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Previous studies have reported conflicting results regarding the effect of direct electrical
stimulation of the human hippocampus on memory performance. A major function of
the hippocampus is to form associations between individual elements of experience.
However, the effect of direct hippocampal stimulation on associative memory remains
largely inconclusive, with most evidence coming from studies employing non-invasive
stimulation. Here, we therefore tested the hypothesis that direct electrical stimulation of
the hippocampus specifically enhances hippocampal-dependent associative memory. To
test this hypothesis, we recruited surgical patients with implanted subdural electrodes to
perform a word pair memory task during which the hippocampus was stimulated. Our
results indicate that stimulation of the hippocampus during encoding helped to build
strong associative memories and enhanced recollection in subsequent trials. Moreover,
stimulation significantly increased theta power in the lateral middle temporal cortex
during successful memory encoding. Overall, our findings indicate that hippocampal
stimulation positively impacts performance during a word pair memory task, suggesting
that successful memory encoding involves the temporal cortex, which may act together
with the hippocampus.

Keywords: brain stimulation, memory enhancement, recollection, hippocampus, theta power, lateral temporal
cortex

INTRODUCTION

The hippocampus plays a pivotal role in associative memory (Olsen et al., 2012; Yonelinas,
2013), serving as a hub that supports the binding of information (Battaglia et al., 2011); it is
thus regarded as a core region for stimulation in attempts to manipulate the memory circuit
(Eichenbaum et al., 2007). Some previous studies have reported that direct hippocampal
stimulation exerts negative effects (Coleshill et al., 2004; Lacruz et al., 2010; Jacobs et al.,
2016; Goyal et al., 2018) or no effect (Suthana et al., 2012) on memory, whereas others
have reported positive effects (Berger et al., 2011; Hampson et al., 2012; Fell et al., 2013).
However, several non-invasive stimulation studies have reported that hippocampal stimulation
enhances paired associative memory (Wang et al., 2014; Wang and Voss, 2015). In one
recent study, hippocampal-targeted TMS enhanced associative memory. In contrast, item
memory was unaffected, demonstrating a selective influence on associative memory vs.
item memory (Tambini et al., 2018). Specifically, multiple-day electromagnetic stimulation
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has been shown to enhance memory recollection, by exerting
network-level effects on memory precision (Nilakantan et al.,
2017). However, as current evidence mostly comes from indirect
stimulation of the hippocampus, the effect of direct hippocampal
stimulation on associative memory has yet to be determined.

Recollection is defined as the retrieval of contextual details
associated with a previously experienced event (Yonelinas,
2013). The cognitive process of recollection involves a set of
brain regions termed the ‘‘recollection network’’ (Rugg and
Vilberg, 2013). Numerous studies have shown both critical and
necessary roles for structures outside of the medial temporal lobe
(MTL) in memory (Buzsáki, 1996; Eichenbaum, 2000; Poldrack
et al., 2001; Ritchey et al., 2015; Moscovitch et al., 2016). In
particular, the lateral temporal cortex plays a key role in episodic
memory processing (Chao et al., 1999). A recent study using
lateral temporal cortical stimulation demonstrated enhanced
verbal memory performance, presenting it as a viable target
for exploring memory enhancement (Kucewicz et al., 2018).
Furthermore, functional imaging changes have been observed in
this region during the encoding stage of explicit verbal memory
(Casasanto et al., 2002; Fletcher and Tyler, 2002). Indeed,
neuronal activity in the human lateral temporal cortex has been
shown to increase during the learning of associations between
word pairs, suggesting that human associative learning is related
to the activity of a specific population of ‘‘association’’ neurons
(Ojemann and Schoenfield-McNeill, 1998; Ojemann et al., 2002,
2009).

