f-DERIVATIONS AND (f, g)-DERIVATIONS OF $M V$-ALGEBRAS

L. KAMALI ARDEKANI AND B. DAVVAZ*

Abstract

In this paper, we extend the notion of derivation of $M V$-algebras and give some illustrative examples. Moreover, as a generalization of derivation of $M V$-algebras we introduce the notion of f-derivations and (f, g)-derivations of $M V$-algebras. Also, we investigate some properties of them.

1. Introduction

In [7], Chang invented the notion of $M V$-algebra in order to provide an algebraic proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus. Recently, the algebraic theory of $M V$-algebras is intensively studied, for example see $[17,18,19]$. The notion of derivation, introduced from the analytic theory, is helpful to the research of structure and property in algebraic systems. Several authors [3, 9, 16] studied derivations in rings and near-rings. Jun and Xin [11] applied the notion of derivation to $B C I$-algebras. In [20], Szász introduced the concept of derivation for lattices and investigated some of its properties. Also, in [21], Xin et al. improved derivation for a lattice and discussed some related properties. They gave some equivalent conditions under which a derivation is isotone for lattices with a greatest modular lattices and distributive lattices, also see [15]. After these studies the f-derivation and symmetric bi derivation of lattices were defined and studied in $[5,6]$. Ozbal and Firat in [14] introduced the notion of symmetric f-bi-derivation of a lattice. They characterized

MSC(2010): Primary: 06D35; Secondary: 06B75
Keywords: $M V$-algebra, Lattice, $B C I \backslash B C K$-algebra, Derivation, (f, g)-derivation.
Received: 11 March 2013, Revised: 28 July 2013
*Corresponding author .
the distributive lattice by symmetric f-bi-derivation. In [11], Jun and Xin introduced the notion of derivation in BCI-algebras, which is defined in a way similar to the notion in ring theory, and investigated some properties related to this concept. In [22], Zhan and Liu introduced the notion of f-derivation in $B C I$-algebras. In [4], Ceran and Aşci defined the symmetric bi- (σ, τ) derivations on prime and semiprime Gamma rings. In [2], Alshehri applied the notion of derivation to $M V$-algebras and investigated some of its properties.

Now, in this paper, we extend the notion of derivation of $M V$-algebras. Moreover, as a generalization of derivation of $M V$-algebras we introduce the notion of f-derivations and (f, g)-derivations of $M V$-algebras.

2. Preliminaries

In this section, we recall the notion of an $M V$-algebra and then we review some definitions and properties which we will need in the next section.

Definition 2.1. An $M V$-algebra is a structure $(M, \oplus, *, 0)$ where M is a non-empty set, \oplus is a binary operation, $*$ is a unary operation, and 0 is a constant such that the following axioms are satisfied for any $a, b \in M$
(MV1) $(M, \oplus, 0)$ is a commutative monoid;
(MV2) $\left(a^{*}\right)^{*}=a$;
(MV3) $0^{*} \oplus a=0^{*}$;
$(M V 4)\left(a^{*} \oplus b\right)^{*} \oplus b=\left(b^{*} \oplus a\right)^{*} \oplus a$.
We define the constant $1=0^{*}$ and the auxiliary operations \odot, \ominus, \vee and \wedge by

$$
a \odot b=\left(a^{*} \oplus b^{*}\right)^{*}, a \ominus b=a \odot b^{*}, a \vee b=a \oplus\left(b \odot a^{*}\right), a \wedge b=a \odot\left(b \oplus a^{*}\right)
$$

Example 2.2. Any boolean algebra is an $M V$-algebra.
Example 2.3. The real unit interval $[0,1]$ with operations \oplus and $*$ defined by

$$
x \oplus y=\min \{1, x+y\} \text { and } x^{*}=1-x
$$

is an MV-algebra
Theorem 2.4. [7] Let $(M, \oplus, *, 0)$ be an $M V$-algebra. The following properties hold for all $x \in M$
(1) $x \oplus 1=1$;
(2) $x \oplus x^{*}=1$;
(3) $x \odot 0=0$ and $x \odot x^{*}=0$.

Moreover, $(M, \odot, 1)$ is a commutative monoid [7].
Theorem 2.5. [7] Let $(M, \oplus, *, 0)$ be an $M V$-algebra. The following properties hold for all $x \in M$
(1) If $x \oplus y=0$, then $x=y=0$;
(2) If $x \odot y=1$, then $x=y=1$;
(3) $x \oplus y=y$ if and only if $x \odot y=x$;
(4) $(x \vee y) \oplus z=(x \oplus z) \vee(y \oplus z)$.

Let $(M, \oplus, *, 0)$ be an $M V$-algebra. The partial ordering \leq on M is defined by

$$
x \leq y \Longleftrightarrow x \wedge y=x, \text { for all } x, y \in M
$$

$x \wedge y=x$ is equivalent to $x \vee y=y$. The structure $(M, \vee, \wedge, 0,1)$ is a bounded distributive lattice. If the order relation \leq, defined over M, is total, then we say that M is linearly ordered.

Theorem 2.6. [7] Let $(M, \oplus, *, 0)$ be an $M V$-algebra. The following properties hold for all $x \in M$
(1) If $x \leq y$, then $x \vee z \leq y \vee z$ and $x \wedge z \leq y \wedge z$;
(2) If $x \leq y$, then $x \oplus z \leq y \oplus z$ and $x \odot z \leq y \odot z$;
(3) $x \leq y$ if and only if $y^{*} \leq x^{*}$.

Theorem 2.7. [7] For all $x, y \in M$, the following conditions are equivalent:
(1) $x \leq y$;
(2) $y \oplus x^{*}=1$;
(3) $x \odot y^{*}=0$.

Theorem 2.8. [7] Let M be a linearly ordered MV-algebra. Then, $x \oplus y=x \oplus z$ and $x \oplus z \neq 1$ implies that $y=z$.

Let M and N be two $M V$-algebras. The function $f: M \longrightarrow N$ is called a homomorphism if it satisfies the following conditions:
(1) $f\left(0_{M}\right)=0_{N}$;
(2) $f\left(x \oplus_{M} y\right)=f(x) \oplus_{N} f(y)$;
(3) $f\left(x^{*}\right)=f(x)^{*}$;
for all $x, y \in M$. If f is a homomorphism, then $f\left(1_{M}\right)=1_{N}$ and $f\left(x \odot_{M} y\right)=$ $f(x) \odot_{N} f(y)$. A homomorphism f is called an isomorphism if it is one to one and onto.

Let M be an $M V$-algebra and I be a non-empty subset of M. Then, we say that I is an ideal if the following conditions are satisfied:
(1) $0 \in I$;
(2) $x, y \in I$ imply $x \oplus y \in I$;
(3) $x \in I$ and $y \leq x$ imply $y \in I$.

Lemma 2.9. Let I be an ideal of $M V$-algebra M and $f: M \longrightarrow M$ be an isomorphism. Then, $f(I)$ is an ideal, too.

Proof. It is obvious.
Let $B(M)=\{x \in M \mid x \oplus x=x\}=\{x \in M \mid x \odot x=x\}$. Then, $(B(M), \oplus, *, 0)$ is both a largest subalgebra of M and a Boolean algebra.

