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Lihang Wang (France), Aymeric Kalife (France), Xiaolu Tan (France), Bruno Bouchard (France),  

Saad Mouti (France) 

Understanding guaranteed minimum withdrawal benefit: a study 

on financial risks and rational lapse strategy 

Abstract 

The valuation of guaranteed minimum withdrawal benefit (GMWB) products attracts the attention of practitioners and 
academics both because of its long maturity and complex design properties, and also because of uncertain policyholder 
behaviors, such as lapse rate. In the present paper, we address the pricing problem as the valuation of a Bermudan-style 
option for the insurer. This evaluation approach corresponds to the price that allows the insurers to hedge the risk 
whatever the lapse strategy of the holder is. It is worthy to mention that so far, a historical or statistical lapse rate has 
generally been assumed for pricing these guarantees (see e.g. [4]). Both financial theory and past observations show 
that this assumption may lead to an underestimation of the risk associated to these products, the holders being rational 
or not. To evaluate the Bermudan-style liability, we implement two different schemes: partial differential equation 
(PDE) method and high-dimensional regression (HDR) method (see [11]). It is shown that the PDE method is precise 
for low-dimensional problems (< 3), while the HDR is more efficient when there are more than three dimensions. In 
the Hull and White stochastic interest rate model, the authors also show how a change of numeraire technique can be 
used to accelerate the numerical algorithms significantly for policies with ratchet (lookback) properties. 

Keywords: GMWB, ratchet, variable annuity, rational lapse strategy, stochastic interest rates, long-term financial 
risk, PDE, ADI, high-dimensional regression.  
 

Introduction  

The guaranteed minimum withdrawal benefit 
(GMWB) riders are a recent innovation in the life 
insurance market. According to a report of IBBotson 
Associates (see [20]), the dominant sales driver for 
variable annuities (VA hereafter) in recent years 
was this kind of guarantee riders. In this paper, we 
focus on the GMWB rider for life. 

The GMWB rider for life gives policyholders the 
ability to protect their retirement investments 
against downside market risks by allowing the an-
nuitant the right to withdraw a fixed percentage (e.g. 
4%) of the benefit base each year until death. The 
benefit base can either step up and be reset to the 
high-water mark of the account value on the rider 
anniversary date (Step-up policies), or can roll up 
with a fixed percentage annually (Roll-up policies), 
regardless of the market conditions. Another impor-
tant feature of GMWB is that the policyholder can 
defer all annuities certain years after the inception. 
For simplicity, we assume that this “deferral period” 
is zero in this paper, which means that the customers 
begin withdrawals at the end of the first policy year. 
The remaining contract value at death will be paid 
to beneficiaries, which removes the investor concern 
about giving up liquidity to the heirs. 
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With the GMWB products, automatic annual resets are 
available after the contract is purchased. Thanks to 
these new designs on benefit bases, the guarantee pro-
tects policyholder against any nominal investment 
losses without losing the benefit of upside gain. In 
exchange for this benefit, the policyholder pays a 
charge fee each year. For example, suppose that Bill 
bought a GMWB contract with a withdrawal rate of 
7%. At the end of deferral period, Bill’s account value 
reached historical high at 12,000, and his benefit base 
is also reset at 12,000. Due to good performance in the 
next year, the investment gains a 20% and the account 
value increases by about 10% (the investment gain 
minus the annuity paid and charge fees). Then the 
benefit base will be reset to a higher level so that Bill is 
able to receive more annuities each year thereafter. 

Table 1 illustrates cash-flows of a typical GMWB 
rider, assuming the initial expense charge rate is 3% at 
the beginning of 1990. Note that the benefit base is the 
greater of a roll-up base (8%) and a step-up annually 
reset base. The guaranteed lifetime withdrawal rate is 
set to be 7% and a charge fee rate 1.0%. Supposing 
that the deferral period ends at the beginning of 1994, 
the policyholder will receive his first annuity at the 
beginning of 1995, which is equal to the withdrawal 
rate multiplied by the benefit base at 1994.  

We observe in Table 1 that the benefit base is always 
higher than the account value and never decreases 
during all the period (thanks to the step-up feature). In 
addition, the guaranteed income is also compared with 
the net-return of 10-Y US Note. It is clear that, in our 
example, the annuity return of GMWB is much higher 
than that of long-term state notes. Moreover, GMWB 
can also protect contract owners from downside risk of 
interest rate (e.g., since 2000 in this example).



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 6, Issue 1, 2015 

7 

Table 1. Illustrations of GMWB rider 

Policy year 
 0-Y Note  S&P 500 Account value/$ Benefit base/$  Rider fee/$  Guaranteed  

Net return  Net return           Income/$  

1990      9,700   10,000   (300)   0  

1991  8.4%  4,5%   10,036   10,800   (100)   0  

1992  8.4%  18,9%   11,809   11,809   (118)   0  

1993  8.4%  7,3%   12,549   12,597   (125)   0  

1994  8.4%  9,8%   13,637   13,637   (136)   0  

1995  8.4%   -2,3%   12,232   13,637   (122)   955  

1996  8.4%   35.2%   15,418   15,418   (154)   955  

1997  8.4%   23.6%   17,788   17,788   (178)   1079  

1998  8.4%   24.7%   20,713   20,713   (207)   1245  

1999  8.4%   30.5%   25,318   25,318   (253)   1450  

2000  8.4%   9.0%   25,542   25,542   (256)   1772  

2001 6.7%   -2.0%   22,983   25,542   (230)   1788  

2002 6.7%   -17.3%   17,037   25,542   (170)   1788  

2003 6.7%   -24.3%   10,982   25,542   (110)   1788  

2004 6.7%   32.2%   12,584   25,542   (126)   1788  

2005 6.7%   4.4%   11,223   25,542   (112)   1788  

2006 6.7%   8.4%   10,252   25,542   (103)   1788  

2007 6.7%   12.4%   9,615   25,542   (96)   1788  

2008 6.7%   -4.2%   7,336   25,542   (73)   1788  

2009 6.7%   -40.1%   2,563   25,542   (26)   1788  

2010 6.7%  30.0%   1,512   25,542   (15)   1788  
 

We observe in Table 1 that the benefit base is 
always higher than the account value and never 
decreases during all the period (thanks to the step-up 
feature). In addition, the guaranteed income is also 
compared with the net return of 10-Y US Note. It is 
clear that, in our example, the annuity return of 
GMWB is much higher than that of long-term state 
notes. Moreover, GMWB can also protect contract 
owners from downside risk of interest rate (e.g., 
since 2000 in this example). 

