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Fertilizer microdosing is being widely promoted across sub-Saharan Africa, yet all

recommendations regarding this technology are derived from short-term studies. Such

studies are insufficient to properly assess the production risk caused by climatic variability.

To address this issue while avoiding costly long-term experiments, a common and well

accepted strategy is to combine results from short-term experiments with validated

dynamic crop models. However, there have been few documented attempts so far to

model fertilizer microdosing under sub-humid tropical conditions. The objective was

therefore to evaluate the potential of the DSSAT model for simulating maize response to

fertilizer microdosing, and to use the validated model to assess the effects of inter-annual

rainfall variability on maize productivity and economic risk. The model was calibrated and

validated against data from a 2-year on-station experiment (2014 and 2015) with 2 levels

of hill-placedmanure and fivemineral fertilization options including broadcast and fertilizer

microdosing. Model simulations were in good agreement with the observed grain and

biomass yields for conventional broadcast fertilization, with relative RMSE and d-values

of 12% and 0.96 for grain and 8% and 0.97 for biomass, respectively. For fertilizer

microdosing, the N stress coefficient needed to be adjusted to avoid occurrence of large

N stresses during simulation. After optimization, the model adequately reproduced grain

yields for fertilizer microdosing, with relative RMSE of 10%. Considering the long-term

scenario analysis, the use of the validated model showed that the application of 2 g of

NPK15−15−15 fertilizer+ 1g urea per hill (equivalent to 23.8 kg N ha−1, 4.1 kg P ha−1 and

7.8 kg K ha−1) improved both the minimum guaranteed yield and the long-term average

without increasing inter-annual variability and the economic risk compared to unfertilized

plots. Even though combining microdosing with manure (1–3 t ha−1) was economically

slightly riskier than microdosing alone, this risk remained low since a value-cost ratio of
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2 could be achieved in almost 100% of the years. Furthermore, combined application

consistently reduced the inter-annual yield variability. Considering this as well as the other

benefits of manure for soil health, combining microdosing with small quantities of manure

would be recommended to increase the sustainability of the system.

Keywords: CERES-Maize, model, decision support, fertilizer microdosing, manure, inter-annual yield variability,

economic risk

INTRODUCTION

In Sub-Saharan Africa (SSA), low crop yields are a persistent
concern because of their impact on food security, chronic
poverty, and hunger (Morris et al., 2007; Vanlauwe et al.,
2015). A major cause for the low yields is the low inherent
soil fertility as well as nutrient and organic matter depletion
in smallholder farming systems (Henao and Baanante, 2006;
Bationo and Waswa, 2011; Tittonell and Giller, 2013). Much
effort has therefore been invested over the past decades to provide
farmers with suitable nutrient management practices in view of
raising crop yields and income.

Fertilizer microdosing (or microdose fertilization) is a
strategic adaptation of conventional fertilizer management
and has recently been advocated as a means to increase
crop productivity, profitability, and resource use efficiency for
smallholder farmers in SSA (Muehlig-Versen et al., 2003).
Indeed, over the last two decades, a number of experiments
(both on-station and on-farm) have demonstrated a generally
strong positive impact of this low-input technology on crop
yields and farmer income (Aune et al., 2007; Camara et al., 2013;
Sime and Aune, 2014; Ibrahim et al., 2015; Okebalama et al.,
2016; Tovihoudji et al., 2017). However, all presently published
data regarding microdose fertilization are derived from short-
term studies. Such studies are insufficient to properly assess the
agronomic and economic risk of agricultural technologies. One
critical risk component is related to the as yet unpredictable
temporal distribution of rainfall over the course of a season.
This uncertainty regarding the temporal rainfall distribution
drives much of the behavior of smallholder farmers (Akponikpè
et al., 2011; Marteau et al., 2011; Comoé and Siegrist, 2015;
Guan et al., 2017), since partial or total crop failure due
to drought stress can strongly affect the profitability of crop
intensification technologies. Thus, it is crucial to consider this
long-term variability when evaluating new technologies. This
is especially true for fertilizer management practices given that
rainfed crop response to fertilizer inputs is strongly dependent
on the amount and distribution of rainfall (Akponikpè et al.,
2010; MacCarthy et al., 2010; Folberth et al., 2013). Moreover,
farmers’ willingness to adopt the microdosing technology will
depend not only on increased yields and profitability but also on
yield stability. Indeed, microdosing is generally considered as a
stopgap option for subsistence farmers for whom achieving some
minimal yield every year to cover household food requirements
is more important than maximizing yields in favorable years.

