New results on charmonium like states at Belle

Kavita Lalwani^{1,*} for the Belle Collaboration

¹Malaviya National Institute of Technology Jaipur, INDIA

Abstract.

New results on charmonium-like states measured by the Belle experiment at the KEKB asymmetric e^+e^- collider are presented, in particular (a) Search for the Z_c pair production in $\Upsilon(1\mathrm{S}),\Upsilon(2\mathrm{S})$ decays and in e^+e^- annihilation at \sqrt{s} of 10.52, 10.58, and 10.867 GeV. (b) Measurement of the absolute branching fractions of $B^+ \to X_{c\bar{c}}K^+$ decays. (c) Observation of $\Xi_c(2930)^0$ in the updated measurement of $B^- \to K^- \Lambda_c^+ \bar{\Lambda}_c^-$. (d) Angular analysis of $e^+e^- \to D^{(*)\pm}D^{*\mp}$ process near the open charm threshold using initial state radiation.

1 Introduction

The Belle [1] is the first generation B-factory uses e^+e^- asymmetric collider at the KEKB [2] in KEK Japan. It has collected a total data sample of 711 fb⁻¹ at $\Upsilon(4S)$ resonance. The Belle has played a leading role in the charmonium spectroscopy by finding many new charmonium like states. The recent results on charmonium like states with Belle are discussed in further sections.

2 Search for Z_c Pair Production in $\Upsilon(1S)$, $\Upsilon(2S)$ decays and e^+e^- annihilation

We report the search for Z_c pair production in $\Upsilon(1S)$, $\Upsilon(2S)$ decays as well as in e^+e^- annihilation using the data sample of 5.74 fb⁻¹ at $\Upsilon(1S)$, 24.91 fb⁻¹ at $\Upsilon(2S)$, and 89.5 fb⁻¹ at $\sqrt{s} = 10.52$ GeV, 711 fb⁻¹ at $\sqrt{s} = 10.58$ GeV ($\Upsilon(4S)$ resonance), 121.4 fb⁻¹ at $\sqrt{s} = 10.867$ GeV ($\Upsilon(5S)$ resonance) with Belle detector. In this work, our aim is to observe the Z_c signals and determine the cross section dependence on the centre of mass energy s, as this study will help to understand the nature of Z_c . We have measured the production rates of $\Upsilon(1S)$ and $\Upsilon(2S)$ decay into a pair of Z_c states and the Born cross sections of $e^+e^- \to Z_c^+Z_c^-$ at $\sqrt{s} = 10.52$, 10.58, and 10.867 GeV. In the analysis, one of the Z_c^\pm decays into the final states containing a π^\pm and a J/ψ , χ_{c1} or $\psi(2S)$, while the other is simulated with inclusive decays ($e^+e^- \to u\bar{u}/d\bar{d}/s\bar{s}/c\bar{c}$). Here Z_c denotes $Z_c^+(3900)$, $Z_c^+(4200)$, $Z_{c1}^+(4050)$, $Z_{c2}^+(4250)$, $Z_c^+(4050)$, or $Z_c^+(4430)$. The signals are extracted from the invariant mass distribution of Z_c . The detail of physics analysis is described in [3]. It is found that no clear signals of Z_c are observed in the studied modes. We determined the 90% C.L. upper limits on $\mathcal{B}(\Upsilon(1S,2S) \to Z_c^+Z_c^-) \times \mathcal{B}(Z_c^+ \to \pi^+ + c\bar{c})$ and $\sigma(e^+e^- \to Z_c^+Z_c^-) \times \mathcal{B}(Z_c^+ \to \pi^+ + c\bar{c})$ at $\sqrt{s} = 10.52$, 10.58, and 10.867 GeV and these results are shown graphically in Fig. 1 (a, b).

^{*}e-mail: kavita.phy@mnit.ac.in

 $X(3915) 80 \pm 350$

0.3

Figure 1: 90% C.L. upper limits on (a) $\mathcal{B}(\Upsilon(1S,2S) \to Z_c^+ Z_c^{'-}) \times \mathcal{B}(Z_c^+ \to \pi^+ + c\bar{c})$ (b) $\sigma(e^+e^- \to Z_c^+ Z_c^{'-}) \times \mathcal{B}(Z_c^+ \to \pi^+ + c\bar{c})$, $(c\bar{c} = J/\psi, \chi_{c1}, \psi(2S))$ at $\sqrt{s} = 10.52$, 10.58, and 10.867 GeV [3].