Definition 2.10. A BCI-algebra X is an abstract algebra $(X, *, 0)$ of type $(2,0)$, satisfying the following conditions, for all $x, y, z \in X$,

$$
\begin{aligned}
& (B C I 1)((x * y) *(x * z)) *(z * y)=0 \\
& (B C I 2)(x *(x * y)) * y=0 \\
& (B C I 3) x * x=0 \\
& (B C I 4) x * y=0 \text { and } y * x=0 \text { imply that } x=y .
\end{aligned}
$$

A non-empty subset S of a $B C I$-algebra X is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$. In any $B C I$-algebra X, one can define a partial order " \leq " by putting $x \leq y$ if and only if $x * y=0$. A $B C I$-algebra X satisfying $0 \leq x$, for all $x \in X$, is called a $B C K$-algebra.

Let $(M, \oplus, *, 0)$ be an $M V$-algebra. Then, the structure $(M, \ominus, 0)$ is a bounded $B C I \backslash B C K$-algebra.

3. Derivations of $M V$-Algebras

Definition 3.1. Let $(M, \oplus, *, 0)$ be an $M V$-algebra. Then, the map $D: M \longrightarrow M$ is called
(1) a derivation of type 1 , if $D(x \odot y)=(D(x) \odot y) \oplus(x \odot D(y))$, for all $x, y \in M$ [2];
(2) a derivation of type 2 , if $D(x \wedge y)=(D(x) \wedge y) \vee(x \wedge D(y))$, for all $x, y \in M$;
(3) a derivation of type 3 , if $D(x \ominus y)=(D(x) \ominus y) \wedge(x \ominus D(y))$, for all $x, y \in M$.

If $M V$-algebra M is a Boolean algebra, then for all $x, y \in M, x \oplus y=x \vee y$ and $x \odot y=x \wedge y$. So, in this case, every derivation of type 1 on M is coincide with derivation of type 2 on M.

Let $(M, \oplus, *, 0)$ be an $M V$-algebra. Then, the definition of derivation of type 2 on $(M, \oplus, *, 0)$ is coincide with the definition of derivation on lattice $(M, \wedge, \vee, 0,1)$. Also, the definition of derivation of type 3 on $(M, \oplus, *, 0)$ is coincide with the definition of derivation on bounded $B C I \backslash B C K$-algebra $(M, \ominus, 0)$.

Let M be an $M V$-algebra and $D: M \longrightarrow M$ be a derivation of type 1 (2 and 3, respectively). Then, for convenience, we denote D by D^{1} (D^{2} and D^{3}, respectively).

Theorem 3.2. Let $(M, \oplus, *, 0)$ be an $M V$-algebra and D^{i} be a derivation of type i on $M, 1 \leq i \leq 3$. Then, for all $1 \leq i \leq 3$, we have
(1) $D^{i}(0)=0$;
(2) $D^{i}(x) \leq x$, for all $x \in M$.

Proof. (1) It is proved in [2] that $D^{1}(0)=0$. We have $D^{2}(0)=D^{2}(0 \wedge 0)=\left(D^{2}(0) \wedge\right.$ $0) \vee\left(0 \wedge D^{2}(0)\right)=0$ and $D^{3}(0)=D^{3}(x \ominus 1)=\left(D^{3}(x) \ominus 1\right) \wedge\left(x \ominus D^{3}(1)\right)=0$, for all $x \in M$.
(2) It is proved in [2] that $D^{1}(x) \leq x$. We have $D^{2}(x)=D^{2}(x \wedge x)=\left(D^{2}(x) \wedge x\right) \vee$ $\left(x \wedge D^{2}(x)\right)=D^{2}(x) \wedge x$. So, $D^{2}(x) \leq x$.

Also, we have $D^{3}(x)=D^{3}(x \ominus 0)=\left(D^{3}(x) \ominus 0\right) \wedge\left(x \ominus D^{3}(0)\right)=D^{3}(x) \wedge x$. So, $D^{3}(x) \leq x$.

Let M be an $M V$-algebra. The function $D: M \longrightarrow M$, defined by $D(x)=0$, for all $x \in M$, is a derivation of type 1,2 and 3 on M. We denote it by $D=0$.

Also, the function $D: M \longrightarrow M$, defined by $D(x)=x$, for all $x \in M$, is a derivation of type 2 and 3 on M. We denote it by $D=I$.

Example 3.3. Let $M=\{0,1\}$. Consider the following tables:

$$
\left.\begin{array}{c|ll}
\oplus & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 1
\end{array} \quad * \quad * \right\rvert\, \begin{array}{lll}
\end{array} \quad-\quad 19
$$

Then, $(M, \oplus, *, 0)$ is an $M V$-algebra. It is only $M V$-algebra of order 2 . The functions $D_{1}=0$ and $D_{2}=I$ are only derivations of type 1 . Also, they are only derivations of type 2 and 3 .

Example 3.4. Let $M=\left\{0, x_{1}, 1\right\}$. Consider the following tables:

\oplus	0	x_{1}	1		
0	0	x_{1}	1		
x_{1}	x_{1}	1	1		
1	1	1	1	\quad	$*$
:---	\quad				
:---	:---	:---	:---		
1	\quad		x_{1}	1	
:---	:---	:---	:---		

Then, $(M, \oplus, *, 0)$ is an $M V$-algebra. It is only $M V$-algebra of order 3. By calculation, we obtain Figure 1.

Derivations of type 1

Figure 1. Derivations of type 1, 2 and 3 for Example 3.4.

Thus, we have only two derivations of type 1 on M. They are as follows:

$$
D_{1}^{1}=0 \text { and } D_{2}^{1}(x)= \begin{cases}0 & \text { if } x=0,1 \\ x_{1} & \text { if } x=x_{1} .\end{cases}
$$

We have only four derivations of type 2 on M. They are as follows:

$$
\begin{gathered}
D_{1}^{2}=0, D_{2}^{2}=I, D_{3}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0,1 \\
x_{1} & \text { if } x=x_{1}
\end{array}\right. \text { and } \\
D_{4}^{2}(x)= \begin{cases}0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1}, 1 .\end{cases}
\end{gathered}
$$

We have only three derivations of type 3 on M. They are as

$$
D_{1}^{3}=0, \quad D_{2}^{3}=I \quad \text { and } \quad D_{3}^{3}(x)= \begin{cases}0 & \text { if } x=0, x_{1} \\ x_{1} & \text { if } x=1\end{cases}
$$

It is clear that D_{2}^{1} is not a derivation of type 3 , because $x_{1}=D_{2}^{1}\left(x_{1}\right)=D_{2}^{1}\left(1 \ominus x_{1}\right) \neq$ $\left(D_{2}^{1}(1) \ominus x_{1}\right) \wedge\left(1 \ominus D_{2}^{1}\left(x_{1}\right)\right)=0$. Also, D_{3}^{3} is not a derivation of type 1 , because $x_{1}=D_{3}^{3}(1 \odot 1) \neq\left(D_{3}^{3}(1) \odot 1\right) \oplus\left(1 \odot D_{3}^{3}(1)\right)=1$. So, derivation of type 1 and 3 are independent.

