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Abstract. Nowadays, human joints specifically movable are active research

topics. The lack of effective replacements and the inefficient natural healing of

these joints hinders any athlete from pursuing his career if injured in his joints.

Therefore, researchers are testing innovative soft materials and biphasic materi-

als as replacements of human joints. However, the lack of effective mechanical

modeling is slowing the development of new replacements. In this work, we

tackle the mechanical modeling of the synovial joint in a human knee. The

tibiofemoral joint is modelled during impact. This joint is basically made of

a cartilage, a meniscus (both a biphasic material) and the synovial fluid. The

modeling is performed using Brinkman equation. However, the rich physics in-

volved in the thickness direction requires a large number of degrees of freedom

in the mesh to represent the physical phenomenon taking place in a knee joint.

Thus, the use of model order reduction techniques appears to be an appealing

approach in this situation. In fact, the proper generalized decomposition re-

duced the number of degrees of freedom by using domain decomposition. The

result of this work shows the pressure and fluid flow in the synovial joint under

impact. A post treatment of the solution estimates the force held by each of the

fluid and solid components of the cartilage joint. This model could be used to

the human knee to estimate its components’ velocities and pressure fields while

performing an activity.

1 Introduction

The knee is a type of synovial joint or a modified hinge joint. Its three functional compart-

ments permit flexion and extension as well as slight internal and external rotation. These

compartments make the knee a complex joint, which is vulnerable to a variety of injuries

such as fractures, dislocations, sprains, and ligament tears that could be healed through reha-

bilitation exercises or may lead to surgery for correction.

This study focuses on modeling the knee joint under vertical impact and the derived model

can be used for any activity. The tiobiofemoral joint is modeled in order to analyze the dis-

tribution of forces inside the joints and ligaments and thus determine the risk level for injury.

This study models the tibia and the femur and their corresponding articular cartilage as well

as the meniscus as two biphasic cylinders. In between those two lies a synovial fluid that

dampens the contact between them.

Biphasic materials are made of a fluid component in a solid mesh with low permeability,

pressurizing the fluid and holding the fluid flow out of the joint [1]. Therefore the fluid pres-

surization is believed to be one of the most important load carrying mechanisms of the joint

[2, 3]. Moreover, modeling of biphasic material is not mastered yet. Recent works have

focused on modeling biphasic materials, human cartilage and their mimics, using advanced

numerical or analytical techniques [4, 5]. However, the rich physics in the thickness direction

(pressure discontinuity, presence of solid calcium brushes...) requires a tremendous number

of degrees of freedom to reproduce with high fidelity the involved physics. Therefore, using

the Proper Generalized Decomposition (PGD) model order reduction technique appears as

an appealing approach. Many model order reduction techniques exist, all based on domain
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decomposition, however the PGD is the only one qualified as an “a priori” model order re-

duction technique [6, 7].

The use of the PGD in this work will allow the simulation of the full 3D domain as a sequence

of 2D×1D problems [8, 9]. We model the knee joint using the Brinkman equation as detailed

in section 2, taking into consideration the cartilage brush permeability, later on we show the

simulation results clearly illustrating the pressure discontinuity on the domain interface.

2 Modeling the knee joint

Biphasic materials can be modeled using the Brinkman equations [10]. Neglecting the poros-

ity changes, the Brinkman equations can be written as:{
∇ (η∇v) −

μ

K
v − ∇P = 0

∇ · v = 0
(1)

Where v is the velocity, P the fluid pressure, μ the fluid viscosity, η the dynamic effective

viscosity and K the effective permeability. For lack of exact definition of the Ladyzenskaja-

Babuska-Brezzi conditions, also knwon as the LBB conditions, for a mixed formulation in a

separated representation framework [11], we use the penalty formulation to solve the problem

using the PGD, thus we write:

∇ · v = λP (2)

Where λ is a small enough penalty term. Combining equations (1) and (2) leads to the

following final strong form of the problem:

∇ (∇.v) + λ∇ (μ∇v) −
λ · μ′

K
v = 0 (3)

Equation (3) combines the Stokes equation at high permeability in the fluid region, and

Darcy’s equation for the low permeability cartilage region as illustrated in figure 1.

The PGD already made its proof in non prismatic domains [12, 13], however for sake of

simplicity we are considering the knee synovial joint as a cylindrical domain with horizontal

plane of symmetry. The final simulation domain is illustrated in figure 1, where the calcium

brush represents the carticlage and the meniscus, and u is half the imposed velocity, found

using the conservation of momentum during the impact. The solution is seeked in a separated

representation such as:

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u =
i=N∑
i=1

Xui(x, y) · Zui(z)

v =
i=N∑
i=1

Xvi(x, y) · Zvi(z)

w =
i=N∑
i=1

Xwi(x, y) · Zwi(z)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

Calcium brush

Low permeability

Synovial fluid

High permeability

v=0

v=-u

P=Patm

Figure 1. The simulated domain after considering the middle plane as a plane of symmetry

u, v and w being the x, y and z components of the velocity vector v. Once the velocity

v is known, we can find the pressure using equation (2) [14, 15]. Figure 2 illustrates the

magnitude of the velocity field in a cross section where the upper cylinder represents the fluid

ans the lower represents the biphasic material, while figure 3 illustrates the pressure fields in

a vertical section in the knee joint, for u = 1mm/s. The mesh consists of 2269 nodes in the

in − plane dimension and 1000 nodes out-of-plane, equivalent to 9,076,000 3D degrees of

freedom. The problem is solved within 6.45 seconds on a normal portable PC using Matlab R©.

Figures 2 and 3 clearly illustrate the discontinuity in the velocity and pressure fields between

the synovial fluid and the cartilage.
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Figure 2. The magnitude of the velocity v (mm/s)

in the deformed shape just after the impact

Figure 3. The pressure field P (Pa) in a vertical

section in the knee joint

3 Conclusion

The illustrated model shows the velocity fields, deformation and pressure inside the

tibiofemoral joint. The result can be post treated to estimate potential injury levels due to

applied forces. Moreover, the magnitude of the pressure can be found using the imposed

force as an extra coordinate of the problem to estimate a maximum possible applied load to

avoid injury. The work consists an innovation in modeling biphasic soft materials such as the

human joints or their mimcs. The use of the PGD allows high fidelity representation of the

results, while dramatically reducing the calculation time as shown in the illustrated example.
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