3 Measurements of Absolute Branching Fractions of $B^+ o X_{c\bar{c}}K^+$

An independent measurement of the absolute branching fraction of $B^+ \to X(3872)K^+$ is required to understand the nature of X(3872). The physics analysis for this measurement is performed using the data sample of $772 \times 10^6 B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with Belle [4]. In the reconstruction method, one of the B-meson decays hadronically and K^+ is reconstructed from the other B-meson and we determine the missing mass of kaon using the relation $M_{miss(h)} = \sqrt{(p_{e^+e^-}^* - p_{tag}^* - p_h^*)^2}/c$, where $p_{e^+e^-}^*$, p_{tag}^* , p_h^* are four momenta of electron-positron initial state, B_{tag} and kaon, respectively. With this method of reconstruc-

Mode	Yield	$Sig.(\sigma)$	$\epsilon(10^{-3})$	$\mathcal{B}(10^{-4})$	World Avg. $\mathcal{B}(10^{-4})$ [5]
	2500 . 100	140	2.72 . 0.02	12.0 . 0.0 . 0.7	, , ,
η_c	2590 ± 180	14.2	2.73 ± 0.02	$12.0 \pm 0.8 \pm 0.7$	9.6 ± 1.1
J/ψ	1860 ± 140	13.7	2.65 ± 0.02	$8.9 \pm 0.6 \pm 0.5$	10.26 ± 0.031
χ_{c0}	430 ± 190	2.2	2.67 ± 0.02	$2.0 \pm 0.9 \pm 0.1 $ (<3.3)	$1.50^{+0.15}_{-0.14}$
Xc1	1230 ± 180	6.8	2.68 ± 0.02	$5.8 \pm 0.9 \pm 0.5$	4.79 ± 0.23
$\eta_c(2S)$	1050 ± 240	4.1	2.77 ± 0.02	$4.8 \pm 1.1 \pm 0.3$	3.4 ± 1.8
$\psi(2S)$	1410 ± 210	6.6	2.79 ± 0.02	$6.4 \pm 1.0 \pm 0.4$	6.26 ± 0.24
$\psi(3770)$	-40 ± 310	-	2.76 ± 0.02	$-0.2 \pm 1.4 \pm 0.0 (< 2.3)$	4.9 ± 1.3
X(3872)	260 ± 230	1.1	2.79 ± 0.01	$1.2 \pm 1.1 \pm 0.1 (< 2.6)$	(< 3.2)

Table 1: Summary of the branching fraction measurements for $B^+ \to X_{c\bar{c}}K^+$ [4].

tion, we have simultaneously measured various charmonium like states, which appears in the missing mass spectrum of kaon [4]. The final results on the measurement of the branching fraction of $B^+ \to X_{c\bar{c}}K^+$ are summarized in Table 1. We do not observe significant signals for X(3872) and X(3915) and have set the 90% confidence level upper limits on $\mathcal{B}(B^+ \to X(3872)K^+) < 2.6 \times 10^{-4}$ and $\mathcal{B}(B^+ \to X(3915)K^+) < 2.8 \times 10^{-4}$. The branching fraction for η_c and $\eta_c(2S)$ are also measured to be $\mathcal{B}(B^+ \to \eta_c K^+) = (12.0 \pm 0.8 \pm 0.7) \times 10^{-4}$ and $\mathcal{B}(B^+ \to \eta_c(2S)K^+) = (4.8 \pm 1.1 \pm 0.3) \times 10^{-4}$, respectively, which are the most precise results to date.

 2.79 ± 0.01 $0.4 \pm 1.6 \pm 0.0$ (<2.8)

4 Observation of $\Xi_c(2930)^0$ in B decay

An updated measurement of $\mathcal{B}(B^- \to K^- \Lambda_c^+ \bar{\Lambda}_c^-)$ is performed using the data sample of 772 \times 10⁶ $B\bar{B}$ pairs at $\Upsilon(4S)$ resonance, which is 3 times larger statistics than BaBar [6] and 2 times larger statistics than previous Belle study [7]. We reconstruct the Λ_c^+ via the $\Lambda_c^+ \to pK^-\pi^+$, pK_s^0 , $\Lambda\pi^+$, pK_s^0 , $\Lambda\pi^+\pi^-$, $\Lambda\pi^+\pi^+\pi^-$ decay channels. When a Λ_c^+ and $\bar{\Lambda}_c^-$ are combined to reconstruct a B candidate, at least one is required to have been reconstructed via the $pK^+\pi^-$ or $\bar{p}K^-\pi^+$ decay process. The detail of the event selection criteria and physics analysis method are described in [8]. Fig. 2 (a) shows B signal enhanced $K^-\Lambda_c^+$ mass spectrum. An unbinned

Figure 2: Invariant mass of (a) $K^-\Lambda_c^+$ (b) $\Lambda_c^+\bar{\Lambda}_c^-$ with Y_η (left) and Y(4660) (right) signals included in the fit [8].

simultaneous extended maximum likelihood fit is performed to the $K^-\Lambda_c^+$ invariant mass spectra for selected B and Λ_c signal events and Λ_c^+ and $\bar{\Lambda}_c^-$ mass side-bands. The fit results are shown in Fig. 2 (a). In the mass spectrum of $K^-\Lambda_c^+$, the charmed baryon state $\Xi_c(2930)^0$ is clearly observed for the first time with a statistical significance greater than 5σ . The measured mass and width of the $\Xi_c(2930)$ are $M_{\Xi_c}(2930) = [2928.9 \pm 3.0 + 0.8/ - 12.0] \, \text{MeV}/c^2$ and $\Gamma_{\Xi_c(2930)} = [19.5 \pm 8.4 + 5.4/ -7.9] \, \text{MeV}$. The yield of the $\Xi_c(2930)$ signal is measured to be 61 ± 16 events. The invariant mass of $\Lambda_c^+\bar{\Lambda}_c^-$ is shown in Fig. 2 (b, c) in which no clear Y_η (left) and Y(4660) (right) signals are observed. In addition, the charged $\Xi_c(2930)$ is also observed with an evidence greater than 3σ . The measured mass and width are consistent with neutral $\Xi_c(2930)$ [9].