To address the issue of long-term climatic variability
while avoiding costly long-term experiments, a common and
well-accepted strategy is to combine results from short-term

experiments with robust and validated dynamic crop models
(Jones et al., 2003; Rezzoug et al., 2008; Holzworth et al.,
2014). Such simulation models can be used to explore the
impact of long-term climate variability on crop productivity and
profitability for a range of soil and water management strategies.
Among these models APSIM (Agricultural Production Systems
Simulator; Keating et al., 2003) and DSSAT (Decision Support
System for Agrotechnology Transfer; Jones et al., 2003) are the
two most frequently and widely used in SSA.

Unlike for conventional fertilization practices, only a few
studies have so far attempted to model crop response to fertilizer
microdosing. Modeling fertilizer microdosing using soil-plant-
atmosphere models such as DSSAT and APSIM represents a
specific challenge since such 1-D models are not well suited
to deal with localized fertilizer placement. Previous attempts
were all based on the use of APSIM in the context of southern
and eastern Africa (Cooper et al., 2008; Twomlow et al., 2008;
Turner and Rao, 2013). However, none of these studies actually
demonstrate that APSIM was capable of properly reproducing
crop response to microdose fertilization since simulation results
are not compared to measured data. In the present study, we
seek to model the response of maize to microdose fertilization
under the sub-humid tropical conditions of northern Benin
using DSSAT. DSSAT was selected because the suitability of the
CERES-Maize module implemented in DSSAT for simulating
maize growth and yield has been successfully demonstrated
across a broad range of soil, management and climatic conditions
in smallholder farming systems in SSA (MacCarthy et al., 2012,
2017; Ngwira et al., 2014; Corbeels et al., 2016; Adnan et al.,
2017a,b), including the sub-humid region of Benin (Igué et al.,
2013; Saïdou et al., 2017; Amouzou et al., 2018).More specifically,
the objectives of this study were to (1) assess the performance
of DSSAT (calibration and validation) in simulating the effect
of conventional nutrient management practices and fertilizer
microdosing for maize in Northern Benin; (2) determine model
sensitivity to key input, and (3) use the validated model to assess
the effects of seasonal climate variability on maize productivity
and economic risk under fertilizer microdosing with or without
manure through a long-term (32 years) scenario analysis.

MATERIALS AND METHODS

Experimental Data
Site Description
The experiments were conducted at the Agricultural Research
Station of Northern Benin (CRA- Nord) located at Ina village
(Ina district, municipality of Bembèrèkè) (9◦57′N and 2◦42′E,
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and altitude 365m), 70 km north-east of Parakou. This village
belongs to the agro-ecological region III in northern Benin, the
main production zone of food and cash crops where annual
rainfall ranges between 900 and 1,200mm. The average annual
rainfall at Ina is 1148 ± 184mm (mean ± SD) and the average
daily temperature is 27.5◦C (CRA-Nord Climate Database, 1982–
2015). The climate is characterized by a single rainy season
betweenMay andOctober. Amarked characteristic of the climate
in northern Benin is the intra-annual doubled with inter-annual
variability of rainfall (coefficient of variation of 16%), with a
general decreasing trend during the past decades (Gnanglè et al.,
2011). The soil is classified as a ferruginous tropical soil in the
French soil classification systemwith low inherent fertility, which
corresponds to Lixisols according to the World Reference Base
(Youssouf and Lawani, 2002).

Maize (Zea mays L.) is the major staple crop in Benin. The
total annual national production has increased from 219,593
tons in 1961 to about 1,376,683 tons in 2016 (FAOSTAT.,
2016). In northern Benin, it is mainly produced under rainfed
conditions on ∼82–84% of the total area devoted to cereal
crops.