Previous human intracranial electroencephalogram (iEEG)
studies have reported that neural oscillatory changes in memory-
related neocortical regions are accompanied by successful
memory formation relative to unsuccessful encoding (Burke
et al., 2013; Watrous et al., 2013; Lega et al., 2016). Specifically,
low-frequency oscillations entrain the rhythm of behavioral tasks
to optimize energy-efficient performance (Lakatos et al., 2008;
Daitch et al., 2013), while changes in theta power enhance
episodic memory (Rutishauser et al., 2010; Addante et al.,
2011; Lega et al., 2012; Backus et al., 2016; Sweeney-Reed
et al., 2016). In the present study, we sought to investigate
changes in activity within the neocortical region (i.e., the
lateral temporal cortex) during encoding. We presumed that
low-frequency activity in the temporal neocortex reflects the

effects of stimulation-induced activity, indicating that verbal
episodic memory encoding involves a network of neocortical
structures that may act interdependently with the hippocampus.

To test this hypothesis, we applied direct hippocampal
stimulation in surgical patients with epilepsy based on methods
described in previous studies (Suthana et al., 2012; Jacobs et al.,
2016; Hansen et al., 2018). However, we utilized a stimulation
current with a higher amplitude (2 mA) than that used in the
aforementioned studies (0.1–1.5 mA). In addition, we adopted
a word pair memory task that involved recruitment of the
hippocampus during encoding (Axmacher et al., 2008; Hamani
et al., 2008). To the best of our knowledge, the present study
is the first of its kind utilizing a word pair memory task,
which enabled us to compare the ability to remember a learning
episode (recollection) with the capacity to judge items as familiar
(familiarity; Manns et al., 2003; Mickes et al., 2010).

MATERIALS AND METHODS

Patients
The present study included six patients (four women; mean
age: 33.6 ± 10.8 years) with drug-resistant epilepsy who had
been implanted with intracranial electrodes to determine the
area of the seizure onset zone. Human subjects: this study was
approved by the Institutional Review Board of Seoul National
University Hospital (H-1407-115-596). All subjects provided
written informed consent to participate in the study. A single
mid-hippocampal electrode had been implanted in each patient
based on the expertise of neuroradiologists experienced in
neuroanatomy (Table 1).

Electrode Localization
Electrodes were implanted for clinical purposes only. Depending
on clinical need, electrodes (AdTech Medical Instrument
Corporation, Racine, WI, USA) were either placed at depth
within the MTL (platinum, surface area of 0.059 cm2, placed
6 mm apart) or positioned for subdural electrocorticography
(ECoG) on the cortical surface (diameter of 4 mm, placed
10 mm apart) with stainless steel contacts. Prior to electrode
implantation, each patient underwent an magnetic resonance
imaging (MRI) scan. Additional MRI and CT scans were

TABLE 1 | Patient demographics, clinical characteristics, electrode locations, and stimulation parameters.

Patient Demographics Clinical characteristics Stimulation parameter

Age IQ/MQ Seizure onset Pathology Resection Epilepsy type Anode Cathode

1 25–30 97/112 ATG, TP PHG reactive gliosis PHG TLE R. mHP LWM
2 25–30 78/81 TP, STG Temporal lobe FCD L. ITG TLE L. mHP LWM
3 20–25 110/60 Amygdala FCD heterotopia PHG, Amygdala TLE R. mHP LWM
4 30–35 91/90 STG HP neuronal loss ATL, AH TLE L. mHP LWM
5 50–55 77/94 PHG DG dispersion, HP neuronal loss HP TLE L. mHP LWM
6 25–30 85/111 OFC HP neuronal loss Amygdala, PHG TLE R. mHP LWM

