Vol. 1, No. 1, (2013), pp 11-31

f-DERIVATIONS AND (f, g)-DERIVATIONS OF MV-ALGEBRAS

L. KAMALI ARDEKANI AND B. DAVVAZ*

ABSTRACT. In this paper, we extend the notion of derivation of MV-algebras and give some illustrative examples. Moreover, as a generalization of derivation of MV-algebras we introduce the notion of f-derivations and (f, g)-derivations of MV-algebras. Also, we investigate some properties of them.

1. INTRODUCTION

In [7], Chang invented the notion of MV-algebra in order to provide an algebraic proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus. Recently, the algebraic theory of MV-algebras is intensively studied, for example see [17, 18, 19]. The notion of derivation, introduced from the analytic theory, is helpful to the research of structure and property in algebraic systems. Several authors [3, 9, 16] studied derivations in rings and near-rings. Jun and Xin [11] applied the notion of derivation to BCI-algebras. In [20], Szász introduced the concept of derivation for lattices and investigated some of its properties. Also, in [21], Xin et al. improved derivation for a lattice and discussed some related properties. They gave some equivalent conditions under which a derivation is isotone for lattices with a greatest modular lattices and distributive lattices, also see [15]. After these studies the f-derivation and symmetric bi derivation of lattices were defined and studied in [5, 6]. Ozbal and Firat in [14] introduced the notion of symmetric f-bi-derivation of a lattice. They characterized

MSC(2010): Primary: 06D35; Secondary: 06B75

Keywords: MV-algebra, Lattice, $BCI \setminus BCK$ -algebra, Derivation, (f, g)-derivation.

Received: 11 March 2013, Revised: 28 July 2013

^{*}Corresponding author .

the distributive lattice by symmetric f-bi-derivation. In [11], Jun and Xin introduced the notion of derivation in BCI-algebras, which is defined in a way similar to the notion in ring theory, and investigated some properties related to this concept. In [22], Zhan and Liu introduced the notion of f-derivation in BCI-algebras. In [4], Ceran and Aşci defined the symmetric bi- (σ, τ) derivations on prime and semiprime Gamma rings. In [2], Alshehri applied the notion of derivation to MV-algebras and investigated some of its properties.

Now, in this paper, we extend the notion of derivation of MV-algebras. Moreover, as a generalization of derivation of MV-algebras we introduce the notion of f-derivations and (f, g)-derivations of MV-algebras.

2. Preliminaries

In this section, we recall the notion of an MV-algebra and then we review some definitions and properties which we will need in the next section.

Definition 2.1. An MV-algebra is a structure $(M, \oplus, *, 0)$ where M is a non-empty set, \oplus is a binary operation, * is a unary operation, and 0 is a constant such that the following axioms are satisfied for any $a, b \in M$

$$(MV1) (M, \oplus, 0) \text{ is a commutative monoid;}$$
$$(MV2) (a^*)^* = a;$$
$$(MV3) 0^* \oplus a = 0^*;$$
$$(MV4) (a^* \oplus b)^* \oplus b = (b^* \oplus a)^* \oplus a.$$

We define the constant $1 = 0^*$ and the auxiliary operations \odot, \ominus, \lor and \land by

$$a \odot b = (a^* \oplus b^*)^*, \ a \ominus b = a \odot b^*, \ a \lor b = a \oplus (b \odot a^*), \ a \land b = a \odot (b \oplus a^*).$$

Example 2.2. Any boolean algebra is an *MV*-algebra.

Example 2.3. The real unit interval [0,1] with operations \oplus and * defined by

$$x \oplus y = \min\{1, x + y\}$$
 and $x^* = 1 - x$

is an MV-algebra

Theorem 2.4. [7] Let $(M, \oplus, *, 0)$ be an MV-algebra. The following properties hold for all $x \in M$

- (1) $x \oplus 1 = 1;$
- (2) $x \oplus x^* = 1;$
- (3) $x \odot 0 = 0$ and $x \odot x^* = 0$.

Moreover, $(M, \odot, 1)$ is a commutative monoid [7].

Theorem 2.5. [7] Let $(M, \oplus, *, 0)$ be an MV-algebra. The following properties hold for all $x \in M$

- (1) If $x \oplus y = 0$, then x = y = 0;
- (2) If $x \odot y = 1$, then x = y = 1;
- (3) $x \oplus y = y$ if and only if $x \odot y = x$;
- (4) $(x \lor y) \oplus z = (x \oplus z) \lor (y \oplus z).$

Let $(M, \oplus, *, 0)$ be an *MV*-algebra. The partial ordering \leq on *M* is defined by

$$x \leq y \iff x \wedge y = x$$
, for all $x, y \in M$.

 $x \wedge y = x$ is equivalent to $x \vee y = y$. The structure $(M, \vee, \wedge, 0, 1)$ is a bounded distributive lattice. If the order relation \leq , defined over M, is total, then we say that M is *linearly ordered*.

Theorem 2.6. [7] Let $(M, \oplus, *, 0)$ be an MV-algebra. The following properties hold for all $x \in M$

- (1) If $x \leq y$, then $x \vee z \leq y \vee z$ and $x \wedge z \leq y \wedge z$;
- (2) If $x \leq y$, then $x \oplus z \leq y \oplus z$ and $x \odot z \leq y \odot z$;
- (3) $x \leq y$ if and only if $y^* \leq x^*$.

Theorem 2.7. [7] For all $x, y \in M$, the following conditions are equivalent:

- (1) $x \leq y;$
- (2) $y \oplus x^* = 1;$
- (3) $x \odot y^* = 0.$

Theorem 2.8. [7] Let M be a linearly ordered MV-algebra. Then, $x \oplus y = x \oplus z$ and $x \oplus z \neq 1$ implies that y = z.

Let M and N be two MV-algebras. The function $f: M \longrightarrow N$ is called a *homomorphism* if it satisfies the following conditions:

(1) $f(0_M) = 0_N;$

- (2) $f(x \oplus_M y) = f(x) \oplus_N f(y);$
- (3) $f(x^*) = f(x)^*;$

for all $x, y \in M$. If f is a homomorphism, then $f(1_M) = 1_N$ and $f(x \odot_M y) = f(x) \odot_N f(y)$. A homomorphism f is called an *isomorphism* if it is one to one and onto.

Let M be an MV-algebra and I be a non-empty subset of M. Then, we say that I is an *ideal* if the following conditions are satisfied:

- (1) $0 \in I;$
- (2) $x, y \in I$ imply $x \oplus y \in I$;
- (3) $x \in I$ and $y \leq x$ imply $y \in I$.