Experimental Design and Crop Management
The experiment was conducted during two rainy seasons (2014–
2015). Details of this experiment have been published elsewhere
(Tovihoudji et al., 2017) but are briefly described here. The
experimental layout was a randomized complete block design
with three replications within each manure stratum. Two levels
of manure were considered: (i) no manure (NM) and (ii) hill-
placement of farmyard manure applied each year at a rate of
3 t ha−1 (3M) at 10 days after sowing (DAS). The five mineral
fertilizer levels tested within each manure stratum were: (i)
a control (no fertilizer, NF); fertilizer microdosing at a rate
of (ii) 2 g of composite NPK15−15−15 fertilizer per hill at 10
DAS + 1 g urea (46% N) per hill at 45 DAS (MD1), (iii)
4 g of NPK15−15−15 fertilizer per hill at 10 DAS + 1 g urea
per hill at 45 DAS (MD2); (iv) 50% (50F), and (v) 100%
(100F) of the broadcasted recommended rate by the National
Agricultural Research System (200 kg NPK15−15−15 ha−1 at 10
DAS + 100 kg urea ha−1 at 45 DAS). These rates are equivalent
to 23.8 kg N ha−1, 4.1 kg P ha−1, and 7.8 kg K ha−1 for MD1,
33.1 kg N ha−1, 8.2 kg P ha−1, and 15.6 kg K ha−1 for MD2,
38 kg N ha−1, 6.5 kg P ha−1, and 12.5 kg K ha−1 for 50F and
76 kg N ha−1, 13.1 kg P ha−1, and 24.9 kg K ha−1 for 100F.
Manure samples were taken in both years to determine chemical
composition (Tovihoudji et al., 2017). Different plots were used
in both seasons, i.e., there was no cumulative effect of the
treatments.

At the onset of the experiment, land preparation was done
uniformly across all plots by tractor disk-plowing (depth of
0.2m). The improved and early maturing (90-days maturity)
maize variety DMR-ESR-W (Downy Mildew Resistant, Early-
Streak Resistant, White) was planted at a density of 31,250
hills ha−1. Maize seedlings were thinned to 2 plants hill−1 2
weeks after planting. Plots were weeded twice (15 and 30 DAS)
and ridged with a hand hoe 45 DAS immediately after urea
application.

Data Collection
Different data were collected during the experiment including
crop phenology (emergence day, date to anthesis, and
physiological maturity), leaf area and biomass time-series,
grain and aboveground biomass yield, and N uptake at harvest.
Pre-planting soil samples were analyzed for macronutrients
(N, P, and K), texture, pH, organic carbon, and bulk density at
various depths between 0 and 1m.

Periodic soil water content measurements were taken using
an in situ calibrated portable soil moisture meter (TRIME-PICO
IPH/T3, IMKO Micromodultechnik GmbH). Measurements
were taken every 0.1m from 0 to 0.6m depth (maximum root
concentration zone) in all the plots. For the sake of clarity,
water content data were aggregated over 0.2m layers. Biomass
was measured by destructively sampling whole plants from two
planting holes every fortnight from 20 DAS until final harvest.
Leaf area was recorded in each experimental plot by randomly
tagging five plants from five different planting holes in the three
middle rows reserved for final biomass measurement. The green
leaf length and width were measured every fortnight with a ruler
and the leaf area (LA) was calculated as : Leaf area (LA) = Leaf
length ∗ maximum width ∗ k , where k is a shape factor with
the value of 0.75 (Yi et al., 2006). The leaf area index (LAI)
was calculated as the ratio of LA to the horizontal soil surface
area occupied by each planting hill. Final harvest was done by
hand, and aboveground biomass and grain yields were recorded
as described in Tovihoudji et al. (2017).

CERES-Maize Model
Model Description
In this study, we used DSSAT version 4.6, with CERES-Maize
as the crop model (Hoogenboom et al., 2015). In this study,
we used the “daily canopy photosynthesis method” for maize
photosynthesis (Jones and Kiniry, 1986), CENTURY to simulate
soil carbon and nitrogen dynamics (Gijsman et al., 2002), the
Priestly and Taylor method for evapotranspiration, and the Soil
Conservation Service method (USDA-Soil Conservation Service,
1972) for soil water infiltration. Further detailed descriptions of
the processes are available in Jones et al. (2003).

Model Parameterization and Calibration

Crop cultivar coefficients and management inputs
In the present study, the genetic coefficients for the maize cultivar
used were calibrated based on the growth and development
data recorded during the 2014 season (when the highest
yields were observed) for the highest, broadcast mineral N
treatment (NM-100F). To simulate the baseline soil water and
N dynamics as well as the response to manure application,
two additional treatments (the absolute control NM-NF and the
manured treatment 3M-NF) were included in the calibration
process.