Besides the financial risks related to its option features 
and long maturity, a major issue concerns the 
uncertainty on the lapse rate, i.e. the rate at which 
policyholders withdraw money from their accounts. In 
the past, historical or statistical lapse rates have 
generally been assumed in the literature (see e.g. [4]). 
This approach amounts to assuming that lapses are 
independent of the market conditions. Moreover, even 
if the above (very strong) assumption was satisfied, it 
would only allow to hedge the payoff in mean, without 
real control on the distribution of the hedging error 
(like bounds given by a central limit theorem). In 
reality, lapse rates of GMWB riders heavily depend on 
the account value and interest rate level. This 
phenomena is supported by the past observations, 
especially during the sub-prime crisis since 20081. The 
dependency between lapse rate and financial market 
conditions is consistent with the intuition. Indeed, 

                                                      
1 As the market conditions were very volatile during the crisis, it was 
easier to observe the dependency between lapse rate and market condi-
tions such as interest rate and account value. 

when the interest rate goes up, the discounted value of 
the insurer’s annuities decreases. If the portfolio value 
rises at the same time, then the guarantees become 
worthless and more customers should surrender their 
policies to get back the account value. In the opposite 
situation, where both interest rate and account value 
decrease, the contract becomes to the contrary much 
more attractive, thus leading to a reduced lapse rate. 
Note that customers need not to be “rational”, in the 
financial market sense, to adopt such behaviors. 
Namely, they are certainly not able to compute the 
optimal exercise times associated to such very 
complex products. However, competitors can take 
advantage of new market conditions to propose more 
attractive products, thus influencing their behavior 
indirectly. 

In this paper, we address this question from the 
point of view of an insurer who wants to guarantee 
his ability to pay back the account value, whatever 
the holder’s strategy is, rational or not. This means 
that we have to consider the embedded lapse option 
pricing problem as the valuation of a Bermudan-
style contingent claim for the insurer. As usual, the 
policy price evaluated by this approach can be 
interpreted as the price of the claim if all 
policyholders use the same rational lapse strategy, 
which is similar to the optimal early-exercise 
strategy of American options. However, it is 
important to point out that this is only an 
interpretation, and that the critical aim is to make 
sure the lapse risk can be hedged whatever the 
holder’s strategy is. 
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This rational lapse approach, similar with the valuation 
problem of Bermudan-style options, is standard in 
financial markets (see e.g. [7]). Our main contributions 
is to apply it to GMWB riders, and, in particular, to 
highlight the critical importance of the up-front fees to 
protect the insurers from the wave of early termination 
of policies. Importantly, we allow for stochastic 
interest rates, which is important for products with 
long maturities. For simplicity, we assume that the 
account value has a Black and Scholes type dynamics 
with interest rates driven by a Hull and White one 
factor model. Obviously, the same methodology could 
be applied to more sophisticated models (including 
e.g. stochastic volatility or more general multi-factor 
term structures).  

From the technical point of view, we use two 
different numerical methods to compute the rational 
lapse boundary and the early-termination premium 
(surrender option defined in [2]) of GMWB 
contracts. The first one is the Alternating-Direction 
Implicit Scheme (ADI, see [16], [14]). This is a pure 
determinist scheme allowing to solve PDEs in small 
dimensions (less than three). The second one is the 
High-Dimension Regression Scheme (HDR, see 
[11]). This is a Monte-Carlo based method that is 
more efficient in higher dimensions. In our 
numerical tests, these two schemes are both efficient 
and consistent with each other. For policies with 
ratchet properties, we also show how a change of 
numeraire technique can be used to accelerate the 
numerical algorithms significantly. 

The reminder of this paper is organized as follows. In 
Section 1, we introduce the basic notations and 
general modeling framework for GMWB guarantees. 
Section 2 formulates the evaluation problem from the 
Bermudan-option point of view. The two numerical 
schemes are presented in Section 3, and the 
numerical tests are provided in Section 4. Final 
section closes with a summary of the main results. 

To the best of our knowledge, it is the first time that 
such a study is performed in the academic literature. 

1. Modeling framework 

In this section, we present the modeling framework 
that we shall use to evaluate the liabilities of the 
GMWB. 

From now on, we let , , = ( ) ,t t T  denote a 

complete filtered probability space supporting two 
independent standard one dimensional Brownian 

motions W  and W . Here  T > 0 is a fixed time 

horizon. We assume that the filtration  is the 
completion of the rough filtration generated by 

( , )W W , so that any martingale ( , ) -

martingale can be represented as a stochastic 

integral with respect to ( , )W W . 

1.1. Underlying asset and interest rate dynamics. 
During the last decade, the literature on pricing of 
GMWB riders has certainly evolved, but many 
evaluation approaches proposed (e.g. [4], [26]) are 
still based on the assumption of deterministic 
interest rates. Such an assumption is harmless in 
most situations since the interest rates variability is 
usually negligible when compared to the variability 
observed in equity markets. When pricing a long-
maturity securities such as VA riders, however, the 
volatile feature of interest rates has a stronger impact 
on the guarantee value. In such case, it is therefore 
advisable to use stochastic interest rate models. 

In this paper, we discuss the simple case where the 
short term interest rate r = (r(t))t 0 is driven by the 
one factor Hull and White model (see [19]), and the 
underlying asset S = (S(t))t 0 in which the account 
value is invested follows a Black and Scholes type 
dynamics, namely:  

1
2 2

( ) = ( ) ( ) ( ) ( )

( ) = ( ( ) ( )) ( ) , := (1 )r

dS t r t S t dt S t dW t

dr t a t r t dt dZ t Z W W

                                                                          (1) 

Here, a and y are positive constants,  is a 
deterministic Lebesgue-integrable function,  is the 
instantaneous volatility of the asset return, and  is the 
correlation1 between the account value and the interest 
rate. Note that the above financial market is complete 
whenever S  and a zero-coupon bond with maturity T 
can be freely traded, and that  is the only martingale 

(risk neutral) measure. 

We formulate the complete dynamics of the account 
value for both roll-up riders and step-up riders in the 
following.  

                                                      
1 For VAs, the correlation is often negative, as most portfolio contains 
fixed income assets, such as bonds. 

1.2. Roll-up riders. We first provide the dynamics 
of the account value in the case of a roll-up rider. 

The anniversary dates at which the annuity payments 
are made and lapses can occur are denoted by  

0 1 1 10 = < < < < < < < =
i i n n

t t t t t t T ,  

where  denotes the fixed maturity2 of the policy. 
To simplify further the analysis, we also suppose 
that the policyholder is only allowed to surrender 
the contract at the discrete time points ti. 

                                                      
2 For the GMWB rider for life, the maturity is in fact the death of the 
policyholder. For sake of simplicity, we suppose that the maturity is 
deterministic in this paper. Thus the value of a pool of GMWB riders is 
simply a weighted sum of the policies of different maturities according 
to the longevity assumption. 
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We assume that the account value A  is fully 
invested in the risky asset S and that a charge fee is 
deducted at a rate c. This means that, between two 
anniversary dates ti and

 
ti+1, it evolves according to: 

1

( ) = ( ( ) ) ( ) ( ) ( ),

< .
i i

dA t r t c A t dt A t dW t

t t t    (2)
 

At the anniversary dates
 
ti, the account value jumps 

downwards (if it is not zero) due to the deduction of 

annuities. For roll-up riders, the annuities ( )
i i n

A  is 

determined at the inception. At each anniversary 
date

 
ti, the annuity Ai is deducted from the account 

value: 

( ) = ( ( ) ) for = , {1,2, , },
i i

A t A t A t t i n   (3) 

where we write x  for max( ,0)x . 