Lemma 2.9. Let I be an ideal of MV-algebra M and $f : M \longrightarrow M$ be an isomorphism. Then, f(I) is an ideal, too.

Proof. It is obvious.

Let $B(M) = \{x \in M \mid x \oplus x = x\} = \{x \in M \mid x \odot x = x\}$. Then, $(B(M), \oplus, *, 0)$ is both a largest subalgebra of M and a Boolean algebra.

Definition 2.10. A *BCI-algebra* X is an abstract algebra (X, *, 0) of type (2, 0), satisfying the following conditions, for all $x, y, z \in X$,

$$(BCI1) ((x * y) * (x * z)) * (z * y) = 0;$$

(BCI2) $(x * (x * y)) * y = 0;$
(BCI3) $x * x = 0;$
(BCI4) $x * y = 0$ and $y * x = 0$ imply that $x = y.$

A non-empty subset S of a BCI-algebra X is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$. In any BCI-algebra X, one can define a partial order " \leq " by putting $x \leq y$ if and only if x * y = 0. A BCI-algebra X satisfying $0 \leq x$, for all $x \in X$, is called a BCK-algebra.

Let $(M, \oplus, *, 0)$ be an MV-algebra. Then, the structure $(M, \oplus, 0)$ is a bounded $BCI \setminus BCK$ -algebra.

3. Derivations of MV-Algebras

Definition 3.1. Let $(M, \oplus, *, 0)$ be an MV-algebra. Then, the map $D : M \longrightarrow M$ is called

- (1) a derivation of type 1, if $D(x \odot y) = (D(x) \odot y) \oplus (x \odot D(y))$, for all $x, y \in M$ [2];
- (2) a derivation of type 2, if $D(x \wedge y) = (D(x) \wedge y) \vee (x \wedge D(y))$, for all $x, y \in M$;
- (3) a derivation of type 3, if $D(x \ominus y) = (D(x) \ominus y) \land (x \ominus D(y))$, for all $x, y \in M$.

If MV-algebra M is a Boolean algebra, then for all $x, y \in M$, $x \oplus y = x \lor y$ and $x \odot y = x \land y$. So, in this case, every derivation of type 1 on M is coincide with derivation of type 2 on M.

Let $(M, \oplus, *, 0)$ be an MV-algebra. Then, the definition of derivation of type 2 on $(M, \oplus, *, 0)$ is coincide with the definition of derivation on lattice $(M, \wedge, \vee, 0, 1)$. Also, the definition of derivation of type 3 on $(M, \oplus, *, 0)$ is coincide with the definition of derivation of type 3.

Let M be an MV-algebra and $D: M \longrightarrow M$ be a derivation of type 1 (2 and 3, respectively). Then, for convenience, we denote D by D^1 (D^2 and D^3 , respectively).

Theorem 3.2. Let $(M, \oplus, *, 0)$ be an MV-algebra and D^i be a derivation of type i on $M, 1 \le i \le 3$. Then, for all $1 \le i \le 3$, we have

- (1) $D^i(0) = 0;$
- (2) $D^i(x) \leq x$, for all $x \in M$.

Proof. (1) It is proved in [2] that $D^1(0) = 0$. We have $D^2(0) = D^2(0 \land 0) = (D^2(0) \land 0) \lor (0 \land D^2(0)) = 0$ and $D^3(0) = D^3(x \ominus 1) = (D^3(x) \ominus 1) \land (x \ominus D^3(1)) = 0$, for all $x \in M$.

(2) It is proved in [2] that $D^1(x) \leq x$. We have $D^2(x) = D^2(x \wedge x) = (D^2(x) \wedge x) \vee (x \wedge D^2(x)) = D^2(x) \wedge x$. So, $D^2(x) \leq x$.

Also, we have $D^3(x) = D^3(x \ominus 0) = (D^3(x) \ominus 0) \land (x \ominus D^3(0)) = D^3(x) \land x$. So, $D^3(x) \le x$.

Let M be an MV-algebra. The function $D: M \longrightarrow M$, defined by D(x) = 0, for all $x \in M$, is a derivation of type 1, 2 and 3 on M. We denote it by D = 0.

Also, the function $D: M \longrightarrow M$, defined by D(x) = x, for all $x \in M$, is a derivation of type 2 and 3 on M. We denote it by D = I.

Example 3.3. Let $M = \{0, 1\}$. Consider the following tables:

Then, $(M, \oplus, *, 0)$ is an MV-algebra. It is only MV-algebra of order 2. The functions $D_1 = 0$ and $D_2 = I$ are only derivations of type 1. Also, they are only derivations of type 2 and 3.

Example 3.4. Let $M = \{0, x_1, 1\}$. Consider the following tables:

Then, $(M, \oplus, *, 0)$ is an MV-algebra. It is only MV-algebra of order 3. By calculation, we obtain Figure 1.

FIGURE 1. Derivations of type 1, 2 and 3 for Example 3.4.

Thus, we have only two derivations of type 1 on M. They are as follows:

$$D_1^1 = 0$$
 and $D_2^1(x) = \begin{cases} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1. \end{cases}$

We have only four derivations of type 2 on M. They are as follows:

$$D_1^2 = 0, \ D_2^2 = I, \ D_3^2(x) = \begin{cases} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1 \end{cases} \text{ and}$$
$$D_4^2(x) = \begin{cases} 0 & \text{if } x = 0 \\ x_1 & \text{if } x = x_1, 1. \end{cases}$$

We have only three derivations of type 3 on M. They are as

$$D_1^3 = 0$$
, $D_2^3 = I$ and $D_3^3(x) = \begin{cases} 0 & \text{if } x = 0, x_1 \\ x_1 & \text{if } x = 1. \end{cases}$

It is clear that D_2^1 is not a derivation of type 3, because $x_1 = D_2^1(x_1) = D_2^1(1 \oplus x_1) \neq (D_2^1(1) \oplus x_1) \land (1 \oplus D_2^1(x_1)) = 0$. Also, D_3^3 is not a derivation of type 1, because $x_1 = D_3^3(1 \odot 1) \neq (D_3^3(1) \odot 1) \oplus (1 \odot D_3^3(1)) = 1$. So, derivation of type 1 and 3 are independent.