Abbreviations: IQ, intelligence quotient; MQ, memory quotient; R., right; L., left; HP, hippocampus; mHP, mid-hippocampus; LWM, limbic white matter; PHG, parahippocampal gyrus;
DG, dentate gyrus; ATG, anterior temporal gyrus; STG, superior temporal gyrus; ITG, inferior temporal gyrus; TP, temporal pole; TLE, temporal lobe epilepsy; FCD, focal cortical
dysplasia; ATL, anterior temporal lobe; AH, anterior hypothalamus; OFC, orbitofrontal cortex. Patient demographic data are presented together with clinical observations regarding
identified seizure onset zones, pathology in patients who underwent corresponding surgery, and neuropsychological test results. A clinical psychologist employed the Wechsler Adult
Intelligence Scale-Korean version (K-WAIS-IV) and the MQ of the Rey-Kim Memory test to assess each patient’s IQ. Anode and cathode locations indicate brain regions of stimulation in
each patient. In all patients, the stimulation location was either the left or right mid-hippocampus. The mean current was 2 mA, and the mean charge density was 360 µC/cm2/phase.
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FIGURE 1 | (A) Location of stimulation. The green crosshair denotes the location of the stimulation electrode in the right mid-hippocampus (sagittal and coronal,
respectively) in Patient 1 (left two panels, anode and cathode, respectively) and in the left mid-hippocampus in Patient 2 (right two panels). (B) The hippocampal
subregions in each patient and one hippocampal electrode in the region of interest.

performed following electrode implantation. Patients underwent
preoperative MR imaging in a Magnetom Trio, Magnetim
Verio 3-tesla (Siemens, München, Germany) or Signa 1.5-tesla
scanner (GE, Boston, MA, USA). CT images were recorded
using a Somatom sensation device (64 eco; Siemens München,
Germany). Each patient had at least one hippocampal electrode
in the region of interest. Target hippocampal electrodes for
stimulation (anode) were inserted into the mid-body of the
hippocampus gray matter using a temporo-lateral approach.
Given the electrode contact space within the MTL, the pairing
electrode (cathode) of stimulation was identified in the temporal
white matter (Figure 1A). A neuroradiologist and neurosurgeon
experienced in neuroanatomical localization identified bipolar
pairs of electrodes within medial lobe sites, including the
hippocampus, based on thin-section post-implantation CT
scans and cross-sectional images. For visualization, individual
preoperative MR images and postoperative CT images were
co-registered as previously described (Avants et al., 2008),
using CURRY software version 7.0 (Compumedics Neuroscan,
Charlotte, NC, USA). In addition, the hippocampal subregions
were localized using a manual segmentation process (Boccardi
et al., 2015; Figure 1B).

Stimulation Procedure
Stimulation was only administered during the encoding phase,
as in previous studies (Suthana et al., 2012; Jacobs et al., 2016).
During the task, the stimulation was configured to provide a
bipolar stimulation between a pair of neighboring electrodes.
Stimulation was delivered with a Grass S12X cortical stimulator
(Natus, Warwick, RI, USA), using the following parameters: a
frequency of 50 Hz, a balanced biphasic squared-wave pulse
of 300 µs per phase, a 2-mA current, and total energy
between 30 and 57 µC/cm2/phase. These parameters have been
demonstrated to be safe and well-tolerated in patients with
epilepsy (Kuncel and Grill, 2004; Boon et al., 2007), and the
energy level was kept well below the safe maximum used for
long-term and short-term stimulation (30 and 57, respectively;
Agnew andMcCreery, 1990; Gordon et al., 1990). The impedance
of the depth electrode was always between 1 and 10 K�. Patients
could not indicate when stimulation was applied.

Verbal Associative Memory Task
All stimuli were presented on a laptop computer, with Stim
2 Gentask (Neuroscan, Charlotte, NC, USA) used to present the
word stimuli. We used a word pair memory task (Figure 2),
which has been associated with recruitment of the MTL during
memory encoding (Axmacher et al., 2008; Hamani et al., 2008).
All word pairs consisted of two concrete Korean nouns with
a mean frequency value of 105.11 (SD = 3.35, IQR = 122.5)
according to the Korean Category Norms: Survey on Exemplar
Frequency Norm, Typicality, and Features (Rhee, 1991) and
the 2nd version of the Modern Korean Words database (Kim,
2005). Prior to the experimental session, a brief practice block
of trials was administered to ensure that patients understood
the task. For encoding, patients were asked to study 120 pairs
over two sessions. Each word-pair trial began with a fixation
cross appearing on the screen for 1 s, followed by the pair that
was displayed for 4 s. Each session consisted of two blocks. The
stimulation was randomized to one of the two blocks in each
session. To ensure deep encoding, patients were instructed to
report, by pressing a keyboard button with their index finger,
whether they judged the word on the screen as ‘‘pleasant’’ or
‘‘unpleasant’’ (de Vanssay-Maigne et al., 2011). Following the
encoding period, patients rested for 10 min and watched a
4-min video for distraction, to prevent inner rehearsal. During
the retrieval period, patients were presented with 160 word
pairs, including 40 new word pairs, 60 intact word pairs,
and 60 rearranged word pairs. No word appeared twice, and
patients were not exposed to the same experimental task more
than once. Patients were asked to respond, by pressing one of
three keyboard buttons, as accurately and quickly as possible
depending on the presentation of the pairing options: same
pairing (‘‘intact’’), altered word pairing (‘‘rearranged’’), or new
pairing (‘‘new’’).