It is clear that D_{3}^{2} is not a derivation of type 3 , because $x_{1}=D_{3}^{2}\left(1 \ominus x_{1}\right) \neq\left(D_{3}^{2}(1) \ominus\right.$ $\left.x_{1}\right) \wedge\left(1 \ominus D_{3}^{2}\left(x_{1}\right)\right)=0$. Also, D_{3}^{3} is not a derivation of type 2 , because $0=D_{3}^{3}\left(x_{1} \wedge 1\right) \neq$ $\left(D_{3}^{3}\left(x_{1}\right) \wedge 1\right) \vee\left(x_{1} \wedge D_{3}^{3}(1)\right)=x_{1}$. So, derivation of type 2 and 3 are independent.

We have only two $M V$-algebras of order 4. They are considered in the next two examples.

Example 3.5. Let $M=\left\{0, x_{1}, x_{2}, 1\right\}$. Consider the following tables:

$\left.$| \oplus | 0 | x_{1} | x_{2} | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | x_{1} | x_{2} | 1 |
| x_{1} | x_{1} | x_{2} | 1 | 1 |
| x_{2} | x_{2} | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |$\quad * \quad * \right\rvert\,$| 0 | x_{1} | x_{2} | 1 |
| :--- | :--- | :--- | :--- | :--- |

Then, $(M, \oplus, *, 0)$ is an $M V$-algebra. By calculation, we get Figure 2.

Derivations of type 1
Derivations of type 2
Derivations of type 3

Figure 2. Derivations of type 1, 2 and 3 for Example 3.5.

Thus, we have only two derivations of type 1 on M. They are as follows:

$$
D_{1}^{1}=0 \text { and } D_{2}^{1}(x)= \begin{cases}0 & \text { if } x=0, x_{1}, 1 \\ x_{1} & \text { if } x=x_{2} .\end{cases}
$$

We have only eight derivations of type 2 on M. They are as follows:

$$
\begin{aligned}
& D_{1}^{2}=0, \quad D_{2}^{2}=I, \\
& D_{3}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, x_{2}, 1 \\
x_{1} & \text { if } x=x_{1},
\end{array} \quad D_{4}^{2}(x)= \begin{cases}0 & \text { if } x=0,1 \\
x_{1} & \text { if } x=x_{1}, x_{2},\end{cases} \right. \\
& D_{5}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1}, x_{2}, 1,
\end{array} \quad D_{6}^{2}(x)= \begin{cases}0 & \text { if } x=0,1 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2},\end{cases} \right. \\
& D_{7}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1}, 1 \\
x_{2} & \text { if } x=x_{2},
\end{array} \quad D_{8}^{2}(x)= \begin{cases}0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2}, 1 .\end{cases} \right.
\end{aligned}
$$

We have only four derivations of type 3 on M. They are as follows:

$$
\begin{gathered}
D_{1}^{3}=0, \quad D_{2}^{3}=I, \quad D_{3}^{3}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, x_{1}, x_{2} \\
x_{1} & \text { if } x=1
\end{array} \quad\right. \text { and } \\
D_{4}^{3}(x)= \begin{cases}0 & \text { if } x=0, x_{1} \\
x_{1} & \text { if } x=x_{2} \\
x_{2} & \text { if } x=1\end{cases}
\end{gathered}
$$

It is clear that D_{2}^{1} is not a derivation of type 2 , because $0=D_{2}^{1}\left(x_{1}\right)=D_{2}^{1}\left(x_{1} \wedge x_{2}\right) \neq$ $\left(D_{2}^{1}\left(x_{1}\right) \wedge x_{2}\right) \vee\left(x_{1} \wedge D_{2}^{1}\left(x_{2}\right)\right)=x_{1}$. Also, D_{5}^{2} is not a derivation of type 1 , because $x_{1}=D_{5}^{2}(1)=D_{5}^{2}(1 \odot 1) \neq\left(D_{5}^{2}(1) \odot 1\right) \oplus\left(1 \odot D_{5}^{2}(1)\right)=x_{1} \oplus x_{1}=x_{2}$. So, derivation of type 1 and 2 are independent.

Example 3.6. Let $M=\left\{0, x_{1}, x_{2}, 1\right\}$. Consider the following tables:

\oplus	0	x_{1}	x_{2}	1
0	0	x_{1}	x_{2}	1
x_{1}	x_{1}	x_{1}	1	1
x_{2}	x_{2}	1	x_{2}	1
1	1	1	1	1

$*$	0	x_{1}	x_{2}	1
	1	x_{2}	x_{1}	0

Then, $(M, \oplus, *, 0)$ is a Boolean $M V$-algebra. So, derivation of type 1 is coincide with derivation of type 2. By calculation, we get Figure 3.

Derivations of type 1 and 2
$D(0) \quad D\left(x_{1}\right) \quad D\left(x_{2}\right) \quad D(1)$

Derivations of type 3

Figure 3. Derivations of type 1, 2 and 3 for Example 3.6.

Hence, we have only nine derivations of type 1 on M. They are as follows:

$$
\begin{array}{ll}
D_{1}^{1}=0, D_{2}^{1}=I, & D_{3}^{1}(x)= \begin{cases}0 & \text { if } x=0, x_{1}, 1 \\
x_{2} & \text { if } x=x_{2},\end{cases} \\
D_{4}^{1}(x)= \begin{cases}0 & \text { if } x=0, x_{1} \\
x_{2} & \text { if } x=x_{2}, 1,\end{cases} & D_{5}^{1}(x)= \begin{cases}0 & \text { if } x=0, x_{2}, 1 \\
x_{1} & \text { if } x=x_{1},\end{cases} \\
D_{6}^{1}(x)= \begin{cases}0 & \text { if } x=0, x_{2} \\
x_{1} & \text { if } x=x_{1}, 1,\end{cases} & D_{7}^{1}(x)= \begin{cases}0 & \text { if } x=0,1 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2}\end{cases} \\
D_{8}^{1}(x)= \begin{cases}0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1}, 1 \\
x_{2} & \text { if } x=x_{2},\end{cases} & D_{9}^{1}(x)= \begin{cases}0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2}, 1 .\end{cases}
\end{array}
$$

We have only four derivations of type 3 on M. They are as $D_{1}^{3}=0, D_{2}^{3}=I$, $D_{3}^{3}(x)=\left\{\begin{array}{ll}0 & \text { if } x=0, x_{1} \\ x_{2} & \text { if } x=x_{2}, 1\end{array}\right.$ and $D_{4}^{3}(x)=\left\{\begin{array}{ll}0 & \text { if } x=0, x_{2} \\ x_{1} & \text { if } x=x_{1}, 1\end{array}\right.$.

We have one $M V$-algebra of order 5 . It is considered in the next example.