It is clear that D_3^2 is not a derivation of type 3, because $x_1 = D_3^2(1 \oplus x_1) \neq (D_3^2(1) \oplus x_1) \wedge (1 \oplus D_3^2(x_1)) = 0$. Also, D_3^3 is not a derivation of type 2, because $0 = D_3^3(x_1 \wedge 1) \neq (D_3^3(x_1) \wedge 1) \vee (x_1 \wedge D_3^3(1)) = x_1$. So, derivation of type 2 and 3 are independent.

We have only two MV-algebras of order 4. They are considered in the next two examples.

Example 3.5. Let $M = \{0, x_1, x_2, 1\}$. Consider the following tables:

Then, $(M, \oplus, *, 0)$ is an *MV*-algebra. By calculation, we get Figure 2.

FIGURE 2. Derivations of type 1, 2 and 3 for Example 3.5.

Thus, we have only two derivations of type 1 on M. They are as follows:

$$D_1^1 = 0$$
 and $D_2^1(x) = \begin{cases} 0 & \text{if } x = 0, x_1, 1 \\ x_1 & \text{if } x = x_2. \end{cases}$

We have only eight derivations of type 2 on M. They are as follows:

$$D_1^2 = 0, \qquad D_2^2 = I,$$

$$D_3^2(x) = \begin{cases} 0 & \text{if } x = 0, x_2, 1 \\ x_1 & \text{if } x = x_1, \end{cases} \qquad D_4^2(x) = \begin{cases} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_2, \end{cases}$$

$$D_5^2(x) = \begin{cases} 0 & \text{if } x = 0 \\ x_1 & \text{if } x = x_1, x_2, 1, \end{cases} \qquad D_6^2(x) = \begin{cases} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1 \\ x_2 & \text{if } x = x_2, \end{cases}$$

$$D_7^2(x) = \begin{cases} 0 & \text{if } x = 0 \\ x_1 & \text{if } x = x_1, 1 \\ x_2 & \text{if } x = x_2, \end{cases} \qquad D_8^2(x) = \begin{cases} 0 & \text{if } x = 0 \\ x_1 & \text{if } x = x_1 \\ x_2 & \text{if } x = x_2, \end{cases}$$

We have only four derivations of type 3 on M. They are as follows:

$$D_1^3 = 0, \quad D_2^3 = I, \quad D_3^3(x) = \begin{cases} 0 & \text{if } x = 0, x_1, x_2 \\ x_1 & \text{if } x = 1 \end{cases} \quad \text{and} \\ D_4^3(x) = \begin{cases} 0 & \text{if } x = 0, x_1 \\ x_1 & \text{if } x = x_2 \\ x_2 & \text{if } x = 1. \end{cases}$$

It is clear that D_2^1 is not a derivation of type 2, because $0 = D_2^1(x_1) = D_2^1(x_1 \wedge x_2) \neq (D_2^1(x_1) \wedge x_2) \vee (x_1 \wedge D_2^1(x_2)) = x_1$. Also, D_5^2 is not a derivation of type 1, because $x_1 = D_5^2(1) = D_5^2(1 \odot 1) \neq (D_5^2(1) \odot 1) \oplus (1 \odot D_5^2(1)) = x_1 \oplus x_1 = x_2$. So, derivation of type 1 and 2 are independent.

Example 3.6. Let $M = \{0, x_1, x_2, 1\}$. Consider the following tables:

			x_2						
0	0	x_1	x_2	1	.1.		~	x_2	1
x_1	x_1	x_1	1	1					
x_2	x_2	1	$\begin{array}{c} x_2 \\ 1 \\ x_2 \\ 1 \end{array}$	1		1	x_2	x_1	0
1	1	1	1	1					

Then, $(M, \oplus, *, 0)$ is a Boolean *MV*-algebra. So, derivation of type 1 is coincide with derivation of type 2. By calculation, we get Figure 3.

FIGURE 3. Derivations of type 1, 2 and 3 for Example 3.6.

Hence, we have only nine derivations of type 1 on M. They are as follows:

$$D_{1}^{1} = 0, \ D_{2}^{1} = I, \qquad D_{3}^{1}(x) = \begin{cases} 0 & \text{if } x = 0, x_{1}, 1 \\ x_{2} & \text{if } x = x_{2}, \end{cases}$$

$$D_{4}^{1}(x) = \begin{cases} 0 & \text{if } x = 0, x_{1} \\ x_{2} & \text{if } x = x_{2}, 1, \end{cases}$$

$$D_{5}^{1}(x) = \begin{cases} 0 & \text{if } x = 0, x_{2} \\ x_{1} & \text{if } x = x_{1}, 1, \end{cases}$$

$$D_{6}^{1}(x) = \begin{cases} 0 & \text{if } x = 0, x_{2} \\ x_{1} & \text{if } x = x_{1}, 1, \end{cases}$$

$$D_{7}^{1}(x) = \begin{cases} 0 & \text{if } x = 0, 1 \\ x_{1} & \text{if } x = x_{1} \\ x_{2} & \text{if } x = x_{2} \end{cases}$$

$$D_{8}^{1}(x) = \begin{cases} 0 & \text{if } x = 0, x_{2} \\ x_{1} & \text{if } x = x_{1}, 1, \end{cases}$$

$$D_{7}^{1}(x) = \begin{cases} 0 & \text{if } x = 0, 1 \\ x_{1} & \text{if } x = x_{1} \\ x_{2} & \text{if } x = x_{2} \end{cases}$$

$$D_{8}^{1}(x) = \begin{cases} 0 & \text{if } x = 0, x_{2} \\ x_{1} & \text{if } x = x_{1}, 1, \\ x_{2} & \text{if } x = x_{2}, \end{cases}$$

We have only four derivations of type 3 on M. They are as $D_1^3 = 0$, $D_2^3 = I$, $D_3^3(x) = \begin{cases} 0 & \text{if } x = 0, x_1 \\ x_2 & \text{if } x = x_2, 1 \end{cases}$ and $D_4^3(x) = \begin{cases} 0 & \text{if } x = 0, x_2 \\ x_1 & \text{if } x = x_1, 1 \end{cases}$.

We have one MV-algebra of order 5. It is considered in the next example.