5 Angular analysis of $e^+e^- \rightarrow D^{(*)\pm}D^{*\mp}$ near the open charm threshold using initial state radiation

We report a new measurement of the exclusive $e^+e^- \to D^{(*)\pm}D^{*\mp}$ cross sections as a function of the center of mass energy from $D^{(*)\pm}D^{*\mp}$ threshold through $\sqrt{s}=6.0$ GeV using the initial state radiation technique. This study will help us to understand the internal structure of cross section of such process. The analysis is based on a data sample collected with Belle detector at an integrated luminosity of 951 fb⁻¹. Due to larger data set, improved track reconstruction and additional modes used in the D and D* reconstruction allowed us to obtain more precise determination of their cross sections. The detailed description of physics analysis is discussed in [10]. The exclusive cross sections as a function of \sqrt{s} is obtained from $D^{(*)+}D^{(*)-}$ mass spectrum. The final results on the measurement of the exclusive cross section for the processes $e^+e^- \to D^+D^{*-}$, $e^+e^- \to D^{(*)+}D^{(*)-}$ are shown in the Fig. 3 (a, b). The accuracy of the cross section measurement is increased by a factor of 2 over the previous Belle study [11]. Angular analysis for the process $e^+e^- \to D^{*\pm}D^{*\mp}$ is also performed. This

Figure 3: The exclusive cross sections as functions of \sqrt{s} for (a) $e^+e^- \to D^+D^{*-}$ (b) $e^+e^- \to D^{(*)+}D^{(*)-}$ [10].

study allows us to decompose the corresponding exclusive cross section into three possible components for the longitudinally and transversely polarized $D^{*\pm}$ mesons [10].

6 Summary

Following conclusions have been made from the four physics analyses: (a) No clear signal of Z_c is observed in the $\Upsilon(1S)$, $\Upsilon(2S)$ decays as well as in e^+e^- annihilation. We have determined the 90% C.L upper limits on $\mathcal{B}(\Upsilon(1S,2S)\to Z_c^+Z_c^-)\times \mathcal{B}(Z_c^+\to \pi^+c\bar{c})$ and $\sigma(e^+e^-\to Z_c^+Z_c^-)\times \mathcal{B}(Z_c^+\to \pi^+c\bar{c})$ at $\sqrt{s}=10.52,\ 10.58$ and 10.867 GeV. (b) We have set 90% C.L upper limit of $\mathcal{B}(B^+\to X(3872)K^+)<2.6\times10^{-4}$, which is more stringent than BABAR (3.2×10^{-4}) [12]. We have also measured $\mathcal{B}(B^+\to \eta_c K^+)=(12.0\pm0.8\pm0.7)\times10^{-4}$ and $\mathcal{B}(B^+\to \eta_c(2S)K^+)=(4.8\pm1.1\pm0.3)\times10^{-4}$, which are the most accurate measurements to date. (c) In the updated measurement of $B^-\to K^-\Lambda_c^+\Lambda_c^-$, the $\Xi_c(2930)^0$ is clearly observed for the first time with statistical significance greater than 5σ . (d) The accuracy of the cross section measurement is increased by a factor of 2 over the previous Belle study [11].

References

- [1] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Meth. A 479, 117 (2002)
- [2] S. Kurokawa, E. Kikutani, Nucl. Instrum. Meth. A **499**, 1 (2003)
- [3] S. Jia *et al.* (Belle Collaboration), arXiv:1805.02308v1 [hep-ex], accepted in Phys. Rev. D
- [4] Y. Kato et al. (Belle Collaboration), Phys. Rev. D 97, 012005 (2018)
- [5] C. Patrignani et al. (PDG Collaboration), Chin. Phys. C 40, 100001 (2016)
- [6] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 77, 031101(R) (2008)
- [7] N. Gabyshev et al. (Belle Collaboration), Phys. Rev. Lett. 97, 202003 (2006)
- [8] Y. B. Li et al. (Belle Collaboration), Eur. Phys. J. C 78, 252 (2018)
- [9] Y. B. Li *et al.* (Belle Collaboration), arXiv:1806.09182 [hep-ex], submitted to Eur. Phys. J. C
- [10] V. Zhukova et al. (Belle Collaboration), Phys. Rev. D 97, 012002 (2018)
- [11] G. Pakhlova *et al.* (Belle Collaboration), Phys. Rev. Lett. **98**, 092001 (2007)
- [12] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 96, 052002 (2006)