Data Acquisition and Analysis
We recorded iEEG data including depth and ECoG using a
64-channel digital video monitoring system (Telefactor Beehive
Horizon with an AURA LTM 64- and 128-channel amplifier
system; Natus Neurology, West Warwick, RI, USA) digitized at
a sampling rate of 1,600 Hz and filtered from 0.1 to 60 Hz. These
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FIGURE 2 | Timeline of the memory paradigm. The whole task consisted of three study periods: encoding, rest (distractor), and retrieval. Stimulation was delivered
on-and-off at 50 Hz for 5 s during the encoding phase only and was randomly assigned to one of the two blocks in a single session. Lightning bolts denote periods
of stimulation. In the encoding phase, the first word pair on the screen denotes “glass” (left) and “mirror” (right).

iEEG data were analyzed using MATLAB software (version
2015b, Mathworks, Natick, MA, USA). We first performed
manual artifact rejection of the signal for every electrode.
Channels affected by artifacts were excluded from subsequent
analyses. For example, individual stimulus response trials were
precluded if there were any motion artifacts. Signals exhibiting
stimulation artifacts and epileptic-form spikes were also excluded
from further analyses. The recorded data were re-referenced
to the common average reference (CAR). To quantify specific
changes in theta rhythm during stimulation for the encoding
period of the memory task, we applied time-frequency analysis
and used Morlet wavelet transformation (wave number: 2.48)
to obtain a continuous-time complex value representation of
the signal. Transformed data were squared to calculate power
and normalized by the mean and standard deviation of the
pre-stimulus baseline power (i.e., resting periods prior to
the task) of each frequency. Data were then epoched with
a window of 0–4 s from the onset of paired-word trials
and aligned with 50-Hz stimulation, beginning at the onset
of the memory task. In our experiment, stimulation ‘‘on’’
and ‘‘off’’ blocks were conducted separately. To avoid direct
stimulation artifacts, the OFF periods of trials in the stimulation
‘‘on’’ block were used for the stimulation trials (Figure 2).
Stimulation trials thus included 30 stimulation trials from the
total 60 word pairs across the two stimulation ‘‘on’’ blocks,
while the non-stimulation trials included 60 word pairs across
the two stimulation ‘‘off’’ blocks. We compared the averaged
power of each condition across a frequency range of 3–7 Hz
for correctly and incorrectly encoded memory items. For
visualization, normalized data were averaged across all trials
for correct and incorrect trials, according to each condition.
We extracted t-scores to perform independent two-sample
t-tests.

Statistical Analysis
Statistical tests were performed using the Statistical Package
for Social Sciences v12.0 K (SPSS) and MATLAB (Mathworks).
Our primary measurement of memory performance was
the percentage of correctly recognized trials in each block.
Paired non-parametric rank-sum t-tests were used to compare
behavioral performance between conditions. The level of
statistical significance was set at p < 0.05. For activity in
the lateral temporal cortex, independent two-sample t-statistics
(∗∗p < 0.01 or ∗p < 0.05) were used to compare the average
power amplitudes of iEEG waveforms between correctly and
incorrectly recognized trials during the stimulation ‘‘on’’ and
‘‘off’’ periods. Prior to significance testing, normality was
assessed using the Lilliefors test (p > 0.01, for all datasets). For
multiple comparisons among theta power levels, the Bonferroni
correction procedure was employed.