Example 3.7. Let $M=\left\{0, x_{1}, x_{2}, x_{3}, 1\right\}$. Consider the following tables:

\oplus	0	x_{1}	x_{2}	x_{3}	1						
0	0	x_{1}	x_{2}	x_{3}	1						
x_{1}	x_{1}	x_{2}	x_{3}	1	1	*	0	x_{1}	x_{2}	x_{3}	1
x_{2}	x_{2}	x_{3}	1	1	1					x_{1}	0
x_{3}	x_{3}	1	1	1	1						
1	1	1	1	1	1						

Then, $(M, \oplus, *, 0)$ is an $M V$-algebra. By calculation, we get Figure 4.
$D(0) \quad D\left(x_{1}\right) D\left(x_{2}\right) D\left(x_{3}\right) \quad D(1)$

Derivations of type 1

Derivations of type 3
$D(0) \quad D\left(x_{1}\right) \quad D\left(x_{2}\right) D\left(x_{3}\right) \quad D(1)$

Figure 4. Derivations of type 1, 2 and 3 for Example 3.7.

Thus, we have only three derivations of type 1 on M. They are as follows:

$$
D_{1}^{1}=0, \quad D_{2}^{1}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, x_{1}, x_{2}, 1 \\
x_{1} & \text { if } x=x_{3}
\end{array} \quad\right. \text { and }
$$

$$
D_{3}^{1}(x)= \begin{cases}0 & \text { if } x=0,1 \\ x_{1} & \text { if } x=x_{1} \\ x_{2} & \text { if } x=x_{2}, x_{3}\end{cases}
$$

We have only sixteen derivations of type 2 on M. They are as follows:

$$
\begin{aligned}
& D_{1}^{2}=0, \quad D_{2}^{2}=I, \\
& D_{3}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, x_{2}, x_{3}, 1 \\
x_{1} & \text { if } x=x_{1},
\end{array} \quad D_{4}^{2}(x)= \begin{cases}0 & \text { if } x=0, x_{3}, 1 \\
x_{1} & \text { if } x=x_{1}, x_{2},\end{cases} \right. \\
& D_{5}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0,1 \\
x_{1} & \text { if } x=x_{1}, x_{2}, x_{3},
\end{array} \quad D_{6}^{2}(x)= \begin{cases}0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1}, x_{2}, x_{3}, 1,\end{cases} \right. \\
& D_{7}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, x_{3}, 1 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2},
\end{array} \quad D_{8}^{2}(x)= \begin{cases}0 & \text { if } x=0,1 \\
x_{1} & \text { if } x=x_{1}, x_{3} \\
x_{2} & \text { if } x=x_{2},\end{cases} \right. \\
& D_{9}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1}, x_{3}, 1 \\
x_{2} & \text { if } x=x_{2},
\end{array} \quad D_{10}^{2}(x)= \begin{cases}0 & \text { if } x=0,1 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2}, x_{3},\end{cases} \right. \\
& D_{11}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1}, 1 \\
x_{2} & \text { if } x=x_{2}, x_{3},
\end{array} \quad D_{12}^{2}(x)= \begin{cases}0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2}, x_{3}, 1,\end{cases} \right. \\
& D_{13}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0,1 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2} \\
x_{3} & \text { if } x=x_{3},
\end{array} \quad D_{14}^{2}(x)= \begin{cases}0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1}, 1 \\
x_{2} & \text { if } x=x_{2} \\
x_{3} & \text { if } x=x_{3},\end{cases} \right. \\
& D_{15}^{2}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2}, 1 \\
x_{3} & \text { if } x=x_{3},
\end{array} \quad D_{16}^{2}(x)= \begin{cases}0 & \text { if } x=0 \\
x_{1} & \text { if } x=x_{1} \\
x_{2} & \text { if } x=x_{2} \\
x_{3} & \text { if } x=x_{3}, 1 .\end{cases} \right.
\end{aligned}
$$

We have only five derivations of type 3 on M. They are as follows:

$$
\begin{aligned}
& D_{1}^{3}=0, \quad D_{2}^{3}=I, \quad D_{3}^{3}(x)= \begin{cases}0 & \text { if } x=0, x_{1}, x_{2}, x_{3} \\
x_{1} & \text { if } x=1,\end{cases} \\
& D_{4}^{3}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, x_{1}, x_{2} \\
x_{1} & \text { if } x=x_{3} \\
x_{2} & \text { if } x=1
\end{array} \text { and } D_{5}^{3}(x)= \begin{cases}0 & \text { if } x=0, x_{1} \\
x_{1} & \text { if } x=x_{2} \\
x_{2} & \text { if } x=x_{3} \\
x_{3} & \text { if } x=1\end{cases} \right.
\end{aligned}
$$

Let M_{1} and M_{2} be two $M V$-algebras. Then $M_{1} \times M_{2}$ is an $M V$-algebra. Also, let D_{1} and D_{2} be derivations of type 1 (2 and 3, respectively) on M_{1} and M_{2}, respectively. Then, $D=D_{1} \times D_{2}: M_{1} \times M_{2} \longrightarrow M_{1} \times M_{2}$ defined by $D((x, y))=\left(D_{1}(x), D_{2}(y)\right)$, for all $x \in M_{1}, y \in M_{2}$, is a derivation of type 1 (2 and 3 , respectively). But, all of derivations of type 1 (2 and 3, respectively) on $M_{1} \times M_{2}$ are not as form $D_{1} \times D_{2}$, where D_{1} and D_{2} are derivations of type 1 (2 and 3, respectively) on M_{1} and M_{2}, respectively. The following example shows this matter.

Example 3.8. Consider the $M V$-algebra M, defined in Example 3.6. Then $M \cong S_{1} \times$ S_{1}, where S_{1} is the $M V$-algebra defined in Example 3.3. By Example 3.6, $M \cong S_{1} \times S_{1}$ has nine derivations of type 1 . But, only four derivations of them are as form $D_{1} \times D_{2}$, where D_{1} and D_{2} are derivations of type 1 on S_{1}, since S_{1} has two derivations of type 1. They are $D_{1}^{1}, D_{2}^{1}, D_{4}^{1}$ and D_{6}^{1}.

Definition 3.9. Let M be an $M V$-algebra. Then, a function $f: M \longrightarrow M$ is called additive, if $f(x \oplus y)=f(x) \oplus f(y)$, for all $x, y \in M$.

Example 3.10. The functions $D=0$ and $D=I$ are always additive. In Examples $3.3,3.4,3.5$ and 3.7, among derivations of type $i, 1 \leq i \leq 3$, only $D=0$ and $D=I$ are additive. In Example 3.6, among derivations of type $i, 1 \leq i \leq 3$, only $D_{1}^{1}=D_{1}^{3}=0$, $D_{2}^{1}=D_{2}^{3}=I, D_{4}^{1}=D_{3}^{3}$ and $D_{6}^{1}=D_{4}^{3}$ are additive.

Definition 3.11. Let M be an $M V$-algebra. Then, a function $f: M \longrightarrow M$ is called isoton, if $x \leq y$ implies that $f(x) \leq f(y)$, for all $x, y \in M$.