Values used for species-specific parameters were the default
values for maize in the CERES-Maize model. Since the maize
cultivar used in the experiment had not been previously modeled
with DSSAT, the genetic coefficients were calibrated by choosing
a default, medium-maturing cultivar from Ghana (Obatampa;
identification code = GH0010 and ecotype IB0001) as a starting
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TABLE 1 | Default and adjusted genetic coefficients of maize cv. DMR-ESR-W

used in CERES-Maize.

Parameters Defaulta Adjusted

P1 (◦C day) 280 (130–380) 210.0

P2 (days) 0.000 (0–2) 0.000

P5 (◦C days) 750 (600–1,100) 600

G2 (number) 540 (400–1,100) 520.0

G3 (mg day−1) 7.50 (4–11.5) 9.50

PHINT (◦C day) 40.0 (30–90) 60.0

aA cultivar from DSSAT database (OBATAMPA); Values in parentheses are range of

values from DSSAT/APSIM database for African cultivars and soils. P1, Thermal time

from seedlings emergence to the end of the juvenile phase (expressed in ◦C day, above

a base temperature of 8◦C) during which the plant is not responsive to changes in

photoperiod; P2, Extent to which development (expressed as days) is delayed for each

hour increase in photoperiod above the longest photoperiod at which development

proceeds at a maximum rate (which is considered to be 12.5 h); P5, Thermal time from

silking to physiological maturity (expressed in ◦C day above a base temperature of 8◦C);

G2, Maximum possible number of kernels per plant. G3, Kernel filling rate during the linear

grain filling stage and under optimum conditions (mg day−1); PHINT, Phyllochron interval,

i.e., the interval in thermal time (◦C day) between successive leaf tip appearances.

point and manually adjusting these parameters to minimize
the root mean square error (RMSE) between simulated and
measured data. First, the coefficients controlling phenology (P1,
P2, P5, and PHINT; Table 1) were modified to match anthesis
and maturity dates, and leaf number. Later, the G2 and G3
parameters were adjusted so as to minimize the RMSE between
measured and modeled biomass and yield (Table 1).

Soil input data
The soil fertility factor (SLPF) was adjusted after adjusting
species-specific parameters. It was modified manually and the
value was set to 0.90 by minimizing the error between the
observed and simulated total biomass. The root distribution
weighing factor (SRGF) is an input for each soil layer and reflects
physical or chemical constraints on root growth in certain soil
layers (Ritchie, 1998). Its value ranges from 1 (indicating that
the soil layer is most hospitable to root growth) to 0 (indicating
that the soil is inhospitable for root growth). SRGF was estimated
using a function in the DSSAT soil creation utility program
based on soil texture, bulk density and soil organic carbon
(Supplementary Table S1). Measured soil properties including
soil organic carbon, total nitrogen, soil bulk density (BD), pH,
and soil texture (percent silt, clay, and sand) were used as
input (Supplementary Table S1). Soil hydrological properties
such as soil water content at field capacity (drained upper
limit = DUL), at permanent wilting point (lower limit = LL),
and at saturation (SAT) were taken from Tovihoudji (2018).
Soil hydraulic conductivity was estimated using pedotransfer
functions available in DSSAT. Initial mineral nitrogen content
(NH4-N and NO3-N) was taken from unpublished data from
the same experimental site. The runoff curve number (RCN)
and drainage coefficient (SWCON) were set to 61 (default value)
and 0.4 (adjusted), respectively, to simulate negligible runoff
(accounting for the flat topography and good structure of the soil)
and moderately well-draining soils which are characteristic of the
soil at the experimental site. Measured field soil water content

profiles were used as a basis for the calibration of the latter two
parameters.

Weather input data
Weather files for 2014 and 2015 were created using daily
minimum and maximum air temperatures, rainfall, and solar
radiation recorded at the experimental site and plotted using
the WeatherMan utility program in DSSAT (Pickering et al.,
1994). In addition, for the long-term analysis, a weather file was
created for 32 years (1984–2015) of observed daily minimum and
maximum temperature, solar radiation (collected at the nearest
Meteo Benin synoptic weather station in Parakou, 70 km from
the research site), and rainfall (collected from the experimental
site in the Agricultural Research center).