Since ( , )r A  is a Markov process, the liability 

process E
L  associated to no early lapse can be 

identified to a deterministic function E  by:  

<
1

1
1

( ) := [ | ]

[ ( ) | ] = ( , ( ), ( )),

n
tE j

t t j t t
j

j

t En
t n t

L t A D

D A t t r t A t

1 E

E

              (4) 

where 2

1

t

tD  stands for the stochastic discount factor 

between t1 and t2: 

22

1 1

:= exp( ( ) ) .
tt

t
t

D r s ds  

In equation (4), the first term on the right hand 
side is a sum of zero-coupon bond price, which can be  

computed explicitly in our Hull-White framework. 
In most cases, the second term, which can only be 
computed numerically, is much smaller than the first 
one because of the deduction of annuities during 
many years. 

Because of the annuity payments at each 
anniversary of the policy purchase, the liability LE is 
discontinuous at the discrete time points ti. 
Combining the dynamic (3) of the account value and 
the definition (4) of the liability, we have at time ti:  

( ) = ( )

and ( , , ) = ( , , ( ) ) .

E E

i i i

E E

i i i i

L t L t A

t r a t r a A A    (5)
 

The evaluation of the Bermudan-style liability in 
case of possible early lapse is deferred to the next 
section. 

1.3. Step-up riders. The account value follows the 
same dynamics between the anniversary dates as in the 
previous case, see (2). The difference with roll-up 
riders is that the annuities are no more determined at 
the inception date but evolve according to the high-

water mark of the account value ( )
i

A t : 

:= ( )
i i

A wA t ,                                                      (6) 

where w  is the annual withdrawal rate and: 

( )

( ) := ( ),sup

( ) := sup{ ,  : } , 0 .

s m t

i i

A t A s

where m t t i n t t t

           (7) 

The complete dynamic of the account value under 
step-up riders is then given by: 

1( ) = ( ( ) ) ( ) ( ) ( ) for  < , {1,2, , }

( ) = max( ( ) ( ),0) for  = , {1, 2, , }

( ) = ( ( ) ( )) ( ) for  0 .

i i

i i

r

dA t r t c A t dt A t dW t t t t i n

A t A t wA t t t i n

dr t a t r t dt dZ t t

                                                     (8) 

The value of the no-early lapse product, L
E, can 

also be identified to a deterministic function E 
which now depends on the high-water mark: 

<
1

1
1

( ) := [ ( ) | ]

[ ( ) | ] = ( , ( ), ( ), ( )) .

n
tE j

t t t j t
j

j

t En
t n t

L t D wA t

D A t t r t A t A t

E 1

E

    (9) 

Because of the dependence with respect to the 
high-water mark, the evaluation issue much more 
complex than for roll-up riders. However, one can 
simplify the pricing process by apply a “change of 
numeraire” technique. It is based on the 
observation that the liability function of the step-
up riders has the following scaling invariant 
property:  

( , , , ) = ( , , / )E E

i i
t r a a a t r a a ,                       (10) 

where ( , , ) := ( , , ,1)E E
t r x t r x . We refer to 

Appendix A for the complete argument. This 
leads to the introduction of the positive process 

0( ( ))tt  defined by: 

( ) = ( ) / ( ), [0, ] ,t A t A t t                                 (11) 

so that, recalling that the high-water mark of the 
account value is constant between two anniversary 
dates, see (7),  

1( ) = ( ) ( , , ) [ , ) .E E

i t t i i
L t A t t r for t t t

 

For the same reasons,  evolves in the same way as  

on 1[ , )i it t , namely: 
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1

( ) = ( ( ) ) ( ) ( )

[ , ),

t

i i

d t r t c t dt t dW

for t t t                   (12) 

while at the annuity payment point ti,  has a sudden 
jump when ( ) > 0

i
t . According to the definition 

of  and (8), we have at the time point ti: 
1 for ( ) 1

( ) =
max( ( ) ,0) for ( ) <1

i

i

i i

t w
t

t w t w
  (13) 

with the initial condition (t0) = 1. We can then 
reduce to a two dimensional Markovian 
framework which considerably reduces the 
computation cost.  

Applying the definition (11) of x and the dynamics 

given in (13), the liability function E  evolves 
according to the following equation at the annuity 
payment dates:

 

( ) ( , ,1) for 1
( , , )

( , , ( ) ) for 0 < 1 .

E

iE

i E

i

x w t r w x w
t r x

t r x w w x w
                                                                 (14) 

At the maturity tn+1, we have 1( , , ) =E

nt r x x . Note that the equation (14) can be further simplified to:  

( , , ) = max( ,1) ( , , min(( ) ,1)) .E E

i i
t r x x w t r x w w                                                                               (15) 

2. The Bermudan-option point of view 

2.1. The pricing formulation. In the previous 
section, we have derived the price of the GMWB 
riders under the no-lapse assumption. If 
policyholders are not allowed to lapse contracts 
before maturity, the evaluation process of GMWB 
liability is similar to that of European-style 
contingent claims. However, in practice we can not 
assume the lapse rate to be zero or some other 
constant, as we observe that the lapse rate does 
change significantly in different market conditions 
(equity market and interest rate level) and these 
fluctuations of the lapse rate have notable impacts 
on the liability value and insurer’s hedging strategy. 

In this section, we discuss the pricing problem of the 
GMWB, with possible early lapses, from the point 
of view of an issuer who does not want to take any 
risk. If this is the case, his hedging strategy should 
be such that the liquidation value of the hedging 
portfolio is always bigger than what can be asked by 
the client, whatever the strategy of the client is, 
rational or not. If we can not control this lapse 
strategy, then the only way to hedge without risk 
consists in looking at the product as a Bermudan 
option, with possibly multiple exercises if multiple 
lapses are allowed, see e.g. [21] and [12].  

In the rest of the paper, we simplify the presentation 
and assume that the account value can be lapsed 
only once, at an anniversary date, and for the total 
value of the account. Then, we simply face a 
“standard” Bermudan-type option. 

For roll-up or step-up, the super-hedging price at 
time t of the liability, if not already exercised, in 
then given by:  

<
0

( ) := ess [ 1 ( ) | ],sup
tB j

t t t j t t
j

jt

L t D A D AE  (16) 

where t  denotes the set of stopping times taking 

values in { , 1} [ , )it i n t . 