Example 3.7. Let $M = \{0, x_1, x_2, x_3, 1\}$. Consider the following tables:

\oplus	0	x_1	x_2	x_3	1	_						
0	0	$egin{array}{c} x_1 & & \ x_2 & & \ x_3 & & \ 1 & & \ 1 & & \ \end{array}$	x_2	x_3	1							
x_1	x_1	x_2	x_3	1	1		*	0	x_1	x_2	x_3	1
x_2	x_2	x_3	1	1	1			1	x_3	x_2	x_1	0
x_3	x_3	1	1	1	1							
1	1	1	1	1	1							

Then, $(M, \oplus, *, 0)$ is an *MV*-algebra. By calculation, we get Figure 4.

FIGURE 4. Derivations of type 1, 2 and 3 for Example 3.7.

Thus, we have only three derivations of type 1 on M. They are as follows:

$$D_1^1 = 0, \quad D_2^1(x) = \begin{cases} 0 & \text{if } x = 0, x_1, x_2, 1 \\ x_1 & \text{if } x = x_3 \end{cases}$$
 and

$$D_3^1(x) = \begin{cases} 0 & \text{if } x = 0, 1\\ x_1 & \text{if } x = x_1\\ x_2 & \text{if } x = x_2, x_3. \end{cases}$$

We have only sixteen derivations of type 2 on M. They are as follows:

$$\begin{split} D_1^2 &= 0, & D_2^2 &= I, \\ D_3^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_2, x_3, 1 \\ x_1 & \text{if } x = x_1, \end{array} \right. & D_4^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_3, 1 \\ x_1 & \text{if } x = x_1, x_2, x_3, \end{array} \right. \\ D_5^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_2, x_3, \end{array} \right. & D_6^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0 \\ x_1 & \text{if } x = x_1, x_2, x_3, 1, \end{array} \right. \\ D_7^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_3, 1 \\ x_1 & \text{if } x = x_1, x_2, x_3, \end{array} \right. & D_8^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_3, x_2, \end{array} \right. \\ D_7^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_3, 1 \\ x_2 & \text{if } x = x_2, \end{array} \right. & D_8^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_3, x_2, \end{array} \right. \\ D_9^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_3, 1 \\ x_2 & \text{if } x = x_2, \end{array} \right. & D_{10}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_3, \end{array} \right. \\ D_9^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_3, 1 \\ x_2 & \text{if } x = x_2, \end{array} \right. & D_{10}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_3, \end{array} \right. \\ D_{11}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, 1 \\ x_2 & \text{if } x = x_2, x_3, \end{array} \right. & D_{12}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_2, x_3, \end{array} \right. \\ D_{13}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_3, \end{array} \right. & D_{12}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_3, x_1, \end{array} \right. \\ D_{13}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, 1 \\ x_1 & \text{if } x = x_1, x_3, \end{array} \right. & D_{14}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_1, 1, x_2 & \text{if } x = x_2, x_3, 1, \end{array} \right. \\ D_{15}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_1, 1, x_2, 1, x_3, x_3, \end{array} \right. & D_{16}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_1, 1, x_2, x_3, x_3, \end{array} \right. \\ D_{15}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = 0, x_1, 1, x_2, 1, x_3, x_3, \end{array} \right. & D_{16}^2(x) &= \left\{ \begin{array}{ll} 0 & \text{if } x = x_1, x_2, x_3, 1, \end{array} \right. \end{array} \right. \end{array} \right. \end{aligned} \right. \end{aligned} \right.$$

We have only five derivations of type 3 on M. They are as follows:

$$D_1^3 = 0, \quad D_2^3 = I, \quad D_3^3(x) = \begin{cases} 0 & \text{if } x = 0, x_1, x_2, x_3 \\ x_1 & \text{if } x = 1, \end{cases}$$
$$D_4^3(x) = \begin{cases} 0 & \text{if } x = 0, x_1, x_2 \\ x_1 & \text{if } x = x_3 \\ x_2 & \text{if } x = 1 \end{cases} \text{ and } D_5^3(x) = \begin{cases} 0 & \text{if } x = 0, x_1 \\ x_1 & \text{if } x = x_2 \\ x_2 & \text{if } x = x_3 \\ x_3 & \text{if } x = 1 \end{cases}$$

Let M_1 and M_2 be two MV-algebras. Then $M_1 \times M_2$ is an MV-algebra. Also, let D_1 and D_2 be derivations of type 1 (2 and 3, respectively) on M_1 and M_2 , respectively. Then, $D = D_1 \times D_2 : M_1 \times M_2 \longrightarrow M_1 \times M_2$ defined by $D((x, y)) = (D_1(x), D_2(y))$, for all $x \in M_1$, $y \in M_2$, is a derivation of type 1 (2 and 3, respectively). But, all of derivations of type 1 (2 and 3, respectively) on $M_1 \times M_2$ are not as form $D_1 \times D_2$, where D_1 and D_2 are derivations of type 1 (2 and 3, respectively) on M_1 and M_2 , respectively. The following example shows this matter.

Example 3.8. Consider the MV-algebra M, defined in Example 3.6. Then $M \cong S_1 \times S_1$, where S_1 is the MV-algebra defined in Example 3.3. By Example 3.6, $M \cong S_1 \times S_1$ has nine derivations of type 1. But, only four derivations of them are as form $D_1 \times D_2$, where D_1 and D_2 are derivations of type 1 on S_1 , since S_1 has two derivations of type 1. They are D_1^1 , D_2^1 , D_4^1 and D_6^1 .

Definition 3.9. Let M be an MV-algebra. Then, a function $f : M \longrightarrow M$ is called *additive*, if $f(x \oplus y) = f(x) \oplus f(y)$, for all $x, y \in M$.

Example 3.10. The functions D = 0 and D = I are always additive. In Examples 3.3, 3.4, 3.5 and 3.7, among derivations of type $i, 1 \le i \le 3$, only D = 0 and D = I are additive. In Example 3.6, among derivations of type $i, 1 \le i \le 3$, only $D_1^1 = D_1^3 = 0$, $D_2^1 = D_2^3 = I$, $D_4^1 = D_3^3$ and $D_6^1 = D_4^3$ are additive.

Definition 3.11. Let M be an MV-algebra. Then, a function $f: M \longrightarrow M$ is called *isoton*, if $x \leq y$ implies that $f(x) \leq f(y)$, for all $x, y \in M$.