Example 3.12. The functions $D=0$ and $D=I$ are always isoton. In Example 3.4, among derivations of type $i, 1 \leq i \leq 3$, only $D_{1}^{1}=D_{1}^{2}=D_{1}^{3}=0, D_{2}^{2}=D_{2}^{3}=I$, D_{4}^{2} and D_{3}^{3} are isoton. In Example 3.5, among derivations of type $i, 1 \leq i \leq 3$, only
$D_{1}^{1}=D_{1}^{2}=D_{1}^{3}=0, D_{2}^{2}=D_{2}^{3}=I, D_{5}^{2}, D_{8}^{2}, D_{3}^{3}$ and D_{4}^{3} are isoton. In Example 3.6, among derivations of type $i, 1 \leq i \leq 3$, only $D_{1}^{1}=D_{1}^{3}=0, D_{2}^{1}=D_{2}^{3}=I, D_{4}^{1}=D_{3}^{3}$ and $D_{6}^{1}=D_{4}^{3}$ are isoton. In Example 3.7, among derivations of type $i, 1 \leq i \leq 3$, only $D_{1}^{1}=D_{1}^{2}=D_{1}^{3}=0, D_{2}^{2}=D_{2}^{3}=I, D_{6}^{2}, D_{12}^{2}, D_{16}^{2}, D_{3}^{3}, D_{4}^{3}$ and D_{5}^{3} are isoton.

Example 3.13. Let $S_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}, 1\right\}, n \in N$. Then, $\left(S_{n}, \oplus, *, 0,1\right)$ is an $M V$-algebra with $n+1$ elements, where operations \oplus and $*$ are defined as Example 2.3. Note that auxiliary operations \odot, \ominus, \vee and \wedge are as follows:

$$
\begin{aligned}
& a \odot b=\max \{0, a+b-1\}, \\
& a \ominus b=\max \{0, a-b\}, \\
& a \vee b=\max \{a, b\} \\
& a \wedge b=\min \{a, b\}
\end{aligned}
$$

and the relation \leq is simply the natural ordering of real numbers. The $M V$-algebras defined in Examples 3.3, 3.4, 3.5 and 3.7 are S_{1}, S_{2}, S_{3} and S_{4}, respectively. Let $n>1$ be a fix positive integer. Define $D^{1}: S_{n} \longrightarrow S_{n}$ by

$$
D^{1}(x)= \begin{cases}\frac{1}{n} & \text { if } x=\frac{n-1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

It is easily to check that D^{1} is a derivation of type $1 . D^{1}$ is not additive because $D^{1}\left(1 \oplus \frac{n-1}{n}\right)=D^{1}(1)=0$ but $D^{1}(1) \oplus D^{1}\left(\frac{n-1}{n}\right)=0 \oplus \frac{1}{n}=\frac{1}{n}$. Also, D^{1} is not isoton, because $\frac{n-1}{n} \leqslant 1$ but $\frac{1}{n}=D^{1}\left(\frac{n-1}{n}\right) \not \leq D^{1}(1)=0$.

Define $D^{2}: S_{n} \longrightarrow S_{n}$ by

$$
D^{2}(x)= \begin{cases}0 & \text { if } x=0,1 \\ \frac{1}{n} & \text { otherwise }\end{cases}
$$

It is easily to check that D^{2} is a derivation of type 2. D^{2} is not additive because $D^{2}\left(1 \oplus \frac{1}{n}\right)=D^{2}(1)=0$ but $D^{2}(1) \oplus D^{2}\left(\frac{1}{n}\right)=0 \oplus \frac{1}{n}=\frac{1}{n}$. Also, D^{2} is not isoton, because $\frac{1}{n} \leqslant 1$ but $\frac{1}{n}=D^{2}\left(\frac{1}{n}\right) \not \leq D^{2}(1)=0$.

Define $D^{3}: S_{n} \longrightarrow S_{n}$ by

$$
D^{3}(x)= \begin{cases}\frac{1}{n} & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

It is easily to check that D^{3} is a derivation of type $3 . D^{3}$ is not additive because $D^{3}(1 \oplus 1)=D^{3}(1)=\frac{1}{n}$ but $D^{3}(1) \oplus D^{3}(1)=\frac{2}{n}$. Note that D^{3} is isoton.

4. f-Derivations and (f, g)-Derivations of $M V$-Algebras

In this section, we introduce the notion of f-derivations and (f, g)-derivations of type $i, 1 \leq i \leq 3$, of $M V$-algebras.

Definition 4.1. Let M be an $M V$-algebra and $f, g: M \longrightarrow M$ be homomorphisms. A function $D: M \longrightarrow M$ is called
(1) an (f, g)-derivation of type 1, if $D(x \odot y)=(D(x) \odot f(y)) \oplus(g(x) \odot D(y))$, for all $x, y \in M$;
(2) an (f, g)-derivation of type 2, if $D(x \wedge y)=(D(x) \wedge f(y)) \vee(g(x) \wedge D(y))$, for all $x, y \in M$;
(3) an (f, g)-derivation of type 3, if $D(x \ominus y)=(D(x) \ominus f(y)) \wedge(g(x) \ominus D(y))$, for all $x, y \in M$.

In the above definition, if the function g is equal to the function f, then an (f, g) derivation of type 1 (2 and 3 , respectively) is called an f-derivation of type 1 (2 and 3 , respectively). It is obvious that if we choose the functions f and g as the identity functions, then the (f, g)-derivation of type 1 (2 and 3 , respectively) is ordinary derivation of type 1 (2 and 3, respectively).

Theorem 4.2. Let M be an $M V$-algebra and f, g be homomorphisms on M. Also, let D be an (f, g)-derivation of type 1 and 3 on M. Then, for all $x, y \in M$

$$
((D(x) \ominus f(y)) \wedge(g(x) \ominus D(y))) \leq\left(\left(D(x) \odot f\left(y^{*}\right)\right) \oplus\left(g(x) \odot D\left(y^{*}\right)\right)\right)
$$

Proof. We have

$$
\begin{aligned}
& ((D(x) \ominus f(y)) \wedge(g(x) \ominus D(y)))^{*} \oplus\left(\left(D(x) \odot f(y)^{*}\right) \oplus\left(g(x) \odot D\left(y^{*}\right)\right)\right) \\
& =\left((D(x) \ominus f(y))^{*} \vee(g(x) \ominus D(y))^{*}\right) \\
& \quad \oplus\left((D(x) \ominus f(y)) \oplus\left(g(x) \ominus D\left(y^{*}\right)^{*}\right)\right) \\
& =\left((D(x) \ominus f(y))^{*} \oplus(D(x) \ominus f(y)) \oplus\left(g(x) \ominus D\left(y^{*}\right)^{*}\right)\right) \\
& \quad \vee\left((g(x) \ominus D(y))^{*} \oplus(D(x) \ominus f(y)) \oplus\left(g(x) \ominus D\left(y^{*}\right)^{*}\right)\right)=1 .
\end{aligned}
$$

So, the statement is valid.
Let M be an $M V$-algebra and $f, g: M \longrightarrow M$ be homomorphisms. A function $D: M \longrightarrow M$ is an (f, g)-derivation of type 1 (2, respectively) if and only if it is an (g, f)-derivation of type 1 (2 , respectively).

Example 4.3. Let M be an $M V$-algebra and $f, g: M \longrightarrow M$ be homomorphisms on M. The function $D: M \longrightarrow M$ defined by $D=0$ is an (f, g)-derivation of type 1,2 and 3.

Example 4.4. For every $M V$-algebra, if we set $D=f=I$ and $g=0$, then f, g are homomorphisms and D is (f, g)-derivation of type 1 and 2 .