As in the above section, we can use the fact that 

( , , )r A A  is a Markov process to associate the price 

process to a deterministic map B satisfying  

( , ( ), ( ), ( )) = ( ) .B B
t r t A t A t L t for t            (17) 

Since the policyholder is not authorized to lapse the 

contract between two purchase anniversaries it  and 

ti+1, the process L
B of liability evolves as a  

-martingale on each interval [ti, ti+1[. In particular,  

1
1 1 1 1, ( , ( ), ( ), ( )) = [ ( , ( ), ( ), ( )) | ].B i B

i i i i i i i i i t
i

i n t r t A t A t D t r t A t A tE  (18) 

Similarly with Bermudan-style options, at discrete 
time points ti, the policyholder is supposed to 
compare the account value with the value of the 
liability to decide whether to lapse or not. If the 
account value is bigger than the liability, 

policyholders surrender the contract and get back. 
(ti). Otherwise, they continue to hold the policy. 

Namely, the liability evolves at the anniversary date 
ti as follows, depending wether it is a roll-up or a 
step-up rider:  

: ( , , ) =  max( , ( , , ( ) ) )B B

i i i i
Roll up rider t r a a t r a A A                                                              (19) 

: ( , , , ) =  max( , ( , , ( ) ,max( , )) ),B B

i iStep up rider t r a a a t r a wa a wa a wa                         (20)
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where in (19) we used the fact the price does not 
depend on the high-water mark for roll-up riders, so 
that we omit to write the dependence with respect to 

this quantity. By applying the change of variable 
(11) to equation (20) (see Appendix A for details), 
we then obtain in the case of the step-up rider: 

max( , ( ) ( , ,1) ) for 1

( , , ) = max( , ( , , ) ) for < 1

max( , ( , ,0) ) for 0 <

B

i

B B

i i

B

i

x x w t r w x w

t r x x t r x w w w x w

x t r w x w

                                             (21) 

with ( , , ) := ( , , ,1)B B
t r x t r x , so that: 

( , , , ) = ( , , / ) .B B

i it r a a a t r a a
                  

(22) 

2.2. Analysis of the rational lapse strategy. 
Another important issue related to the pricing of the 
liability as a Bermudan-type option is the 
determination of the rational lapse strategy. 

2.2.1. Roll-up riders. For roll-up riders, the annuity Ai 

being fixed at inception, one easily checks that 
  

the function ( , , ) ( , , )B
t r a t r a  is convex and 

nondecreasing with respect to . In addition, 
according to equation (4), (16) and (17), we have 

( , , ) ( , , ) > 0B E
t r a t r a  for ( , ) [0, ) (0, )t a T . 

Finally, as the annuities Ai of roll-up riders are all fixed 
at inception, it is easy to see that, for the charge fee 

c > 0, we have ( ( , , )) > 0lim
B

a i
a t r a  for i  n. 

In fact, we know that at inception, B(tn+1, r(tn+1), 
(tn+1)) = (tn+1). For  (tn+1) > 0, we have: 

1
1 1 1( , ( ), ( )) = [ ( , ( ), ( )) | ]B n B

n n n n n n n t
n

t r t A t D t r t A tE  

     1
1 1 1 1 1= [ max( ( ), ( , ( ), ( )) ) | ]n B

n n n n n n t
n

D A t t r t A t AE                                 (23)

     1
1= [ ( ) | ] < ( ),n

n n t n
i

D A t A tE  

where the last inequality is a direct consequence of 
equation (2) in case of c > 0. We can prove this 
inequality for i < n by following similar arguments. 

It follows from the properties introduced above that, 

at the time it  (0 < i < n + 1), there exists a function 
*

a  of the interest rate, 
*

*

0 < ( , ) ( , , ) >

( , ) ( , , ) = .

B

i i

B

i i

a a t r t r a a

a a t r t r a a
         (24) 

In this paper, *( , )
i

r a t r  is referred to as the 

“critical account value” at time ti since the policy 
should be lapsed as soon as the account value 

increases to this level at time it  for a given interest 

rate level. As the interest rate is also a random 

variable here, the critical account value *( , )
i

a t r  

is in fact a curve (a function of r) rather than a 

single point at time ti. To avoid ambiguity, we call 
this curve the “critical surface” hereafter. 

2.2.2. Step-up riders. For step-up riders, the nature 
of the critical surface is much more complex. As 

above the map ( , , ) ( , , )B
t r x t r x  is convex and 

non-decreasing with respect to the x -variable. We 

also have ( , , ) > ( , , ) > 0B E
t r x t r x  for (t, x)  

[0, T) (0, ). This allows to ensure the existence of 

a critical surface *( , )
i

r x t r  in three different 

situations: 

1. ( , ,1) < 1B

it r : We have [ ( )lim x x x w  

( , ,1) ] > 0B

it r w . As we have explained, B  is a 

positive, convex and non-decreasing function. 

Therefore, when ( , ,1) < 1B

i
t r , there is a unique 

critical boundary x*(ti–,r) such that:  

*

*

0 < ( , ) ( , , ) > (not lapsed)

( , ) ( , , ) = (lapsed)

B

i i

B

i i

x x t r t r x x

x x t r t r x x
                                                                             (25) 

2. ( , ,1) = 1B

i
t r : According to equation (21), 

= ( ) ( , ,1)B

i
x x w t r w  for. x  1 + w. It follows 

that the critical boundary *( , )
i

x t r  is the whole 

interval [1 , )w :  

0 <1 ( , , ) > (not lapsed)

1 ( , , ) = (lapsed or not lapsed)

B

i

B

i

x w t r x x

x w t r x x
                                                                 (26)

3. ( , ,1) > 1B

i
t r : We have [( )lim

B
x x w  

( , ,1) ] > 0
i

t r w x . This inequality gives rise to 

two possibilities: the map ( ) Bx x w  

( , ,1)
i

t r w x  may cross the level 0 either twice 
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or never. In the former case, lapses occur if the 
account value ends up in the interval associated to 
two crossing points of the level 0 . In the latter, 
there is no lapse whatever the account value is. Our 
numerical tests (see Section 4 below) support the 
latter case. 

3. Numerical schemes 

In this section, we now discuss the numerical 
estimation of the liability pricing function B and the 

critical surface *
a  (or x*) for GMWB riders. 

Although many analytical approximation approaches 
exist in the academy literature (see e.g. [26]), most of 
them are not sufficiently precise for long maturities 
and lookback properties of the policies. 

In the following, we propose two numerical 
methods: the PDE and the HDR schemes. As 
already mentioned, the PDE approach is precise for 
low-dimensional problems (< 3), while the HDR is 
more efficient when there are more than three 

dimensions in the pricing problem (e.g., multi-asset 
account value or stochastic volatility models). 