Example 3.12. The functions D = 0 and D = I are always isoton. In Example 3.4, among derivations of type i, $1 \le i \le 3$, only $D_1^1 = D_1^2 = D_1^3 = 0$, $D_2^2 = D_2^3 = I$, D_4^2 and D_3^3 are isoton. In Example 3.5, among derivations of type i, $1 \le i \le 3$, only

 $D_1^1 = D_1^2 = D_1^3 = 0, D_2^2 = D_2^3 = I, D_5^2, D_8^2, D_3^3 \text{ and } D_4^3 \text{ are isoton. In Example 3.6,}$ among derivations of type $i, 1 \le i \le 3$, only $D_1^1 = D_1^3 = 0, D_2^1 = D_2^3 = I, D_4^1 = D_3^3$ and $D_6^1 = D_4^3$ are isoton. In Example 3.7, among derivations of type $i, 1 \le i \le 3$, only $D_1^1 = D_1^2 = D_1^3 = 0, D_2^2 = D_2^3 = I, D_6^2, D_{12}^2, D_{16}^2, D_3^3, D_4^3 \text{ and } D_5^3 \text{ are isoton.}$

Example 3.13. Let $S_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}, n \in N$. Then, $(S_n, \oplus, *, 0, 1)$ is an MV-algebra with n + 1 elements, where operations \oplus and * are defined as Example 2.3. Note that auxiliary operations \odot, \ominus, \lor and \land are as follows:

$$a \odot b = \max\{0, a + b - 1\}$$
$$a \ominus b = \max\{0, a - b\},$$
$$a \lor b = \max\{a, b\},$$
$$a \land b = \min\{a, b\}$$

and the relation \leq is simply the natural ordering of real numbers. The *MV*-algebras defined in Examples 3.3, 3.4, 3.5 and 3.7 are S_1 , S_2 , S_3 and S_4 , respectively. Let n > 1be a fix positive integer. Define $D^1 : S_n \longrightarrow S_n$ by

$$D^{1}(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{n-1}{n} \\ 0 & \text{otherwise.} \end{cases}$$

It is easily to check that D^1 is a derivation of type 1. D^1 is not additive because $D^1(1 \oplus \frac{n-1}{n}) = D^1(1) = 0$ but $D^1(1) \oplus D^1(\frac{n-1}{n}) = 0 \oplus \frac{1}{n} = \frac{1}{n}$. Also, D^1 is not isoton, because $\frac{n-1}{n} \leq 1$ but $\frac{1}{n} = D^1(\frac{n-1}{n}) \nleq D^1(1) = 0$.

Define $D^2: S_n \longrightarrow S_n$ by

$$D^{2}(x) = \begin{cases} 0 & \text{if } x = 0, 1\\ \frac{1}{n} & \text{otherwise.} \end{cases}$$

It is easily to check that D^2 is a derivation of type 2. D^2 is not additive because $D^2(1 \oplus \frac{1}{n}) = D^2(1) = 0$ but $D^2(1) \oplus D^2(\frac{1}{n}) = 0 \oplus \frac{1}{n} = \frac{1}{n}$. Also, D^2 is not isoton, because $\frac{1}{n} \leq 1$ but $\frac{1}{n} = D^2(\frac{1}{n}) \leq D^2(1) = 0$.

Define $D^3: S_n \longrightarrow S_n$ by

$$D^{3}(x) = \begin{cases} \frac{1}{n} & \text{if } x = 1\\ 0 & \text{otherwise.} \end{cases}$$

It is easily to check that D^3 is a derivation of type 3. D^3 is not additive because $D^3(1 \oplus 1) = D^3(1) = \frac{1}{n}$ but $D^3(1) \oplus D^3(1) = \frac{2}{n}$. Note that D^3 is isoton.

4. f-Derivations and (f, g)-Derivations of MV-Algebras

In this section, we introduce the notion of f-derivations and (f, g)-derivations of type $i, 1 \leq i \leq 3$, of MV-algebras.

Definition 4.1. Let M be an MV-algebra and $f, g : M \longrightarrow M$ be homomorphisms. A function $D : M \longrightarrow M$ is called

- (1) an (f,g)-derivation of type 1, if $D(x \odot y) = (D(x) \odot f(y)) \oplus (g(x) \odot D(y))$, for all $x, y \in M$;
- (2) an (f,g)-derivation of type 2, if $D(x \wedge y) = (D(x) \wedge f(y)) \vee (g(x) \wedge D(y))$, for all $x, y \in M$;
- (3) an (f,g)-derivation of type 3, if $D(x \ominus y) = (D(x) \ominus f(y)) \land (g(x) \ominus D(y))$, for all $x, y \in M$.

In the above definition, if the function g is equal to the function f, then an (f, g)derivation of type 1 (2 and 3, respectively) is called an f-derivation of type 1 (2 and 3, respectively). It is obvious that if we choose the functions f and g as the identity functions, then the (f, g)-derivation of type 1 (2 and 3, respectively) is ordinary derivation of type 1 (2 and 3, respectively).

Theorem 4.2. Let M be an MV-algebra and f, g be homomorphisms on M. Also, let D be an (f,g)-derivation of type 1 and 3 on M. Then, for all $x, y \in M$

$$\left(\left(D(x) \ominus f(y) \right) \land \left(g(x) \ominus D(y) \right) \right) \le \left(\left(D(x) \odot f(y^*) \right) \oplus \left(g(x) \odot D(y^*) \right) \right).$$

Proof. We have

$$\begin{split} &((D(x) \ominus f(y)) \land (g(x) \ominus D(y)))^* \oplus ((D(x) \odot f(y)^*) \oplus (g(x) \odot D(y^*)))) \\ &= ((D(x) \ominus f(y))^* \lor (g(x) \ominus D(y))^*) \\ &\oplus ((D(x) \ominus f(y)) \oplus (g(x) \ominus D(y^*)^*)) \\ &= ((D(x) \ominus f(y))^* \oplus (D(x) \ominus f(y)) \oplus (g(x) \ominus D(y^*)^*)) \\ &\lor ((g(x) \ominus D(y))^* \oplus (D(x) \ominus f(y)) \oplus (g(x) \ominus D(y^*)^*)) = 1. \end{split}$$

So, the statement is valid.

Let M be an MV-algebra and $f, g : M \longrightarrow M$ be homomorphisms. A function $D: M \longrightarrow M$ is an (f, g)-derivation of type 1 (2, respectively) if and only if it is an (g, f)-derivation of type 1 (2, respectively).

Example 4.3. Let M be an MV-algebra and $f, g : M \longrightarrow M$ be homomorphisms on M. The function $D : M \longrightarrow M$ defined by D = 0 is an (f, g)-derivation of type 1, 2 and 3.

Example 4.4. For every MV-algebra, if we set D = f = I and g = 0, then f, g are homomorphisms and D is (f, g)-derivation of type 1 and 2.