Sensitivity Analysis of N Demand Under Fertilizer

Microdosing
When testing different placement methods (e.g., “bottom-of-
the-hole”) and depths of N-fertilizer application available in
DSSAT and representative of fertilizer microdosing, the initially
calibrated model had a tendency to underpredict growth and
yield compared to observed values in the microdosing treatments
(see Supplementary Figure S2). In particular, for the low N
rates used in fertilizer microdosing, the model simulated high
nitrogen stress, thereby constraining the simulated crop growth
to levels not consistent with observed growth data. As a result,
and based on a sensitivity analysis, the default value of the N
stress coefficient CTCNP2 was selected for optimization. Higher
CTCNP2 values lead to lower Ncritical values, thereby broadening
the range of N concentrations which allow unrestricted growth.
Based on a realistic range (0.14 to 0.22), the value of 0.20 was
retained for CTCNP2.

Model Evaluation
The calibrated model was evaluated against the phenology,
LAI, and above-ground biomass time series, final grain and
biomass yield data from the remaining treatments in 2014
and all treatments in 2015. The accuracy of model simulations
was assessed based on the predicted deviation (PD, difference
between the predicted and observed values in %), root mean-
square error (RMSE) (Willmott et al., 1985), relative RMSE
(RRMSE), index of agreement (d), and coefficient of efficiency
(E1) (Liu et al., 2014). For time series data, the performance
indicators were calculated across all measurement dates. Amodel
is judged to simulate satisfactorily when PD, RMSE, RRMSE are
close to zero, and “d” and “E1” are close to 1.

Model Application: Long-Term Simulation
Experiment
The effect of yearly climate variability on maize productivity and
sustainability was simulated over a period of 32 years (1984–
2015) using the calibrated model for microdosing (“Seasonal
analysis” option in DSSAT; Hoogenboom et al., 2015). A factorial
combination (4 × 4) of farmyard manure at 4 levels [0 (NM),
1 (1M), 2 (2M), and 3 (3M) t ha−1] and the 4 levels of
fertilizer tested in the experiment (NF,MD1,MD2, and 100F) was
implemented. Manure and fertilizer microdosing were applied
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as in the experiment. During each simulation year, sowing was
allowed when a total rainfall in excess of 20mm occurred over
three consecutive days between June 15 and July 15 which
corresponds to the normal window for maize cultivation in
the study area. Each year’s simulation was independent of the
previous years as soil initial conditions were reinitialized 30
days prior to each planting. This was done in order to evaluate
the sensitivity of the treatments to annual rainfall variability
independently of any residual effects the treatments may have.
Indeed, fertilizer microdosing is not meant to be a long term
fertilization strategy but rather a step toward further crop
intensification (Aune and Bationo, 2008). Besides, no data is
currently available that would allow to properly evaluate the
extent of the residual effects of point-placed fertilizers.

The seasonal analysis was evaluated by plotting the frequency
distributions of maize yields and assessing the stability of the
model response using an agro-climatic risk indicator (INST,
inter-annual standard deviation, Akponikpè et al., 2011):

INST(kg ha−1) =

√

1

n− 1

∑n

i=1
(Ysim− avYsim)2 (1)

where Ysim is grain yield per year, avYsim is average grain
yield over the number of cropping years and n the number of
cropping years. The lower the value of INST, themore stable grain
yield, hence the lower the probability of attaining extremely low
(but also high) yields over the period (Akponikpè et al., 2010;
MacCarthy and Vlek, 2012).

Since greater temporal instability is not necessarily indicative
of a higher risk provided that economic profitability is achieved,
an economic profitability, and risk assessment was performed.
Economic risk was assessed and expressed in terms of probability
of achieving a certain value-cost ratio (VCR) for a given
treatment using the outputs of the simulation. VCR was
computed as the difference in grain yield between the fertilized
and the control plot multiplied by the unit market price of grain,
divided by the variable costs (amendments + labor costs) using
the 10 year average (2006–2015) market price of maize grain and
fertilizer and labor cost estimated by direct observation in on-
farm experiments (Tovihoudji et al., 2018). In the computation of
VCR, the costs of the other inputs and management operations
such as tillage, seed, planting, plant protection, and harvesting
were assumed to be constant for all treatments. The variability
of VCRs (median, min, max, and CV) and the probability of
achieving a VCR ≥ 2 or 4 (considered as a lower and upper
limit justifying investment in risky environments) for a given
management option were used as a measure of the long-term
economic sustainability (CIMMYT, 1988; Kihara et al., 2015).