3.1. The PDE approach. In this section, we 
transform the evaluation problem (20) of the 
Bermudan-style liability into a free-boundary partial 
differential equation, from which B is the solution. 
Details on the numerical scheme used to solve this 
equation are given in Appendix B. The following 
study is divided into two parts, roll-up riders and 
step-up riders. In the second case, the “change of 
numeraire” technique is applied to reduce the 
number of dimensions.  

3.1.1. Roll-up riders. For roll-up policies, the value 
of the Bermudan-style liability is a function of three 
variables: the time t, the interest rate r and the 
account value . Applying Itô’s lemma and the 
martingale representation theorem together, we 
know that the value function associated to the 
liability is the solution of a two dimensional PDE:  

22 2 2 2 2

2 2
( ) ( ) =

2 2

B B B B B B
Br

r

a
r c a a r a r

t a a r r a r
                              (27) 

on 1{( , ) : < , > 0}
i i

t a t t t a , subject to the boundary conditions at the time points 10 < <
i n

t t   

max( , ( , , ) ) for
( , , ) =

max( , ( , ,0) ) for <

B

i i i iB

i B

i i i

a t r a A A a A
t r a

a t r A a A
                                                                  (28) 

and at the maturity   

1( , , ) = .B

n
t r a a

More rigorously, the above holds in the sense of 
viscosity solutions, see e.g. [10]. Between two 
annuity payments, i.e. on each of the intervals [ti-1, ti), 
the PDE (27) can be solved numerically by using the 
Alternating Direction Implicit (ADI)1 scheme (see 
[16], [14], [18] and Appendix B). While at the 

discrete time points ti, the critical lapse surface *
a  

can be easily found by the free-boundary constraint 
indicated in (28). On the boundary, we impose the 
zero-convexity condition2:  

2 2

_ _2 2
| = 0; | = 0.

B B

a boundary r boundary
a r  

In fact, according to [3], the precision of the final 
computation is not very sensible to the error on 
 

the boundaries if the solution domain of parabolic 
equation is large enough. So in most cases, the 
practitioner can choose other boundary conditions 
rather than the ones we propose here3. 

3.1.2. Step-up riders. For step-up policies, we 

evaluate ( , , )B
t r x  rather than ( , , , )B

t r a a  

directly. 

As shown before, the Bermudan-style liability B  
is a function of three variables: t,  and x. In the 
same manner as for roll-up riders, by applying the 

dynamiques (12)-(13) of , the evolution of B  at 
the annuity payment (14) and the free boundary 
constraint (21), we get a two dimensional PDE: 

123 

                                                      
1 In Appendix B, we show the ADI scheme in details and also verify the convergence of the numerical solution to the viscosity solution of equation 
(27) under certain assumptions. 
2 This assumption is based on the fact that the gamma of the liability is small on the boundary. 
3 In the specific case here, the first or second order derivative boundary condition is preferred to Dirichlet condition. As the latter could lead to 
significant errors on the boundary. 
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22 2 2 2 2

2 2
( ) ( ) =

2 2

B B B B B B
Br

r

x
r c x a r x r

t x x r r x r
                                (29) 

on 1{( , ) : < , 0}i it x t t t x , subject to the boundary conditions for 10 < <i nt t  

max( , ( ) ( , ,1) ) for 1
( , , ) =

max( , ( , , ( ) ) ) for 0 < 1

B

B i

i B

i

x x w t r w x w
t r x

x t r x w w x w
                                             (30) 

and at the maturity   

1( , , ) = .B

nt r x x

  

In our numerical tests, we use the ADI scheme to 
compute the PDE (29) numerically between two 
annuity payments, i.e. on each of the intervals  
[ti-1, ti). While at each discrete time point ti, we 
apply (30) to update the solution on all points of 
the discrete space grids. In addition, with the free 
boundary constraint indicated in (30), we can 
easily find the critical lapse surface x

*. On the 
boundary, we also impose the zero-convexity 
condition:  

2 2

_ _2 2
| = 0; | = 0.

B B

x boundary r boundary
x r

 

3.2. High-dimensional regression scheme. In this 
paper, we always assume that the account value  
evolves as a one-dimensional Wiener process. 
However,  is in practice a complex portfolio based 
on a multi-assets portfolio strategy, which may 
include both fix-income securities (e.g., bonds or 
treasuries) and stock indexes. This means that, in 
some cases, we need to consider the account value 
as a multi-dimensional Wiener process and that the 
evaluation of GMWB liability becomes a high-
dimensional (> 3) problem. 

In practice, when the number of dimension is bigger 
than three, purely deterministic schemes, such as 
finite difference methods for PDE, become 
inefficient. In contrast, the convergence speed of 
several purely Monte-Carlo based approaches (e.g. 
[9] or [24]) do not deteriorate too much when the 
number of dimension rises. Thus it is rational to 
apply Monte-Carlo type techniques to evaluate high-
dimensional problems. 

In this section, we apply the high-dimensional 
regression scheme (HDR) discussed in Bouchard 
and Warin [11] (see also [17]) to calculate the 

Bermudan-style liability B (or B ) of GMWB 
policies and the related critical surface defined 
earlier. Although many other Monte-Carlo based 
methods are available in the literature, such as [24] 
or [6], they are either imprecise and extremely time-
consuming or difficult to implement for high 
dimensional problems. The reminder of this section 
is divided into two parts concerning successively the 
roll-up riders and the step-up riders cases. 

3.2.1. Roll-up riders. The algorithm is based on the 
well-known fact that L

B satisfies the backward 
programming equation: 

1
1( ) = max{ ( ), [ ( ) | ] } ,

,

tB Bi
i i t i t i

i i
L t A t D L t A

i n

E
                                                                           (31) 

with terminal condition  

1 1( ) = ( ) .B

n nL t A t  

It follows that:  

ˆ

ˆ ˆ( ) = [ 1 ( ) | ],
tB j i

i t t j t i t
j i i i i

j i

L t D A D AE                                                                                            (32) 

where î  denotes the (first) optimal stopping time 

after time: ti ˆ := inf{ : ( ) = ( )}B

i j i j jt t L t A t . 

As pointed out in [11], the equations (31) and (32) 
 

lead to two possible algorithms (referred to as S1 
and S2 hereafter) for the computation of the 
Bermudan liability L

B(t0) at inception. The scheme 
S2 is similar to the well-known Longstaff-Schwartz 
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(LS, see [24]) method. First, we simulate the path of 

A  and r on  t0, … ,tn+1   by using the SDE (3). In 
the following, we use the index (·)(k) to denote 
quantities associated to the k-th simulated path. 
Then, we apply equation (31) backward from tn to t0 
to estimate the liability LB(t0) and the optimal lapse 
time 

0̂
. 

Scheme 1S : Price process computation  

1. Simulate N discrete scenarios for the account 

value and the interest rate, noted as ( ) ( )k

i
A t  and  

r
(k)(ti) (0  i  n + 1 and 0 < k  N), according 

to (3). 