Example 4.5. Let M be as in Example 3.6. Then, every (f, g)-derivation (f-derivation, respectively) of type 1 on M is coincide with (f, g)-derivation (f-derivation, respectively) of type 2 on M. Define maps $f, g : M \longrightarrow M$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ x_2 & \text{if } x = x_1\\ x_1 & \text{if } x = x_2\\ 1 & \text{if } x = 1 \end{cases} \text{ and } g(x) = \begin{cases} 0 & \text{if } x = 0, x_1\\ 1 & \text{if } x = x_2, 1. \end{cases}$$

Then, f and g are homomorphisms. Now, we define $D_1, D_2: M \longrightarrow M$ by

$$D_1(x) = \begin{cases} 0 & \text{if } x = 0, x_1, 1 \\ x_1 & \text{if } x = x_2 \end{cases} \text{ and } D_2(x) = \begin{cases} 0 & \text{if } x = 0, x_1 \\ x_1 & \text{if } x = x_2, 1 \end{cases}$$

It is easily to check that D_1 is an f-derivation and an (f,g)-derivation of type 1 of M. But, it is not an f-derivation of type 3, because $x_1 = D_1(1 \ominus x_1) \neq (D_1(1) \ominus f(x_1)) \land$ $(g(1) \ominus D_1(x_1)) = 0$. Similarly, one can show that D_1 is not an (f,g)-derivation of type 3. Note that D_1 is not additive. Also, it is not isotone. D_2 is additive, isotone and an f-derivation of type 1 and 3. Also, it is an (f,g)-derivation of type 1 and 3.

Example 4.6. Let $M = \{0, x_1, x_2, x_3, x_4, 1\}$. Consider the following tables:

			x_2											
0	0	x_1	x_2	x_3	x_4	1	-							
x_1	x_1	x_3	$egin{array}{c} x_2 \ x_4 \ x_2 \ 1 \ x_4 \ 1 \ 1 \ \end{array}$	x_3	1	1		¥		r.	r_{2}	T_{2}	x_4	1
x_2	x_2	x_4	x_2	1	x_4	1		个 	1	<i>x</i> 1	<i>x</i> 2	13	$\frac{x_4}{x_1}$	
x_3	x_3	x_3	1	x_3	1	1				x_4	x_3	x_2	x_1	0
x_4	x_4	1	x_4	1	1	1								
1	1	1	1	1	1	1								

Then, $(M, \oplus, *, 0)$ is an *MV*-algebra. Define maps $f, g: M \longrightarrow M$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, x_1, x_3 \\ 1 & \text{if } x = x_2, x_4, 1 \end{cases} \text{ and } g = I.$$

Then, f, g are homomorphisms on M. Now, we define

$$D_{1}(x) = \begin{cases} 0 & \text{if } x = 0, x_{1}, x_{3}, x_{4}, 1 \\ x_{2} & \text{if } x = x_{2}, \end{cases}$$
$$D_{2}(x) = \begin{cases} 0 & \text{if } x = 0, x_{1}, x_{3}, 1 \\ x_{2} & \text{if } x = x_{2}, x_{4} \end{cases}$$
$$D_{3}(x) = \begin{cases} 0 & \text{if } x = 0, x_{1}, x_{3} \\ x_{2} & \text{if } x = x_{2}, x_{4}, 1. \end{cases}$$

 D_1 is an f-derivation and an (f,g)-derivation of type 2. But, it is not an f-derivation of type 1, since $x_2 = D_1(x_2) = D_1(x_4 \odot x_4) \neq (D_1(x_4) \odot f(x_4)) \oplus (f(x_4) \odot D_1(x_4)) = 0$. Also, it is not an (f,g)-derivation of type 1, since $x_2 = D_1(x_2) = D_1(x_4 \odot x_4) \neq$ $(D_1(x_4) \odot f(x_4)) \oplus (g(x_4) \odot D_1(x_4)) = 0$. D_1 is not an f-derivation of type 3, since $x_2 =$ $D_1(1 \ominus x_3) \neq (D_1(1) \ominus f(x_3)) \wedge (f(1) \ominus D_1(x_3)) = 0$. Also, D_1 is not an (f,g)-derivation of type 3, since $x_2 = D_1(x_2) = D_1(x_4 \ominus x_1) \neq (D_1(x_4) \ominus f(x_1)) \wedge (g(x_4) \ominus D_1(x_1)) = 0$.

 D_2 is an *f*-derivation of type 1 and 2. Also, it is an (f,g)-derivation of type 1 and 2. But, it is not *f*-derivation of type 3, since $x_2 = D_2(1 \oplus x_1) \neq (D_2(1) \oplus f(x_1)) \land (f(1) \oplus D_2(x_1)) = 0$. Also, D_2 is not an (f,g)-derivation of type 3, since $x_2 = D_2(1 \oplus x_1) \neq (D_2(1) \oplus f(x_1)) \land (g(1) \oplus D_2(x_1)) = 0$.

 D_3 is an f-derivation and an (f, g)-derivation of type 1, 2 and 3.

The properties of f-derivation and (f,g)-derivation of type 2 (3, respectively) on MV-algebras is similar to the properties of f-derivation and (f,g)-derivation on lattices $(BCI \setminus BCK$ -algebras, respectively). For more details, we refer reader to [1, 5] ([10, 12, 13, 22], respectively). So, we study the properties of f-derivation and (f,g)-derivation of type 1 on MV-algebras. We prove next theorems only for (f,g)-derivations of type 1. Putting the function g equal to the function f, then the results are satisfied for f-derivations of type 1.

In sequence, by an (f, g)-derivation we mean an (f, g)-derivation of type 1.

Theorem 4.7. Let M be an MV-algebra and D be an (f,g)-derivation on M. Then, the following conditions hold:

- (1) D(0) = 0;
- (2) $D(x) \odot f(x^*) = f(x) \odot D(x^*) = D(x) \odot g(x^*) = g(x) \odot D(x^*) = 0;$

(3) $D(x) \le f(x), g(x);$ (4) $D(x) = D(x) \oplus (g(x) \odot D(1));$

for all $x, y \in M$.

Proof. (1) If $x \in M$, then

$$D(0) = D(x \odot 0) = (D(x) \odot f(0)) \oplus (g(x) \odot D(0)) = g(x) \odot D(0).$$

Putting x = 0, we obtain $D(0) = g(0) \odot D(0) = 0 \odot D(0) = 0$.