RESULTS

Enhancement of Memory Recollection
In the behavioral analysis, we quantified the effect of stimulation
on memory performance in two ways: first, we determined
the hit rate of associative memory; second, we examined
whether stimulation affected the ability to remember a learning
episode (recollection) or the capacity to judge items as
familiar (familiarity). At the behavioral level, individual memory
performance was measured during the encoding phase of the
word pair memory task during ‘‘on’’ and ‘‘off’’ hippocampal
stimulation. The proportion of intact word pairs correctly
identified as intact and rearranged word pairs correctly
identified as rearranged were regarded as correct responses.
The average accuracy values for all patients suggested that
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FIGURE 3 | Memory performance. (A) Lines connect each patient’s “on” and “off” data point (left); data from all six patients were averaged (right). Accuracy refers to
the proportion of correctly recognized words during the stimulation “on” and stimulation “off” periods. (B) Lines connect each patient’s “on” and “off” data for the
recollection index (left); data were averaged across all six patients (right). (C) Familiarity index (D). Difference scores of the stimulation effect of the two conditions.
FAM indicates the familiarity index and REC indicates the recollection index. ∗p < 0.05. Error bars indicate the standard error of the mean (SEM). n.s., not significant.

stimulation induced overall improvements in pair recognition
memory (Figure 3A, Wilcoxon rank sum test, p = 0.027).
Consistent increases in total raw scores and word accuracy
were observed during the ‘‘on’’ period. The stimulation order
was randomized across the six patients and we could not
find any behavioral tendency regarding stimulation order
(Table 2).

As word-to-word associations may reflect one of two
independent types of retrieval (recollection of a specific
experience or a sense of familiarity; Giovanello et al., 2006;
Quamme et al., 2007), we used a similar procedure to
measure hippocampal-dependent memory to obtain pure

estimates of general memory and familiarity (Yonelinas and
Jacoby, 1995; Cohn and Moscovitch, 2007; Hamani et al.,
2008).

We calculated the recollection index, which reflects the
hit rate of associative memory (i.e., intact pairs correctly
identified as intact and rearranged pairs correctly identified as
rearranged) minus the false alarm rate in associative memory
(i.e., rearranged pairs identified as intact). The familiarity index
was calculated by dividing the false alarm rate in associative
memory (i.e., rearranged pair identified as intact) by 1 minus
the recollection index. Comparisons between the recollection
and familiarity indices revealed that only recollection was

TABLE 2 | Word pair memory task behavioral results.

Subject Stimulation side Stimulation block Proportion of correct
pairs (ON/OFF)

Proportion of
correct pairs

Performance (%)

“intact” “rearranged” “new” ON OFF

Subject #1 Right 1,3 1.04 1.09 0.6 62 58
Subject #2 Left 1,4 1 2.17 0.63 57 45
Subject #3 Right 2,3 1.04 1.14 0.78 67 62
Subject #4 Left 2,4 1.04 1.14 0.9 83 77
Subject #5 Left 1,4 1.05 1.07 0.53 62 58
Subject #6 Right 2,3 1.06 1.47 0.83 73 58
Averaged - 1.04 1.35 0.71 67 60

Word pair memory task scores were obtained with stimulation randomly assigned to the “on” of “off” condition. Stimulation side indicates brain regions where each subject received
stimulation. The proportion of correct pairs of stimulation is shown across “on” and “off” stimulation conditions for intact and rearranged pairs. The proportion of correctly identified
new pairs. Performance indicates the proportion of correctly recognized pairs (intact pairs correctly identified as intact and rearranged pairs correctly identified as rearranged) during
“on” and “off” stimulation. Average across all six patients is shown in bold.

TABLE 3 | Recollection vs. familiarity index for stimulation “on” and “off”.