2. Initialization: Set the Bermudan-style liability at 

maturity for each scenario ,( ) ( )
[1] 1 1( ) = ( )B k k

n n
L t A t  

3. Apply (31) from tn to t0. For i = n to 0: 

( ) ,( ) 1,( ) ,( )
[1] [1] 1

( ) ,( ) ( ) ( )1
[1] [1] 1

if ( ) = 0 : ( ) = ( )
.

if ( ) > 0 : ( ) = max{ ( ), [ ( ) |{ , } ( )] }.

k B k i k B k

i i i i i

tk B k k B ki
i i i t i i i

i

A t L t D L t A

A t L t A t D L t A r t AE

In the above, we approximate 
t
j

t
i

D  by 

1
1<

( ) ( )
= exp( ( ))

2

t
j l l

t l li l ji

r t r t
D t t  for i < j, 

see Appendix C for more details on the simulation 
procedure. 

The key to evaluate L
B(0) by scheme S1 is to 

estimate the conditional expected value of the 

liability 
( )1

[1] 1[ ( ) |{ , } ( )]
t B ki
t i i
i

D L t A r tE . Here, it 

is approximated by a numerical estimator 
( )[ |{ , } ( )]k

i
A r tE . This estimation is done by 

regressing the subsequent realized cash flows from 

continuation ( 1
[1] 1( )

t Bi
t i i
i

D L t A ) on a set of basis 

functions depending on the relevant state variables  

( ( ) ( )k

i
A t , ( ) ( )k

ir t ). We will introduce the 

estimator [ | ]
t
i

E  later in full details. 

In Step 3 of scheme S1, we can also identify the 

estimated rational lapse times ( )ˆ k

i
 for each (k) 

scenario. At time ti (0  i  n), we separate all paths 

into two different groups, i
L  and its complement 

c

i
L , where ,( ) ( )

[1]:= {( ) : ( ) = ( )}B k k

i i i
k L t A tL  and 

,( ) ( )
[1]:= {( ) : ( ) > ( )}c B k k

i i i
k L t A tL . The stopping time 

( )ˆ k

i
 is the first time tj after  when ti the k-th scenario 

enters into the group 
j
L  ( 0 1i j n ). Once 

( )ˆ k  is recorded for each path, we can estimate our 
Bermudan-style liability by scheme S2 as follows: 

Scheme S2: Rational lapse time estimation 

1. Simulation: Use the same N simulated scenarios 
as in S1.  

2. Initialization: Set the rational lapse time 
( )

1 1
ˆ =k

n n
t , for. 0 < k  N. 

3. Backward induction: For i = n to 0, 
( ) ( )

{( ) } 1 {( ) }
ˆ ˆ=k k

i i k i c
ki

i

t 1 1
L

L
.  

4. Price estimator at 0: 

( ) ( ),( )ˆ ˆ ,( ) ( ) ( )0 0
[2] 0 0 0=1 =0

1
ˆ(0) := [ ( )].

k kt kN kB k kj

jk j
L D A D A

N
 

In addition, we only estimate the conditional 
expected value of continuation at time ti for 

scenarios such that ( ) ( ) > 0k

iA t . As the 

policyholder will not lapse the contract once ( )k
A  

touches 0, the Bermudan-style liability evolves like 
a European one. This technique was first proposed 
by Longstaff and Schwartz [24] to accelerate the 
pricing of American options. 

In Bouchard and Warin (2010) the authors indicated 
that the following relation is true at a formal level:  

[2] [1][ (0)] (0) [ (0)].B B B
L L LE E                    (33) 

If the conditional expectation estimator was 

satisfying 1 ( ) 1[ |{ , } ( )] ( )k

i t
i

Y L Y A r t L FE , 

then we could see the estimated optimal lapse policy 
as a suboptimal stopping time. This would lead to 

[2][ (0)] (0)B B
L LE . On the other hand, if we 

assume that the conditional expectation operators 
are conditionally unbiased, then a backward 
induction argument combined with Jensen’s 

inequality would imply [1](0) [ (0)]B B
L LE . 

Obviously both above assumptions do not hold true 
and this reasoning can only be done at a formal 
level. In the numerical tests, we calculate both 

[1](0)B
L  and [2](0)B

L  to construct confidence 

intervals of the form [2] [1][ (0), (0)]B B
L L  for the true 

value LB(0). 

We now introduce the scheme used to calculate the 
conditional expected value of continuation for 

scenarios such that ( ) ( ) > 0k

i
A t . Here we use the 

adaptive hyper-cubes based local linear regression 
approach proposed in Bouchart and Warin (2010), as 
opposed to the global polynomial regression method 
developed in Longstaff and Schwartz (2004). The 
reason for this is that the latter can lead to some 
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instability in the regression process, especially for high 
dimensional and long maturity problems (see Bouchart 
and Warin, 2010). Moreover, the choice of a good 
global polynomial basis is typically difficult, and does 
not allow to construct efficient payoff-free algorithms. 

For our specific problem, we have two space 
dimensions: the interest rate r and the account value 

A . The idea is to use, at each time step ti, a set of 

functions 
1 2d d  having local hypercube support 

1 2d d
D , where the p-th dimension is cut into Ip 

regions, dp = 1 to Ip, and 
1 2

{ }
d d

D  is a partition of 

( ) ( )
=1, , =1, ,

( ) ( )
=1, , =1, ,

[ ( ), ( )]maxmin

[ ( ), ( )]maxmin

k k
k N k Ni i

k k
k N k Ni i

r t r t

A t A t
. 

On each support Dl, l = (d1  d2) we define a 

linear function l  with 3  degrees of freedom, 

which are represented by a constant, and the 
coefficients for  and r. At each time step, we 
regress the future cash flows of the liability on the 

function l  to estimate the relevant conditional 

expectation. As in Bouchart and Warin (2010), we 
compute the hyper-cubes so that they contain 
approximatively the same number of simulated 
values. This allows to adapt automatically to the 
law of the underlying processes. 

3.2.2. Step-up riders. Clearly, the same idea can 
be used to evaluate step-up riders by simulating 
the process  instead of . The main difference 
compared with roll-up riders is that, at each 
discrete time points ti, the liability should be 
multiplied by the factor max (  – w,1). 

4. Numerical experiments 

We now present the numerical results obtained by 
using the two approaches (PDE and HDR) 
introduced above. Our final results show not only 
the consistency between these two methods, but 
also the efficiency and precision of both methods. 
We shall also see that the implicit “critical 
surfaces” are comparable. 

In the following, the account value is supposed to 
evolve according to (1), for the set of parameters 
listed in Table 2.  

Table 2. Hull-White model inputs 

 r(0)   a 
y  

 
p

 

2  0.02  0.02  0.03  0.01  0  

For simplicity, we also assume that the policyholder 

dies at the 40 th policy year ( 1= = 40
n

t ) after the 

purchase of contract. Although we are focused on 
the liability of a single policy in the following 
numerical tests, the methodology we propose here 
can be easily extended to evaluate a GMWB policy 
pool by adding up policies of different maturities 
with a proper weight associated to given mortality 
rate assumptions. 