Example 4.5. Let M be as in Example 3.6. Then, every (f, g)-derivation (f-derivation, respectively) of type 1 on M is coincide with (f, g)-derivation (f-derivation, respectively) of type 2 on M. Define maps $f, g: M \longrightarrow M$ by

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
x_{2} & \text { if } x=x_{1} \\
x_{1} & \text { if } x=x_{2} \\
1 & \text { if } x=1
\end{array} \text { and } g(x)= \begin{cases}0 & \text { if } x=0, x_{1} \\
1 & \text { if } x=x_{2}, 1\end{cases}\right.
$$

Then, f and g are homomorphisms. Now, we define $D_{1}, D_{2}: M \longrightarrow M$ by

$$
D_{1}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, x_{1}, 1 \\
x_{1} & \text { if } x=x_{2}
\end{array} \quad \text { and } D_{2}(x)= \begin{cases}0 & \text { if } x=0, x_{1} \\
x_{1} & \text { if } x=x_{2}, 1\end{cases}\right.
$$

It is easily to check that D_{1} is an f-derivation and an (f, g)-derivation of type 1 of M. But, it is not an f-derivation of type 3, because $x_{1}=D_{1}\left(1 \ominus x_{1}\right) \neq\left(D_{1}(1) \ominus f\left(x_{1}\right)\right) \wedge$ $\left(g(1) \ominus D_{1}\left(x_{1}\right)\right)=0$. Similarly, one can show that D_{1} is not an (f, g)-derivation of type 3. Note that D_{1} is not additive. Also, it is not isotone. D_{2} is additive, isotone and an f-derivation of type 1 and 3 . Also, it is an (f, g)-derivation of type 1 and 3 .

Example 4.6. Let $M=\left\{0, x_{1}, x_{2}, x_{3}, x_{4}, 1\right\}$. Consider the following tables:

$$
\left.\begin{array}{c|cccccc}
\oplus & 0 & x_{1} & x_{2} & x_{3} & x_{4} & 1 \\
\hline 0 & 0 & x_{1} & x_{2} & x_{3} & x_{4} & 1 \\
x_{1} & x_{1} & x_{3} & x_{4} & x_{3} & 1 & 1 \\
x_{2} & x_{2} & x_{4} & x_{2} & 1 & x_{4} & 1 \\
x_{3} & x_{3} & x_{3} & 1 & x_{3} & 1 & 1 \\
x_{4} & x_{4} & 1 & x_{4} & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \quad * \right\rvert\, \begin{array}{cccccccc}
0 & x_{1} & x_{2} & x_{3} & x_{4} & 1 \\
\hline & & & & & & & \\
x_{4} & x_{3} & x_{2} & x_{1} & 0 \\
0 & & & & & & & \\
\end{array}
$$

Then, $(M, \oplus, *, 0)$ is an $M V$-algebra. Define maps $f, g: M \longrightarrow M$ by

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0, x_{1}, x_{3} \\
1 & \text { if } x=x_{2}, x_{4}, 1
\end{array} \text { and } g=I .\right.
$$

Then, f, g are homomorphisms on M. Now, we define

$$
\begin{aligned}
& D_{1}(x)= \begin{cases}0 & \text { if } x=0, x_{1}, x_{3}, x_{4}, 1 \\
x_{2} & \text { if } x=x_{2},\end{cases} \\
& D_{2}(x)= \begin{cases}0 & \text { if } x=0, x_{1}, x_{3}, 1 \\
x_{2} & \text { if } x=x_{2}, x_{4}\end{cases} \\
& D_{3}(x)= \begin{cases}0 & \text { if } x=0, x_{1}, x_{3} \\
x_{2} & \text { if } x=x_{2}, x_{4}, 1 .\end{cases}
\end{aligned}
$$

D_{1} is an f-derivation and an (f, g)-derivation of type 2. But, it is not an f-derivation of type 1, since $x_{2}=D_{1}\left(x_{2}\right)=D_{1}\left(x_{4} \odot x_{4}\right) \neq\left(D_{1}\left(x_{4}\right) \odot f\left(x_{4}\right)\right) \oplus\left(f\left(x_{4}\right) \odot D_{1}\left(x_{4}\right)\right)=0$. Also, it is not an (f, g)-derivation of type 1 , since $x_{2}=D_{1}\left(x_{2}\right)=D_{1}\left(x_{4} \odot x_{4}\right) \neq$ $\left(D_{1}\left(x_{4}\right) \odot f\left(x_{4}\right)\right) \oplus\left(g\left(x_{4}\right) \odot D_{1}\left(x_{4}\right)\right)=0$. D_{1} is not an f-derivation of type 3 , since $x_{2}=$ $D_{1}\left(1 \ominus x_{3}\right) \neq\left(D_{1}(1) \ominus f\left(x_{3}\right)\right) \wedge\left(f(1) \ominus D_{1}\left(x_{3}\right)\right)=0$. Also, D_{1} is not an (f, g)-derivation of type 3 , since $x_{2}=D_{1}\left(x_{2}\right)=D_{1}\left(x_{4} \ominus x_{1}\right) \neq\left(D_{1}\left(x_{4}\right) \ominus f\left(x_{1}\right)\right) \wedge\left(g\left(x_{4}\right) \ominus D_{1}\left(x_{1}\right)\right)=0$.
D_{2} is an f-derivation of type 1 and 2. Also, it is an (f, g)-derivation of type 1 and 2. But, it is not f-derivation of type 3, since $x_{2}=D_{2}\left(1 \ominus x_{1}\right) \neq\left(D_{2}(1) \ominus\right.$ $\left.f\left(x_{1}\right)\right) \wedge\left(f(1) \ominus D_{2}\left(x_{1}\right)\right)=0$. Also, D_{2} is not an (f, g)-derivation of type 3 , since $x_{2}=D_{2}\left(1 \ominus x_{1}\right) \neq\left(D_{2}(1) \ominus f\left(x_{1}\right)\right) \wedge\left(g(1) \ominus D_{2}\left(x_{1}\right)\right)=0$.
D_{3} is an f-derivation and an (f, g)-derivation of type 1,2 and 3 .
The properties of f-derivation and (f, g)-derivation of type 2 (3 , respectively) on $M V$-algebras is similar to the properties of f-derivation and (f, g)-derivation on lattices ($B C I \backslash B C K$-algebras, respectively). For more details, we refer reader to $[1,5]$ ($[10,12$, 13,22], respectively). So, we study the properties of f-derivation and (f, g)-derivation of type 1 on $M V$-algebras. We prove next theorems only for (f, g)-derivations of type 1. Putting the function g equal to the function f, then the results are satisfied for f-derivations of type 1 .