Subject Stimulation block d’ (β) Recollectiona Familiarityb

Stimulation “on” Stimulation “off” Stimulation “on” Stimulation “off”

Subject #1 1,3 0.51 (1) 0.33 0.27 0.43 0.43
Subject #2 1,4 1.01 (1) 0.38 0.22 0.30 0.30
Subject #3 2,3 0.98 (1) 0.57 0.50 0.11 0.13
Subject #4 2,4 0.8 (1) 0.75 0.55 0.38 0.46
Subject #5 1,4 1.23 (1) 0.38 0.28 0.28 0.42
Subject #6 2,3 0.7 (1) 0.72 0.47 0.06 0.22
Averaged - 0.87 (1) 0.52 0.39 0.30 0.34

Abbreviation: d’ indicates the discriminability index, and β denotes the decision bias index. Associative verbal memory tasks were performed with stimulation randomly assigned to
the “on” or “off” condition. Recollectiona indicates the proportion of correctly recognized intact and rearranged words—the proportion of falsely recognized words. Familiarityb is the
percentage of falsely recognized rearranged words in intact pair recognition/[1-recollection]. Increased indices during stimulation are shown in bold.
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FIGURE 4 | (A) Individual differences in theta power in the middle temporal
cortex over 4 s for correctly remembered words during the “on” and “off”
periods. (B) Individual differences in theta power in the middle temporal
cortex over 4 s for incorrectly remembered words during the “on” and “off”
periods. ∗∗p < 0.01, ∗p < 0.05, corrected. Error bars indicate the standard
error of the mean (SEM).

markedly and consistently increased in all patients during the
stimulation ‘‘on’’ period (Figures 3B,C, Wilcoxon rank sum test,
p = 0.027 and p = 0.068, respectively; Table 3). We observed
significant differences in recollection but not familiarity indices;
based on the stimulation, the difference index for the two
conditions showed statistical significance (Wilcoxon rank sum
test, p = 0.028, Figure 3D).

Stimulation Induces Theta Increases in the
Lateral Middle Temporal Cortex During
Correctly Remembered Encoding Trials
To assess whether neural population signals from the temporal
neocortex regions change depend on the episodic memory

changes, we performed time-frequency analyses for each
stimulation condition. We tested whether the lateral middle
temporal cortex displayed stimulation-induced theta activities; as
indication of the role of theta activation in memory performance,
we compared oscillatory power between correctly encoded trials
and incorrectly encoded trials.

We found that the baseline corrected theta power (3–7 Hz)
in the middle temporal cortex averaged across trials for each
patient was greater during the ‘‘on’’ period than during the
‘‘off’’ period. Corrections for multiple comparisons revealed that
the theta amplitude in the lateral temporal cortex significantly
increased during the presentation of word stimuli (4 s) during
the ‘‘on’’ period in all five patients for which data from
lateral temporal recording electrodes were available (two-
sample t-test, Bonferroni-corrected: p = 0.035; p = 0.002;
p = 0.032; p = 0.008; p = 0.042, for patients 1–5, respectively,
Figure 4A). Patient 6 did not have lateral temporal electrodes.
We also compared incorrectly remembered encoding trials
between ‘‘on’’ and ‘‘off’’ stimulation periods. There was no
significant increase in theta power in the lateral temporal cortex
during the stimulation ‘‘on’’ period (p = 0.040; p = 0.089;
p = 0.075; p = 0.051; p = 0.067, for patients 1–5, respectively,
Figure 4B).

Next, we confirmed that these theta power differences could
only be detected in the temporal cortex. We extracted the
theta power from all electrodes during the memory encoding
phase of the ‘‘on’’ and ‘‘off’’ stimulation periods, and then
tested for differences (Figure 5A). Topographical maps were
constructed to visualize differences in theta power between the
correct and incorrect responses for both the ‘‘on’’ and ‘‘off’’