4.1. Roll-up rider. For roll-up riders, we use the set of 
parameters given in Table 2 and Table 3. As 

introduced above, the annuity = (0)iA wA  is fixed at 

inception. 

In Figure 1, we provide the numerical results obtained 
by the PDE scheme for different account values and 
different level of interest rate at inception.  

Table 3. Product parameters of roll-up rider 

c w Ai

 
tn+1

 Annuity 
frequency 

% 3.5% 3.5% (0) 40 1/year 

We observe that the value of the liability decreases 
when the initial interest rate rises up. This is 
consistent with our intuitive, since the higher the 
interest rate is, the less the annuities are worth.  

In Figure 2, we compare the different numerical 
methods. For the HDR method, we used 50.000  

scenarios with a time-step of 1 year. As pointed out 
in Bouchart and Warin (2010), the scheme S1 is 
biased from above while S2 is biased from below, 
which allows to construct a confidence interval of 

the form [2] [1][ (0), (0)]B B
L L . We observe that this 

interval is very strait, around 1.5% difference. For a 
liability with such a long maturity, this is a significant 
improvement on the standard Longstaff-Schwartz 
approach. 

In Figure 2, we also compare the value of the 
Bermudan-style liability with the account value at 
inception (red line). To be further protected from 
potential lapse waves or other financial risks, the 
insurer can ask the policyholder to pay an up-front 
charge fee, which equals to the difference between 
the liability and the account value (the asset) at 
inception (the difference between the blue and the 
red curves when  = (0) = 100) to make sure that 
the balance sheet is in equilibrium initially. It is 
worthy to mention that once the account value (red 
line) rises up to the liability value (blue line) at time

 
ti, the rational policyholder should lapse the contract 
immediately.  
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Figure 3 shows the initial Bermudan-style liability 
computed by ADI scheme (implemented in C++) for 
different  and r at inception. 

As roll-up riders, we also observe that the value of the 
liability decreases when the initial interest rate rises up. 
This is consistent with our intuitive, as the higher the 
interest rate is, the smaller the discount factor is and 
the less the annuities worth. In addition, when the 
account value is very small (e.g.,  < 50), the liability 
is not very sensible to the change of underlying. As in 
this case, the probability that the account value 
exceeds its high-water mark is very low and the 
liability value stays almost unchanged. 

Figure 4 compares the numerical results computed 
by two methods: PDE and HDR (S1 and S2). For 
the HDR method used in this example, we also 
simulate 50000  scenarios with the step length of 1 
year. As we mentioned in the previous example, the 
two algorithms S1 and S2 of HDR approach allow 

to construct a confidential interval [2] [1][ (0), (0)]B B
L L  

for the Bermudan-style liability. We observe that this 
interval is also very strait in Figure 4 (about 2%). As 
for the previous case, this is a significant improvement 
on the global polynomials regression approach. 

In addition, the Bermudan-style liability is 
compared with the account value  (red line) at 
inception in Figure 4. To be further protected from 
potential lapse waves or other financial risks, the 
insurer can ask the policyholder to pay an up-front 
charge fee, which equals to the difference between 
the liability and the asset at inception. This up-front 
charge is much higher than that of roll-up riders due 
to the look-back property of the benefit base. It is 
worthy to mention that in this example, we calculate 
the liability of a single rider during 40  years, which 
may be an expensive policy for insurers. In practice, 
the average up-front charge fees based on a policy 
pool could be lower than that we show here. 

Finally, we compare the “critical lapse surface” 
x

*(ti–, r) computed by HDR and PDE methods. 
According to Milevsky and Salisbury (2001) we 

know that at time ti, if *( ) > ( , )
i i t

i
t x t r  and 

( , ,1) <1B

i t
i

t r , then the rational policyholder 

should lapse the policy immediately. Otherwise, he 
should continue to hold the contract. 

Figure 5 shows the estimated critical lapse surface  
x

*(t5–, r) of the step-up GMWB rider evaluated 
above.  

We assume that the initial account value is 100$ and 
all other parameters of the policy are shown in 
Table 4. In Figure 5, we also record all the paths 
(simulated by scheme S1, blue points) 
corresponding to the cases where the policyholder 
should lapse the contract at time

 
t5–. It is not 

difficult to observe that most of these paths are 
located in the “lapse zone” identified by the critical 
lapse surface (red line) found by the PDE method. 
Finally, the properties of the critical surface implied 
by equation (25)-(26) are also verified in Figure 5.  

Conclusion 

In this paper, we formulate the evaluation problem 
of GMWB riders in a stochastic interest rate models, 
from the point of view of an insurer who does want 
to take any hedging risk. Then, two numerical 
methods, PDE and HDR schemes, are implemented 
to compute the super-hedging prices of the liability 
and the critical surface of these long-maturity and 
path-dependent products. In our numerical tests, the 
results obtained by these two methods are consistent 
with each other. Our numerical examples also 
indicate that some up-front charge fee may further 
protect the insurer to potential lapse wave or other 
financial risks. In addition, for step-up riders, we 
develop a “change of numeraire” technique to simplify 
and accelerate the pricing process efficiently. 
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Appendix A. Change of numeraire 

In this section, we prove the scaling property:  

( , , , ) = ( , , , ), ,t r ka ka k t r a a k                                                                                                                       (34) 

where  could be 
E

 defined in (6) or 
B

 in (14).  

Firstly, it is clear that both 
E

 and 
B

 satisfy (34) at the maturity 1nt  and 1nt . Once (34) holds for 1= it t , it 

follows directly from:  

1 1 1 1 1( , , , ) = [ ( , ( ), ( ), ( )) | ( ) = , ( ) = ], [ , )i i i i i it r a a t r t A t A t A t a A t a t t tE , 

that (34) holds for every 
1[ , )

i i
t t t . And by (20), (34) holds true for all t .  

It follows that: 

( , , , ) = ( , , ),t r a a a t r x                                                                                                                                                 (35) 

where = /x a a  and ( , , ) := ( , , ,1)t r x t r x . 

By applying this change of numeraire technique, we can reduce the number of dimensions by one. It is worth to 

mention that our approach is different from the one developed by J. Andreasen (see [1]), as the latter use a  rather than 

a  as the nominal. 
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Appendix B. Consistency of ADI scheme 

For the ease of the reader, we explain here the ADI scheme proposed in [18]1, which is a direct generalization of the 
classic methods introduced in Douglas, Kellogg and Varga (1983). In the following, we consider a typical two 
dimensional parabolic partial differential equation,  

22 2
2

,
, =1 =1

= 0   [0, ),i j i

i j ii j i

u u u
a b cu in T

t x x x
                                                                                    (36) 

together with some initial condition  

2( , ) =   ,
T

u T u in
                                                                                                                                                 

(37) 

where the matrix 
,= { }

i j
A a  is symmetric. In the following, we assume that a comparison result holds for the above 

equation in the class of viscosity solutions with polynomial growth, which is easily checked under standard Lipschitz 

continuity assumptions on the coefficients and Tu , whenever Tu  has polynomial growth. These conditions are 

satisfied in the application of Section 3.1. 