In sequence, by an (f, g)-derivation we mean an (f, g)-derivation of type 1 .
Theorem 4.7. Let M be an $M V$-algebra and D be an (f, g)-derivation on M. Then, the following conditions hold:
(1) $D(0)=0$;
(2) $D(x) \odot f\left(x^{*}\right)=f(x) \odot D\left(x^{*}\right)=D(x) \odot g\left(x^{*}\right)=g(x) \odot D\left(x^{*}\right)=0$;
(3) $D(x) \leq f(x), g(x)$;
(4) $D(x)=D(x) \oplus(g(x) \odot D(1))$;
for all $x, y \in M$.
Proof. (1) If $x \in M$, then

$$
D(0)=D(x \odot 0)=(D(x) \odot f(0)) \oplus(g(x) \odot D(0))=g(x) \odot D(0)
$$

Putting $x=0$, we obtain $D(0)=g(0) \odot D(0)=0 \odot D(0)=0$.
(2) If $x \in M$, then by Theorem 4.6 (3), we obtain $0=D(0)=D\left(x \odot x^{*}\right)=$ $\left(D(x) \odot f\left(x^{*}\right)\right) \oplus\left(g(x) \odot D\left(x^{*}\right)\right)$. By Theorem $2.5(1)$, we obtain $D(x) \odot f\left(x^{*}\right)=0$ and $g(x) \odot D\left(x^{*}\right)=0$. Similarly, we can prove $f(x) \odot D\left(x^{*}\right)=0$ and $D(x) \odot g\left(x^{*}\right)=0$.
(3) Since f and g are homomorphisms, by using (2), we have $D(x) \odot f(x)^{*}=D(x) \odot$ $g(x)^{*}=0$. Now, Theorem 2.6 implies that $D(x) \leq f(x), g(x)$.
(4) $D(x)=D(x \odot 1)=(D(x) \odot f(1)) \oplus(f(x) \odot D(1))=D(x) \oplus(f(x) \odot D(1))$.

Lemma 4.8. Let M be an $M V$-algebra, D be an (f, g)-derivation on M such that f, g be isomorphisms and I be an ideal of M. Then, $D(I) \subseteq f(I) \cap g(I)$.

Proof. If $y \in D(I)$, then there is $x \in I$ such that $y=D(x)$. Now, by Theorem 4.7 (3), we obtain $y=D(x) \leq f(x) \in f(I)$ and $y=D(x) \leq g(x) \in g(I)$. Since I is an ideal, by Lemma 2.9, $f(I)$ and $g(I)$ are ideals, too. Thus, $y \in f(I) \cap g(I)$. Therefore, $D(I) \subseteq f(I) \cap g(I)$.

Theorem 4.9. Let D be an (f, g)-derivation of an $M V$-algebra M and $x, y \in M$. If $x \leq y$, then the following hold:
(1) $D\left(x \odot y^{*}\right)=0$;
(2) $D(x) \leq f(y), g(y)$ and $D\left(y^{*}\right) \leq f(x)^{*}, g(x)^{*}$;
(3) $D(x) \odot D\left(y^{*}\right)=0$.

Proof. (1) Suppose that $x \leq y$. Then, by Theorem 2.7, we have $x \odot y^{*}=0$. Now, by Theorem $4.7(1)$, we obtain $D\left(x \odot y^{*}\right)=D(0)=0$.
(2) According to (1), we have $0=D\left(x \odot y^{*}\right)=\left(D(x) \odot f\left(y^{*}\right)\right) \oplus\left(g(x) \odot D\left(y^{*}\right)\right)$. Now, by Theorem 2.5, we have $D(x) \odot f\left(y^{*}\right)=0$ and $g(x) \odot D\left(y^{*}\right)=0$. Then, by Theorem 2.7, $D(x) \leq f(y), D\left(y^{*}\right) \leq g(x)^{*}$. Moreover, $0=D\left(y^{*} \odot x\right)=\left(D\left(y^{*}\right) \odot f(x)\right) \oplus\left(g\left(y^{*}\right) \odot D(x)\right)$. Hence, $D\left(y^{*}\right) \odot f(x)=0$ and $g\left(y^{*}\right) \odot D(x)=0$. Therefore, by using Theorem 2.5, we
get $D\left(y^{*}\right) \leq f(x)^{*}$ and $D(x) \leq g(y)$.
(3) Since f is a homomorphism, $x \leq y$ implies that $f(x) \leq f(y)$. By Theorem 4.7 (3), we have $D(x) \leq f(x) \leq f(y)$. Then, $D(x) \odot D\left(y^{*}\right) \leq f(y) \odot D\left(y^{*}\right) \leq f(y) \odot f\left(y^{*}\right)=$ $f(y) \odot f(y)^{*}=0$. Therefore, $D(x) \odot D\left(y^{*}\right)=0$.

Theorem 4.10. Let M be an $M V$-algebra and D be an (f, g)-derivation on M. Then, the following hold:
(1) $D(x) \odot D\left(x^{*}\right)=0$;
(2) $D\left(x^{*}\right)=D(x)^{*}$ if and only if $D(x)=f(x)$ or $D(x)=g(x)$.

Proof. (1) Since $x \leq x$, by putting $y=x$ in Theorem 4.9, we get (1).
(2) Let $D=f$. We have $f\left(x^{*}\right)=f(x)^{*}$, for all $x \in M$, since f is a homomorphism. Hence, $D\left(x^{*}\right)=D(x)^{*}$.

Conversely, let $D\left(x^{*}\right)=D(x)^{*}$. By Theorem $4.7(2), D(x) \odot D\left(x^{*}\right)=0$ which implies that $f(x) \odot D(x)^{*}=0$. Hence, $f(x) \leq D(x)$. On the other hand, by Theorem 4.7 (3), we have $D(x) \leq f(x)$. Therefore, $D(x)=f(x)$. Similarly, we can prove that if $D\left(x^{*}\right)=D(x)^{*}$, then $D(x)=g(x)$.

Proposition 4.11. Let M be an $M V$-algebra and D be an (f, g)-derivation of M. If $D\left(x^{*}\right)=D(x)$, for all $x \in M$, then the following conditions hold:
(1) $D(1)=0$;
(2) $D(x) \odot D(x)=0$;
(3) If D is isotone, then $D=0$.

Proof. (1) By Theorem 4.7 (1), we have $D(1)=D\left(0^{*}\right)=D(0)=0$.
(2) It follows from Theorem 4.10 (1).
(3) Since $x \leq 1$, for all $x \in M$, and D is isotone, we have $D(x) \leq D(1)=0$, for all $x \in M$. Therefore, $D=0$.

Proposition 4.12. Let M be an $M V$-algebra and D be a non-zero additive (f, g) derivation of M. Then, $D(B(M)) \subseteq B(M)$.

Proof. Suppose that $y \in D(B(M))$. Then, there exists $x \in B(M)$ such that $y=D(x)$. So, $y \oplus y=D(x) \oplus D(x)=D(x \oplus x)=D(x)=y$. Therefore, $y \in B(M)$.

Theorem 4.13. Let D be an additive (f, g)-derivation of a linearly ordered $M V$-algebra M. Then, either $D=0$ or $D(1)=1$.

Proof. Suppose that D is an additive (f, g)-derivation of a linearly ordered $M V$-algebra M and $D(1) \neq 1$. Then, for all $x \in M$, we have $D(1)=D\left(x \oplus x^{*}\right)=D(x) \oplus D\left(x^{*}\right)$. On the other hand $D(1)=D(x \oplus 1)=D(x) \oplus D(1)$. Therefore, $D(1)=D(x) \oplus D\left(x^{*}\right)=$ $D(x) \oplus D(1)$. Hence, by the additive cancellative law of $M V$-algebras, $D\left(x^{*}\right)=D(1)$, since $D(1) \neq 1$. By putting $x=1$, we get $0=D(0)=D(1)$. So, for all $x \in M$, $0=D(1)=D(x \oplus 1)=D(x) \oplus D(1)=D(x)$. Therefore, $D=0$.