FIGURE 5 | (A) Location of the target in the lateral temporal cortex in the sagittal plane following co-registration of preoperative high-resolution MRI and
postoperative CT images (not illustrated), for patients 1–5, respectively. Spheres indicate the location of the recording site. Topographical maps of differences in theta
power between the correct and incorrect responses during both the “on” and “off” condition. The yellow sphere denotes locations in which significant increases in
theta power were observed in the “on” condition that were higher than those observed in the “off” condition. The yellow sphere indicates the region for the
time-frequency map in panel B. Some electrode grids/strips were excluded because they were not visible. (B) Time-frequency map comparing correctly and
incorrectly remembered pairs during the “on” and “off” period for five patients. On the x-axis, 0 s indicates the onset of the memory task. During the “on” condition,
theta (3–7 Hz) power was significantly increased during the 4 s of word presentation (p < 0.05, corrected) for successfully recognized trials. In contrast, no significant
increases in theta power were observed during the “off” condition (p > 0.05, corrected).

Frontiers in Human Neuroscience | www.frontiersin.org 6 February 2019 | Volume 13 | Article 23

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Jun et al. Direct Hippocampal Stimulation and Memory

conditions for each patient’s electrodes. The results show that
prominent theta power differences are only found in the middle
temporal cortex. The individual normalized time-frequency
topographical maps for the stimulation ‘‘on’’ period showed
an overall increase in theta power in the middle temporal
cortex (two-sample t-test, Bonferroni-corrected: p < 0.05,
Figure 5B, upper panel). Conversely, no significant increase
in theta power was observed for the contrast map in the
middle temporal cortex during the stimulation ‘‘off’’ period (two-
sample t-test, Bonferroni-corrected: p> 0.05, Figure 5B, bottom
panel).

DISCUSSION

In the present study, we examined the effect of hippocampal
stimulation on a word pair memory task. Our findings
indicate that such stimulation enhanced memory performance
in individual patients, and that this increase in pair recognition
was reflected in recollection estimates rather than familiarity
estimates. Furthermore, our findings show that theta power
increased in the middle temporal cortex during the stimulation
condition (i.e., during encoding)—an effect that was not
observed in the stimulation ‘‘off’’ condition, suggesting that
direct stimulation involves the middle temporal cortex during
successful memory encoding.

Although the present study utilized stimulation parameters
(i.e., frequency and pulse characteristics) similar to those used in
previous studies (Suthana et al., 2012; Jacobs et al., 2016; Hansen
et al., 2018), there are some discrepancies between the present
and earlier work; these can probably be attributed to minor
differences in stimulation parameters (i.e., increased duration
and intensity) as well as different memory paradigms. While
our study tested associative word-pair memory, an earlier study
tested single-word item memory (Jacobs et al., 2016).

There is thus the possibility that task-related differences
in hippocampal activity have affected the behavioral outcome
of the hippocampal stimulation. A robust body of evidence
indicates that the hippocampus supports the encoding of
associative or relational information (Davachi, 2006; Diana
et al., 2007; Mayes et al., 2007; Battaglia et al., 2011; Olsen
et al., 2012; Yonelinas, 2013). Moreover, selective hippocampal
lesions severely impaired associative memory rather than item
memory itself in humans (Turriziani et al., 2004) as well as in
primates (Zola-Morgan et al., 1986; Pascalis and Bachevalier,
1999). Differences in excitability of neurons could also play a
key role in determining the behavioral outcome of stimulation
effects. Indeed, neuronal activity in the human hippocampus is
significantly higher for associative paired-item memory than for
single-item memory (Cameron et al., 2001).

As mentioned earlier, previous studies using non-invasive
stimulation have described the role of the hippocampus in
associative memory (Wang et al., 2014; Wang and Voss,
2015) and memory precision (Nilakantan et al., 2017), and
demonstrated its selective influence on associative vs. item
memory (Tambini et al., 2018). However, these studies did
not provide confirmatory evidence of hippocampal-dependent
functions, since non-invasive stimulation is limited to delivering

stimulation specifically to the hippocampus itself. Our current
findings, however, provide direct evidence for a causal role of the
human hippocampus in associative memory. Further expanding
the knowledge provided by prior studies, our results suggest
that direct hippocampal stimulation can enhance hippocampal-
dependent associative binding.