First, we approximate the equation (36) by an equation set in a bounded smooth domain :RB  

22 2

,
, =1 =1

= 0   [0, ) ,R R R
i j i R R

i j ii j i

u u u
a b cu in T B

t x x x
                                                                               (38) 

with initial condition ( , ) =R Tu T u  in
 
BR. We fix one of the two following boundary conditions on [0, ) ,RT B  

0= = ,R
R T

uu
u u or

n n
                                                                                                                                       (39) 

for some smooth function 0u  with first derivatives having polynomial growth, where n  denotes the normal vector at 

the boundary. In Barles, C. Daher and M. Romano (1995), the authors show that in both cases, uR converges to u as 

R  and that this convergence is exponentially fast inside the domain.  

The idea behind ADI technics is to approximate (38) in the form:  

1
1 1 1 1

1 2 0 = 0,
n n

n n n nu u
F u F u F u Fu

t
                                                                                                (40) 

for 1 ,n N  where N denotes the number of grid points in time and t  denotes the time mesh size. The solution of 

the above is a vector , ,( )n

ij n i j
u  in ,NIJ  where I and J denote the number of grid points in the two space directions. In 

the above, u
n
 stands for ( )n IJ

ij ij
u  and the operators 

1F , 
2F , 

0F  and F  denote respectively the discretization 

scheme of the following terms (
12 21=a a  as the matrix A is symmetric):  

2 2 2

1 11 0 12 122
1 1 2 2 1

; ,n nR R R
u u u

Fu a F u a a
x x x x x

 

2

2 22 1 22
2 1 2

; .n nR R R
R

u u u
F u a Fu b b cu

x x x
 

In our case of interest it takes the form: 

1 1 1 2 2
2 1 1 2 0 1 2= (I ) (I ) (I (1 ) (1 ) ) ,n n

u tF tF tF tF tF tF t F F u                                  (41) 

where  is a parameter satisfying 0 1  and, for some space mesh sizes 
1 2, > 0x x  associated to the space grid,  

11 22
1 , 1, , 1, 2 , , 1 , , 12 2

1 2

( ) = ( 2 ), ( ) = ( 2 ),n n n n n n n n

i j i j i j i j i j i j i j i j

a a
Fu u u u F u u u u

x x
                                                         (42) 

                                                      
1 We slightly change the discretization method for the cross derivative term, which is shown explicitly later. 
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12
0 , 1, 1 , 1, 1 1, , 1 1, , 1

1 2

( ) = ( 2 )n n n n n n n n

i j i j i j i j i j i j i j i j

a
F u u u u u u u u

x x
                                                                  (43) 

               12
1, 1 , 1, 1 1, , 1 1, , 1

1 2

( 2 ).n n n n n n n

i j i j i j i j i j i j i j

a
u u u u u u u

x x
 

1 1
, 1, , 1, ,

1 1

( ) = ( ) ( )n n n n n

i j i j i j i j i j

b b
Fu u u u u

x x

2 2
, 1 , , 1 , ,

2 2

( ) ( ) ,n n n n n

i j i j i j i j i j

b b
u u u u cu

x x
                                 (44) 

with 
12 12= max(0, )a a  and 

12 12= max(0, )a a , see [16], [23] and [18]. 

According to Theorem 2.1 of Barles, C. Daher and M. Romano (1995), the solution of (40) converges as , 0t x  

to the unique viscosity solution of (36), uniformly on each compact subset under three assumptions: stability, 
consistency and monotonicity of the scheme. In fact, it is easy to show that the stability and consistency are generally 
kept by ADI schemes (see Barles, C. Daher and M. Romano, 1995), and this will be the case for our cases of interest in 
Section 4.1. Thus we only check the monotonicity property.  

We first check that the operator 1
1(I )tF  is monotone. Denote 

1 , 1, 1,
ˆ( ) =n n n

i j i j i j
Fu u u , then  

1 1
1 12 2

1 1

ˆ(I ) = [(1 2 )I ( ) ]
t t

tF F
x x

 

                        

1
1 1

=0

1 1ˆ ˆ= [I ] = ( ) ,
1 2 1 2 1 2 1 2

k k

k

F F                                                                            (45) 

where 
2
1

=
t

x
. Since 

1
ˆ 2F , we have 

1

2ˆ < 1
1 2 1 2

F . Therefore, 1
1(I )tF  is monotone. We can 

prove similarly that 
1

2(I )tF  is monotone. 

Finally, we need to prove the monotonicity of the operator 2 2
1 2 0 1 2I (1 ) (1 )tF tF tF tF t F F . 

Applying (42)-(43)-(44), we find that a sufficient monotonicity condition is that the following three inequalities hold 
true:  

2
2

11 12 11 222 2 2
1 1 2 1 2

(1 ) 2
t t t

a a a a
x x x x x

                                                                                                        (46) 

2
2

22 12 11 222 2 2
2 1 2 1 2

(1 ) 2
t t t

a a a a
x x x x x

                                                                                                        (47) 

11 22 1 2
12 2 2

1 2 1 2 1 2

1 2 2(1 ) ( ) ( ) .
a a b bt

a t t c
x x x x x x

                                                                               (48) 

In our case of interest, see Section 3.1., if the correlation between the account value and the interest rate (proportional 

with 12a ) is not too strong, we can keep the above conditions satisfied by carefully choosing , t , 
1x  and 

2x .  

Appendix C. Simulation algorithm 

In practice, the naive Euler scheme is not very efficient to simulate the short rate process under Hull-White model. In 
fact, the dynamic of the instantaneous short rate r can be written as: 

0( ) = ( ) ( ), (0) = (0) = ,r t x t t r r  

where ( )t  is a deterministic function calibrated to market data and the Ornstein-Uhlenbeck process x  satisfies:  

( ) = ( ) ( ), (0) = 0.rdx t ax t dt dW t x  

Rather than simulating r  directly, we simulate the process ( )x t  on discrete time points i  as following. Define 

1= i it t t  and 
1 1= ( ) ( ),i i iW W t W t   
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1 1

1 exp( 2 )
( ) = ( )exp( ) .

2
i i r i

a t
x t x t a t W

a
 

Once the process x  is simulated, we can get the process r  by simply adding the deterministic function. The discount 
factor is then approximated according to:  

11 1
( ) ( )

:= exp( ).
2

t t i ii i
t t
i i

r t r t
D D t  

In practice, this algorithm is very efficient. Even for the discrete step length of 1 year, the pricing result is still precise 
(see our numerical tests). 
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