three com-

putation alternatives have been compared and yield 
similar results.  

The results for the structured product with risk in-
surance (SP-RI), using equation (11) for τ = 5, 15, 
and 30 years, of the efficient procedure, are present-
ed in Table 2. As described above, the numbers, in $ 
amount for B = $1, are each the mean of 100 MC 
runs, where each run includes 1000 price paths of 
the risky asset portfolio and integrated over 50 sub-

divisions of the time to maturity. The italic number 
below each mean is the standard deviation of the 
MC simulation results. Here again, an estimate for 
the standard deviation of the mean is 10% of the 

italic number (1/ 100 ) and it is well below 1%, 

mostly a few tenths of a percent. 

Obviously the maturity of the contract affects an SP-
RI differently than it affects an SP-PE contract. As 
explained in the prior section SP-RI value depends 

on ( )R T , where T is a random variable, while SP-

PE depends on ( )R τ  where τ is a constant. Second-

ly, the two contract types depend on complimentary 
events. An SP-PE is worthless if the insured dies 
prior to the maturity of the contact and an SP-RI is 
worthless if the insured survives through the maturi-
ty date. Lastly SP-PE resembles a European option 
which can be exercised only at its expiration date, 
whereas SP-RI resembles an American option that 
can be exercised at any date, upon the death of the 
insured, until the expiration date. Therefore, unlike 
the SP-PE, the SP-RI value increases monotonically 
with the time to maturity of the contract since both 
the embedded option value and the likelihood of 
death increase with the duration of the contract. 
Similarly, under Gompertz law, ceteris paribus, the 
older the insured, the higher the value is of the con-
tract. This is valid not only for the three maturities’ 
results shown in the table, it is supported by the 
non-crossing curves in Figure 2b. Lastly, in our 
example we assume constant parameters for the 
process of the risky assets, hence the value of the 
contract for the higher risk-free rate is smaller than 
that for the lower risk-free rate. For example, the 
value of an SP-RI contract maturing in 30 years, for 
an insured who is 30 years old presently, is 0.685B 
and 0.482B (see Table 2) for a risk-free rate of 0.03 
and 0.05 respectively, under the specified Gompertz 
law. We use Tables 1 and 2 to demonstrate the sen-
sitivity of the contract value to its parameters and 
variables, however a dependence of the risky asset 
process on the risk-free rate would affect the calcu-
lated results. We expect that professional practition-
ers, after conducting a sensitivity analysis for their 
specific scenario, would add to the contract price a 
margin, not just for profit and operational expenses, 
but also for model and parameters uncertainties. 

Conclusion 

This paper presents the theoretical valuation models 
and practical numerical solution procedures for two 

contracts, each combining a financial product with 

an insurance policy ‒ a pure endowment and a risk 

insurance policy. It extends prior work by presenting 

an adaptable solution to more complex contracts and 
richer sets of underlying asset stochastic processes. 
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In recent decades insured individuals become more 
financially savvy; the financial markets’ volatility 
and risk seem to be rising; more insurance policies 
are of a defined contribution type and the share of 
defined benefit policies decreases. These trends are 
combined with a diminishing trust of the public in 
the ability of professional investors to time the mar-
ket and select winning investments on one hand, and 
increasing doubts in the fair conduct of their in-
vestment manager on the other hand, irrespective of 
whether this is caused by these managers’ incentive 
compensation or the inherent moral hazard of the 

system. The two contracts presented in this paper 
combine together an insurance package and an in-
vestment in a risky asset portfolio, where the insured 
is protected by a guaranteed floor motivating the 
insurer to properly manage the investment risk. On 
the other hand, the insurer benefits from an increased 
commission upon achieving higher returns on the risky 
assets. Hence these contracts include embedded risk 
control and success incentives that benefit both the 
insured and the insurer and thus may help to remedy 
some of the prevailing distortions in the market and 
enhance a safer competition among the insurers. 
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AAppendix 

 

1a: index price path 

 

1b: index returns QQ plot 

Fig. 1. DAX daily closing prices and returns QQ plot for the period November 11, 1983 to December 30, 2011 

2a: exponential distribution

  

2b: Gompertz distribution 

Notes: Life span probabilities P (T > τ) for the exponential and Gompertz distributions, defined in equations (6) and (7) respectively, used 
for the valuation in equation (1). The parameters are: ζ = 0.01 and 0.015 for the exponential distribution and c = 1.1, ω = 10-4, 
age = 30 and 40 years old for Gompertz. The valuation of equation (8) requires the complimentary event, i.e. the CDF defined by P 
(T ≤ τ). 