(2) If $x \in M$, then by Theorem 4.6 (3), we obtain $0 = D(0) = D(x \odot x^*) = (D(x) \odot f(x^*)) \oplus (g(x) \odot D(x^*))$. By Theorem 2.5 (1), we obtain $D(x) \odot f(x^*) = 0$ and $g(x) \odot D(x^*) = 0$. Similarly, we can prove $f(x) \odot D(x^*) = 0$ and $D(x) \odot g(x^*) = 0$.

(3) Since f and g are homomorphisms, by using (2), we have $D(x) \odot f(x)^* = D(x) \odot g(x)^* = 0$. Now, Theorem 2.6 implies that $D(x) \le f(x), g(x)$.

(4)
$$D(x) = D(x \odot 1) = (D(x) \odot f(1)) \oplus (f(x) \odot D(1)) = D(x) \oplus (f(x) \odot D(1)).$$

Lemma 4.8. Let M be an MV-algebra, D be an (f,g)-derivation on M such that f,g be isomorphisms and I be an ideal of M. Then, $D(I) \subseteq f(I) \cap g(I)$.

Proof. If $y \in D(I)$, then there is $x \in I$ such that y = D(x). Now, by Theorem 4.7 (3), we obtain $y = D(x) \leq f(x) \in f(I)$ and $y = D(x) \leq g(x) \in g(I)$. Since I is an ideal, by Lemma 2.9, f(I) and g(I) are ideals, too. Thus, $y \in f(I) \cap g(I)$. Therefore, $D(I) \subseteq f(I) \cap g(I)$.

Theorem 4.9. Let D be an (f,g)-derivation of an MV-algebra M and $x, y \in M$. If $x \leq y$, then the following hold:

- (1) $D(x \odot y^*) = 0;$
- (2) $D(x) \le f(y), g(y)$ and $D(y^*) \le f(x)^*, g(x)^*$;
- (3) $D(x) \odot D(y^*) = 0.$

Proof. (1) Suppose that $x \leq y$. Then, by Theorem 2.7, we have $x \odot y^* = 0$. Now, by Theorem 4.7 (1), we obtain $D(x \odot y^*) = D(0) = 0$.

(2) According to (1), we have $0 = D(x \odot y^*) = (D(x) \odot f(y^*)) \oplus (g(x) \odot D(y^*))$. Now, by Theorem 2.5, we have $D(x) \odot f(y^*) = 0$ and $g(x) \odot D(y^*) = 0$. Then, by Theorem 2.7, $D(x) \le f(y), D(y^*) \le g(x)^*$. Moreover, $0 = D(y^* \odot x) = (D(y^*) \odot f(x)) \oplus (g(y^*) \odot D(x))$. Hence, $D(y^*) \odot f(x) = 0$ and $g(y^*) \odot D(x) = 0$. Therefore, by using Theorem 2.5, we get $D(y^*) \leq f(x)^*$ and $D(x) \leq g(y)$.

(3) Since f is a homomorphism, $x \leq y$ implies that $f(x) \leq f(y)$. By Theorem 4.7 (3), we have $D(x) \leq f(x) \leq f(y)$. Then, $D(x) \odot D(y^*) \leq f(y) \odot D(y^*) \leq f(y) \odot f(y^*) = f(y) \odot f(y)^* = 0$. Therefore, $D(x) \odot D(y^*) = 0$.

Theorem 4.10. Let M be an MV-algebra and D be an (f,g)-derivation on M. Then, the following hold:

- (1) $D(x) \odot D(x^*) = 0;$
- (2) $D(x^*) = D(x)^*$ if and only if D(x) = f(x) or D(x) = g(x).

Proof. (1) Since $x \le x$, by putting y = x in Theorem 4.9, we get (1).

(2) Let D = f. We have $f(x^*) = f(x)^*$, for all $x \in M$, since f is a homomorphism. Hence, $D(x^*) = D(x)^*$.

Conversely, let $D(x^*) = D(x)^*$. By Theorem 4.7 (2), $D(x) \odot D(x^*) = 0$ which implies that $f(x) \odot D(x)^* = 0$. Hence, $f(x) \le D(x)$. On the other hand, by Theorem 4.7 (3), we have $D(x) \le f(x)$. Therefore, D(x) = f(x). Similarly, we can prove that if $D(x^*) = D(x)^*$, then D(x) = g(x).

Proposition 4.11. Let M be an MV-algebra and D be an (f,g)-derivation of M. If $D(x^*) = D(x)$, for all $x \in M$, then the following conditions hold:

- (1) D(1) = 0;
- (2) $D(x) \odot D(x) = 0;$
- (3) If D is isotone, then D = 0.

Proof. (1) By Theorem 4.7 (1), we have $D(1) = D(0^*) = D(0) = 0$.

(2) It follows from Theorem 4.10 (1).

(3) Since $x \leq 1$, for all $x \in M$, and D is isotone, we have $D(x) \leq D(1) = 0$, for all $x \in M$. Therefore, D = 0.

Proposition 4.12. Let M be an MV-algebra and D be a non-zero additive (f,g)derivation of M. Then, $D(B(M)) \subseteq B(M)$.

Proof. Suppose that $y \in D(B(M))$. Then, there exists $x \in B(M)$ such that y = D(x). So, $y \oplus y = D(x) \oplus D(x) = D(x \oplus x) = D(x) = y$. Therefore, $y \in B(M)$.

Theorem 4.13. Let D be an additive (f, g)-derivation of a linearly ordered MV-algebra M. Then, either D = 0 or D(1) = 1.

Proof. Suppose that D is an additive (f, g)-derivation of a linearly ordered MV-algebra M and $D(1) \neq 1$. Then, for all $x \in M$, we have $D(1) = D(x \oplus x^*) = D(x) \oplus D(x^*)$. On the other hand $D(1) = D(x \oplus 1) = D(x) \oplus D(1)$. Therefore, $D(1) = D(x) \oplus D(x^*) = D(x) \oplus D(1)$. Hence, by the additive cancellative law of MV-algebras, $D(x^*) = D(1)$, since $D(1) \neq 1$. By putting x = 1, we get 0 = D(0) = D(1). So, for all $x \in M$, $0 = D(1) = D(x \oplus 1) = D(x) \oplus D(1) = D(x)$. Therefore, D = 0.