Theorem 4.14. Let M be a linearly ordered $M V$-algebra and g be an isomorphism. Also, let D_{1}, D_{2} be additive (f, g)-derivations of M. We define $D_{1} D_{2}(x)=D_{1}\left(D_{2}(x)\right)$, for all $x \in M$. If $D_{1} D_{2}=0$, then $D_{1}=0$ or $D_{2}=0$.

Proof. Suppose that $D_{1} D_{2}=0$ and $D_{2} \neq 0$. Then, by Theorems 4.7 (4) and 4.13, for all $x \in M$, we obtain

$$
\begin{aligned}
0 & =D_{1} D_{2}(x)=D_{1}\left(D_{2}(x)\right)=D_{1}\left(D_{2}(x) \oplus\left(g(x) \odot D_{2}(1)\right)\right) \\
& =D_{1} D_{2}(x) \oplus D_{1}\left(g(x) \odot D_{2}(1)\right)=D_{1} D_{2}(x) \oplus D_{1}(g(x))=D_{1}(g(x))
\end{aligned}
$$

Thus, $D_{1}(g(x))=0$, for all $x \in M$. Hence, $D_{1}(x)=0$, for all $x \in M$, since g is an isomorphism. Therefore, $D_{1}=0$.

Theorem 4.15. Let M be a linearly ordered $M V$-algebra and D be a non-zero additive (f, g)-derivation of M. Then, $D(x \odot x)=(D(x) \odot f(x)) \oplus g(x)$.

Proof. By Theorem 4.7 (4), we have $D(x)=D(x) \oplus(g(x) \odot D(1))$, for all $x \in M$. By Theorem 4.13, $D(1)=1$, since $D \neq 0$. Therefore $D(x)=D(x) \oplus g(x)$. Thus, by Theorem 2.5 (3), we have $D(x) \odot g(x)=g(x)$. Then,

$$
D(x \odot x)=(D(x) \odot f(x)) \oplus(g(x) \odot D(x))=(D(x) \odot f(x)) \oplus g(x),
$$

and the proof completes.

Theorem 4.16. Every non-zero additive (f, g)-derivation of a linearly ordered $M V$ algebra M is isotone.

Proof. Let D be a non-zero additive (f, g)-derivation of a linearly ordered $M V$-algebra M and $x, y \in M$ be arbitrary. If $x \leq y$, then $x^{*} \oplus y=1$. Now, by Theorem 4.13, $D(1)=1$, since $D \neq 0$. Therefore, $1=D(1)=D\left(x^{*} \oplus y\right)=D\left(x^{*}\right) \oplus D(y)$ which implies that $\left(D\left(x^{*}\right)\right)^{*} \leq D(y)$. On the other hand, by Theorem $4.7(3), D\left(x^{*}\right) \leq(f(x))^{*}$ implies
that $f(x) \leq\left(D\left(x^{*}\right)\right)^{*}$. So, $f(x) \leq\left(D\left(x^{*}\right)\right)^{*} \leq D(y)$. Also, we have $D(x) \leq f(x)$, by Theorem 4.7 (3). Therefore, $D(x) \leq f(x) \leq D(y)$ which implies that $D(x) \leq D(y)$.

Theorem 4.17. Let M be a linearly ordered $M V$-algebra and D be a non-zero additive (f, g)-derivation. Then,

$$
D^{-1}(0)=\{x \in M: D(x)=0\}
$$

is an ideal of M.

Proof. By Theorem 4.7 (1), we have $D(0)=0$. Then, $0 \in D^{-1}(0)$. Now, suppose that $x, y \in D^{-1}(0)$. Then, $D(x \oplus y)=D(x) \oplus D(y)=0 \oplus 0=0$ which implies that $x \oplus y \in D^{-1}(0)$. Now, suppose that $x \in D^{-1}(0)$ and $y \leq x$. Then, $D(x)=0$. Hence, by Theorem 4.16, we have $D(y) \leq D(x)=0$ which implies that $D(y)=0$. Therefore, $y \in D^{-1}(0)$.

References

1. M. Aşci, O. Kecilioglu and B. Davvaz, On symetric f bi-derivations of lattices, J. Combin. Math. Combin. Comput. 83 (2012), 243-253.
2. N. O. Alshehri, Derivations of MV-algebras, Int. J. Math. Math. Sci. (2010), Art. ID 312027, 7 pp.
3. H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), 339-346.
4. S. Ceran and M. Assci, Symmetric bi- (σ, τ) derivations of prime and semi prime gamma rings, Bull. Korean Math. Soc. 43 (2006), 9-16.
5. Y. Çeven and M.A. Öztürk, On f-derivations of lattices, Bull. Korean Math. Soc. 45 (2008), 701707.
6. Y. Çeven, Symmetric bi-derivations of lattices, Quaest. Math. 32 (2009), 241-245.
7. C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
8. R. Cignoli, I. Do'Ottaviano and D. Mundici, Algebraic foundations of many-valued reasoning, Kluwer Academic, Dodrecht, The Netherlands, 2000.
9. B. Davvaz, L. Zareyan and V. Leoreanu-Fotea, (3, 3)-ary differential rings, Mediterr. J. Math. 9 (2012), 357-378.
10. Y. B. Javed, M. Aslam, A note on f-derivations of BCI-algebras, Commun. Korean Math. Soc. 24 (2009), 321-331.
11. Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167-176.
12. F. Nisar, Characterization of f-derivations of $B C I$-algebras, EAMJ 25 (2009), 69-87.
13. F. Nisar, On f-derivations of BCI-algebras, J. Prime Res. Math. 5 (2009), 176-191.
14. S. A. Ozbal and A. Firat, Symmetric f bi derivations of lattices, ARS Combinatoria 97 (2010), 471-477.
15. M. A. Ozturk, H. Yazarh and K.H. Kim, Permuting tri-derivations in lattices, Quaest. Math. 32 (2009), 415-425.
16. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
17. S. Rasouli, D. Heidari and B. Davvaz, η-relations and transitivity conditions of η on hyper MValgebra, J. Mult.-Valued Logic Soft Comput. 15 (2009), 517-524.
18. S. Rasouli and B. Davvaz, Roughness in MV-algebras, Inform. Sci. 180 (2010), 737-747.
19. S. Rasouli and B. Davvaz, Homomorphisms, ideals and binary relations on hyper-MV algebras, J. Mult.-Valued Logic Soft Comput. 17 (2011), 47-68.
20. G. Szász, Derivations of lattices, Acta Sci. Math. 37 (1975), 149-154.
21. X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Inform. Sci. 178 (2008), 307-316.
22. J. Zhan, Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. 11 (2005), 16751684.

L. Kamali Ardekani

Department of Mathematics, Yazd University, Yazd, Iran.

```
Email: kamali_leili@yahoo.com
```


B. Davvaz

Department of Mathematics, Yazd University, Yazd, Iran.
Email: davvaz@yazd.ac.ir