Fig. 2. Life span probabilities 

Table 1. The valuation of SP and pure endowment contracts (SP-PE) 

The valuation of SP and pure endowment contracts (SP-PE) maturing in 5, 15, and 30 years for a notional amount of B = $1 invested 
today, promising, if the insured doesn’t die prior to the maturity date, to pay the higher of the risk free rate or the returns on a portfo-
lio of risky asset, with a commission of k = 10% on the gains above the risk free rate. If the insured dies until the maturity date, the 
contract expires worthless. The value is calculated using equation (12) for risk-free rates of 0,03 and 0,05 and for two types of life 
duration models: Gompertz (c = 1.1, ω = 10-4, age = 30 and 40 years) and exponential (ζ = 0.01 and 0.015). The numbers, in $ 
amount, are the mean of 100 MC runs, each run includes 1000 price paths of the risky asset portfolio. The italic number below each 
mean is the standard deviation of the MC simulation results. Hence, an estimate for the standard deviation of the mean is 10% of the 

italic numbers (1/ 100 ).  

Life model → Gompertz Exponential 

τ [yrs] r [%] age = 30 age = 40 ζ = 0.01 ζ = 0.015 

5 

 

3 

 

1.32 

0.016 

1.3 

0.015 

1.27 

0.016 

1.239 

0.015 

15 
 

3 
 

1.88 
0.06 

1.714 
0.043 

1.726 
0.056 

1.596 
0.046 
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Table 1 (cont.). The valuation of SP and pure endowment contracts (SP-PE) 

Life model → Gompertz Exponential 

τ [yrs] r [%] age = 30 age = 40 ζ = 0.01 ζ = 0.015 

30 
 

3 
 

2.75 
0.17 

1.711 
0.092 

2.749 
0.16 

2.386 
0.14 

5 
 

5 
 

1.24 
0.016 

1.22 
0.011 

1.196 
0.014 

1.17 
0.015 

15 

 

5 

 

1.52 

0.04 

1.38 

0.032 

1.389 

0.036 

1.291 

0.034 

30 
 

5 
 

1.67 
0.08 

1.03 
0.05 

1.675 
0.081 

1.437 
0.077 

Table 2. The valuation of SP and risk insurance contracts (SP-RI) 

The valuation of SP and risk insurance contracts (SP-RI) maturing in 5, 15, and 30 years for a notional amount of B = $1 invested 
today, promising, if the insured dies prior to the maturity date, to pay the higher of the risk free rate or the returns on a portfolio of 
risky assets, with a commission of k = 10% on the gains above the risk free rate. If the insured doesn’t die by the maturity date, the 
contract expires and is worthless. The value is calculated using equation (11) for risk free rates of 3 and 5% and for two types of life 
duration models: Gompertz (c = 1.1, ω = 10-4 ages 30 and 40 years) and exponential (ζ = 0.01 and 0.015). The numbers, in $ amount, are 
the mean of 100 MC runs, each run includes 1000 price paths of the risky asset portfolio (and 50 subdivision over the contract period, for 
the external expectations regarding the death probability). The italic number below each mean is the standard deviation of the MC simula-

tion results. Hence, an estimate for the standard deviation of the mean is 10% of the italic numbers (1/ 100 ). 

Life model → Gompertz Exponential 

τ [yrs] r [%] age = 30 age = 40 ζ = 0.01 ζ = 0.015 

5 
 

3 
 

0.0134 
0.0001 

0.0344 
0.0002 

0.0582 
0.0004 

0.086 
0.0006 

15 
 

3 
 

0.0904 
0.0016 

0.223 
0.0041 

0.2069 
0.0026 

0.2979 
0.0049 

30 

 

3 

 

0.685 

0.026 

1.376 

0.048 

0.5358 

0.0131 

0.7388 

0.0211 

5 
 

5 
 

0.01298 
0.0001 

0.0333 
0.0002 

0.0564 
0.0003 

0.0836 
0.0005 

15 
 

5 
 

0.0793 
0.0013 

0.196 
0.0032 

0.186 
0.0024 

0.2683 
0.0034 

30 
 

5 
 

0.4823 
0.016 

0.984 
0.024 

0.4158 
0.0093 

0.5763 
0.0133 
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