Theorem 4.14. Let M be a linearly ordered MV-algebra and g be an isomorphism. Also, let D_1, D_2 be additive (f, g)-derivations of M. We define $D_1D_2(x) = D_1(D_2(x))$, for all $x \in M$. If $D_1D_2 = 0$, then $D_1 = 0$ or $D_2 = 0$.

Proof. Suppose that $D_1D_2 = 0$ and $D_2 \neq 0$. Then, by Theorems 4.7 (4) and 4.13, for all $x \in M$, we obtain

$$0 = D_1 D_2(x) = D_1 (D_2(x)) = D_1 (D_2(x) \oplus (g(x) \odot D_2(1)))$$

= $D_1 D_2(x) \oplus D_1 (g(x) \odot D_2(1)) = D_1 D_2(x) \oplus D_1 (g(x)) = D_1 (g(x)).$

Thus, $D_1(g(x)) = 0$, for all $x \in M$. Hence, $D_1(x) = 0$, for all $x \in M$, since g is an isomorphism. Therefore, $D_1 = 0$.

Theorem 4.15. Let M be a linearly ordered MV-algebra and D be a non-zero additive (f,g)-derivation of M. Then, $D(x \odot x) = (D(x) \odot f(x)) \oplus g(x)$.

Proof. By Theorem 4.7 (4), we have $D(x) = D(x) \oplus (g(x) \odot D(1))$, for all $x \in M$. By Theorem 4.13, D(1) = 1, since $D \neq 0$. Therefore $D(x) = D(x) \oplus g(x)$. Thus, by Theorem 2.5 (3), we have $D(x) \odot g(x) = g(x)$. Then,

$$D(x \odot x) = (D(x) \odot f(x)) \oplus (g(x) \odot D(x)) = (D(x) \odot f(x)) \oplus g(x),$$

and the proof completes.

Theorem 4.16. Every non-zero additive (f, g)-derivation of a linearly ordered MValgebra M is isotone.

Proof. Let D be a non-zero additive (f, g)-derivation of a linearly ordered MV-algebra M and $x, y \in M$ be arbitrary. If $x \leq y$, then $x^* \oplus y = 1$. Now, by Theorem 4.13, D(1) = 1, since $D \neq 0$. Therefore, $1 = D(1) = D(x^* \oplus y) = D(x^*) \oplus D(y)$ which implies that $(D(x^*))^* \leq D(y)$. On the other hand, by Theorem 4.7 (3), $D(x^*) \leq (f(x))^*$ implies

that $f(x) \leq (D(x^*))^*$. So, $f(x) \leq (D(x^*))^* \leq D(y)$. Also, we have $D(x) \leq f(x)$, by Theorem 4.7 (3). Therefore, $D(x) \leq f(x) \leq D(y)$ which implies that $D(x) \leq D(y)$. \Box

Theorem 4.17. Let M be a linearly ordered MV-algebra and D be a non-zero additive (f, g)-derivation. Then,

$$D^{-1}(0) = \{ x \in M : D(x) = 0 \}$$

is an ideal of M.

Proof. By Theorem 4.7 (1), we have D(0) = 0. Then, $0 \in D^{-1}(0)$. Now, suppose that $x, y \in D^{-1}(0)$. Then, $D(x \oplus y) = D(x) \oplus D(y) = 0 \oplus 0 = 0$ which implies that $x \oplus y \in D^{-1}(0)$. Now, suppose that $x \in D^{-1}(0)$ and $y \leq x$. Then, D(x) = 0. Hence, by Theorem 4.16, we have $D(y) \leq D(x) = 0$ which implies that D(y) = 0. Therefore, $y \in D^{-1}(0)$.

References

- M. Aşci, O. Kecilioglu and B. Davvaz, On symetric f bi-derivations of lattices, J. Combin. Math. Combin. Comput. 83 (2012), 243–253.
- 2. N. O. Alshehri, Derivations of MV-algebras, Int. J. Math. Math. Sci. (2010), Art. ID 312027, 7 pp.
- H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), 339–346.
- S. Ceran and M. Aşci, Symmetric bi-(σ, τ) derivations of prime and semi prime gamma rings, Bull. Korean Math. Soc. 43 (2006), 9–16.
- Y. Çeven and M.A. Öztürk, On *f*-derivations of lattices, *Bull. Korean Math. Soc.* 45 (2008), 701– 707.
- 6. Y. Çeven, Symmetric bi-derivations of lattices, Quaest. Math. 32 (2009), 241-245.
- 7. C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- R. Cignoli, I. Do Ottaviano and D. Mundici, Algebraic foundations of many-valued reasoning, Kluwer Academic, Dodrecht, The Netherlands, 2000.
- B. Davvaz, L. Zareyan and V. Leoreanu-Fotea, (3,3)-ary differential rings, *Mediterr. J. Math.* 9 (2012), 357–378.
- Y. B. Javed, M. Aslam, A note on *f*-derivations of *BCI*-algebras, *Commun. Korean Math. Soc.* 24 (2009), 321–331.
- 11. Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167–176.
- 12. F. Nisar, Characterization of f-derivations of BCI-algebras, EAMJ 25 (2009), 69–87.
- 13. F. Nisar, On f-derivations of BCI-algebras, J. Prime Res. Math. 5 (2009), 176–191.

- S. A. Ozbal and A. Firat, Symmetric f bi derivations of lattices, ARS Combinatoria 97 (2010), 471–477.
- M. A. Ozturk, H. Yazarh and K.H. Kim, Permuting tri-derivations in lattices, *Quaest. Math.* 32 (2009), 415-425.
- 16. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- S. Rasouli, D. Heidari and B. Davvaz, η-relations and transitivity conditions of η on hyper MValgebra, J. Mult.-Valued Logic Soft Comput. 15 (2009), 517–524.
- 18. S. Rasouli and B. Davvaz, Roughness in MV-algebras, Inform. Sci. 180 (2010), 737-747.
- S. Rasouli and B. Davvaz, Homomorphisms, ideals and binary relations on hyper-MV algebras, J. Mult.-Valued Logic Soft Comput. 17 (2011), 47–68.
- 20. G. Szász, Derivations of lattices, Acta Sci. Math. 37 (1975), 149-154.
- 21. X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Inform. Sci. 178 (2008), 307-316.
- 22. J. Zhan, Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. 11 (2005), 1675– 1684.

L. Kamali Ardekani

Department of Mathematics, Yazd University, Yazd, Iran.

Email: kamali_leili@yahoo.com

B. Davvaz

Department of Mathematics, Yazd University, Yazd, Iran. Email: davvaz@yazd.ac.ir