RESULTS

Climatic Conditions During the
Experimental Years
Annual rainfall amounted to 1,142mm in 2014 and 1,085mm in
2015. From planting to harvest, the rainfall amounts of the two
seasons were similar, but their distributionwas slightly contrasted
(Supplementary Figure S1). The rainfall amount during the

growing period was 694mm in 2014 (43 rainfall events) and
797mm in 2015 (46 rainfall events). Maximum daily temperature
during the 2014 growing season ranged from 25 to 37◦C with
an average value of 31◦C, while minimum daily temperature
ranged between 20 and 24◦C with an average value of 22◦C
(Supplementary Figure S1). Average daily solar radiation was 18
MJ m−2 with a minimum value of 7 MJ m−2 and maximum
value of 25 MJ m−2. In the 2015 season, maximum daily
temperature ranged from 27 to 38◦C with an average value of
33◦C, while minimum daily temperature ranged from 21 to
24◦C with an average of 22◦C. Daily solar radiation ranged
from 6 to 24 MJ m−2 with a daily average of 17 MJ m−2

(Supplementary Figure S1).

Model Response to Manure and
Conventional Fertilization: Calibration and
Validation
Calibration
The six genetic parameters adjusted in the present study are
presented in Table 1. The range of these parameters were all close
to the DSSAT “default” values for early to medium maturing
maize varieties. After calibration, the model predicted the
anthesis date and date of physiological maturity well (Table 2).
Similarly, the predicted deviation for LAImax was low and
ranged from −2 to 10% depending on the treatment (Table 2).
The model accurately predicted the observed time course of
LAI and aboveground biomass for the three treatments selected
for calibration (Figure 1). Low RMSE values (0.07 m2 m−2 and
335 kg ha−1, respectively, for LAI and aboveground biomass
across treatments and measurement dates) and high d-index
values (0.99 and 0.98 for these two variables, respectively) were
found (Figures 1A,B). Likewise, the simulation of the soil water
content (SWC) in the top 0.4m of the soil profile was good as
shown by low RMSEs (0.01–0.02 m3 m−3) and high d-values
(0.79–0.84) (Figure 1). In addition, there was generally good
agreement between predicted and observed maize grain and
above ground biomass yields at final harvest, with prediction
deviations ranging between−1 to 8% and 5 to 16% for grain and
aboveground biomass yields, respectively (Table 2).

Model Validation
After calibration, the model performance was checked with the
remaining manure and broadcast fertilizer treatments in 2014
and all the manure and broadcast fertilizer treatments in 2015.
The predicted days to anthesis were close to observations (55 and
56 days for simulated data against 56 and 54 days for observations
during 2014 and 2015, respectively) for all treatments. Similarly
for days to maturity, the deviation was 0 and −2 days between
simulated and observed data during 2014 and 2015, respectively.

The simulated leaf area index (LAI) values were very close to
observed values (Figure 2A), with RMSE values varying between
0.04 m2 m−2 at 20 DAS and 0.9 m2 m−2 at 62 DAS across
treatments and years. On average, the RMSE was 0.12 and 0.31
m² m−2 across treatments and measurement dates in 2014 and
2015, respectively. The corresponding d and E1 indices were 0.99
and 0.88, respectively, across treatments and measurement dates
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TABLE 2 | Results of model calibration for the 3 selected treatments in 2014.

NM-NF NM-100 F 3M-NF

Obs. Sim. PD (%) Obs. Sim. PD (%) Obs. Sim. PD (%)

Anthesis date (DAS) 56 55 −1.8 56 55 −1.8 56 55 −1.8

Physiological maturity (DAS) 90 90 0.0 90 90 0.0 90 90 0.0

LAImax (m² m−2) 1.13 1.24 9.7 2.1 2 −4.8 1.45 1.42 −2.1

Grain yield at harvest (kg ha−1) 1,099 1,087 −1.1 2,847 3,068 7.8 1,983 2,039 2.8

Total biomass at harvest (kg ha−1) 3,895 4,071 4.5 7,119 8,272 16.2 5,820 6,121 5.2

NM, no manure; NF, no fertilizer; 100 F, 100% of the recommended fertilizer rate; 3M, farmyard manure at 3 t ha−1; Obs., observed; Sim., simulated; PD, predicted deviation.