Stimulation intensity and duration may be important
regarding whether memory will be disrupted or enhanced by
the activity in the hippocampus. A previous study suggested
that optimal stimulation is based upon the current level,
rather than the frequency of stimulation (Hescham et al.,
2013). Furthermore, the duration of stimulation may lead to
changes in the total energy delivered to the tissues (Moro
et al., 2002). Additionally, different stimulation parameters
have been associated with both increases and decreases in
downstream brain activity in previous electrophysiology and
functional MRI (fMRI) studies (Logothetis et al., 2010). We
speculate that the positive effect of stimulation on behavior
in the present study may be due to both the memory task
and the precision of the stimulation parameters. As we were
unable to directly address the controversy presented in the
literature, further studies are required to explore the precise effect
of stimulation on neural activity and variations in behavioral
outcomes.

Our behavioral results indicate that hippocampal stimulation
enhances memory performance, particularly recollection ability
that retains specificity, and that the level of detail depends
on the hippocampus. The hippocampus integrates elements of
memory representations associated with the qualitative aspects
of an event during encoding (Yonelinas, 2013), and it is
known to be crucial for recollection, but not for familiarity
(Davachi and Wagner, 2002; Giovanello et al., 2003; Addis
et al., 2004). Previous neurophysiological and neuroimaging
studies have indicated that the hippocampus is an essential
region for remembering context-specific details (recollection;
Eldridge et al., 2000; Moscovitch and McAndrews, 2002). One
non-invasive stimulation study reported that hippocampus-
targeted cortical stimulation enhances highly specific memory
recollection (Nilakantan et al., 2017). Taken together, these
findings demonstrate that direct stimulation of the hippocampus
during encoding boosts memory recollection.

Furthermore, our results reveal that hippocampal-dependent
memory is correlated with the theta activity of the lateral
temporal cortex during memory encoding in the stimulation
‘‘on’’ condition. A previous functional MRI (fMRI) study
investigating associative memory tasks indicated that the
hippocampus supports strong recollection, with additional
contributions from several neocortices (Wais, 2011). There is
growing consensus that direct electrical stimulation regulates the
physiology across a network connected to the stimulation site
(McIntyre and Hahn, 2010; Kim et al., 2016; Ezzyat et al., 2017).
Stimulation may thus be mediated via cortico-hippocampal
communication (Acheson and Hagoort, 2013; Wang et al.,
2014).

The present study focused on activity changes in the
low-frequency band (i.e., theta rhythm), for several reasons.
For example, low-frequency power may maximize excitability
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and enhance subsequent memory encoding in cortical regions
in the presence of word pairs (Lakatos et al., 2008; Haque
et al., 2015). Theta rhythms generate large and synchronous
membrane-potential fluctuations in many neurons throughout
brain-wide networks (He et al., 2008; Buzsáki et al., 2013). Hence,
the rhythm may be propagated to distant brain regions via
long-range communication (Gloveli et al., 2005). Accordingly,
our data revealed a concomitant increase in theta power in
the temporal cortex during correctly remembered trials in
stimulation ‘‘on’’ conditions. In particular, the hippocampal
stimulation enhanced recollection ability. Although recollection
was not specifically tested as in the present study, a previous
study pointed out orchestration in theta phase-synchrony
between the MTL and a distributed neocortical memory
network for vividly remembered experiences (Fuentemilla et al.,
2014).

Despite their critical role in human cognition, distributed
networks of oscillatory activity in memory have remained largely
uncharacterized. Our findings reveal stimulation-mediated theta
oscillatory changes in the human temporal neocortex, thereby
broadening our understanding of stimulation-induced neural
correlates in one of the distributed networks that may act
together with the hippocampus.

The present study has some limitations that should be
noted, including the limited range of targets and parameters
explored. Furthermore, as we only investigated six patients,
we cannot claim with any certainty that the statistical power

was sufficient. Despite these limitations, however, we observed
a consistent positive effect of stimulation in all six patients,
using a verbal associative memory paradigm. Further studies
involving larger samples of patients are required and more
in-depth analyses considering variable stimulation parameters
are warranted.
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