FIGURE 1 | Comparison between observed and simulated time-series of maize LAI (Upper panel, A), above ground biomass (Upper panel, B) and soil water content

in the 0.0–0.20m and 0.20–0.40m layers (Lower panel) during model calibration in 2014. NM, no manure; NF, no fertilizer; 100 F, 100% of the recommended

fertilizer rate; 3M, farmyard manure at 3 t ha−1. Error bars, standard deviation (n = 3); RMSE, root mean-square error; E1, coefficient of efficiency; d, index of

agreement.

(Figure 2A). The model performance regarding above ground
biomass was also good, with an absolute predicted deviation
of 7–14%. RMSE values for above ground biomass increased
from 25 kg ha−1 at 20 DAS to 750 kg ha−1 at 90 DAS across
treatments and years. The average RMSE was 304 and 378 kg
ha−1 across treatments and measurement dates in 2014 and
2015, respectively, with average relative RMSE (RRMSE), d and
E1 values of 9%, 0.99, and 0.99, respectively, across treatments,
measurement dates and years (Figure 2B).

Regarding final grain and biomass yields at harvest, the
model performed well in simulating the response to combined
application of manure and fertilizer across the 2 years (Figure 3).
For grain yield, the RMSE and RRMSE were 327 kg ha−1 and
12%, respectively (Figure 3A). The d index of agreement and
model efficiency E1 were 0.96 and 0.70, respectively (Figure 3A).

The model performed also well in terms of biomass yield as
indicated by the low RMSE and RRMSE (569 kg ha−1 and
8%, respectively) and high d and E1 values (0.97 and 0.69,
respectively; Figure 3B).

Simulations showed that no treatment suffered from water
deficit in both years despite some dry spells recorded in
the two growing seasons, whereas excess water stress was
simulated around 40–55 and 80 DAS in 2014 and 25–35
and 80 DAS in 2015 due to heavy rainfall events ≥40mm
per day recorded during those periods. The latter resulted in
substantial simulated drainage and N leaching, especially in the
high fertilized treatment (combined manure and fertilizer) in
2015 (data not shown). A short and long nitrogen stress period
was simulated around 40 and 90 DAS, respectively, for the
unfertilized treatments (NM-NF and 3M-NF) in both years (data
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FIGURE 2 | Model validation: comparison between observed and simulated

maize LAI (A) and aboveground biomass (B) for all treatments not used during

calibration (6 dates of measurement per treatment from 20 to 90 days after

sowing) as affected by combined application of 0 (NM) or 3 (3M) t ha−1 of

manure and 0 (NF), 50 (50 F), or 100% (100 F) of the recommended mineral

fertilization rate (broadcast fertilizer) over 2 years. Error bars = standard

deviation (n = 3); RMSE, root mean-square error; E1, coefficient of efficiency;

d, index of agreement.

not shown). The stress was more prominent in 2015 compared
to 2014, especially at low levels of fertilization (NM-NF). The
treatments with the highest fertilization rates (50 F and 100 F)
were not affected by nitrogen stress but moderate N stress periods
were simulated around 15 and 20 DAS in both years for the other
treatments.

Sensitivity Analysis of N Demand Under Fertilizer

Microdosing
After selecting the bottom-of-the-hole fertilizer-placement
method at 0.10m depth as proxy to fertilizer microdosing, the
sensitivity analysis showed that the model was quite sensitive
to changes in the function controlling crop N demand for both
years (Figure 4). Lowering the N stress coefficient CTCNP2 by
0.02 from the default value of 0.16 caused a higher N uptake
(0 to +8% depending on N rate and year) but mostly a much
stronger N stress and consequent reduction in growth and
yield (Figure 4). On the contrary, increasing the CTCNP2 value
from 0.16 to 0.22 resulted in decreased N uptake (−19 to 0%;
Figures 4A,B), and an increase in grain (0 to+33%) and biomass
yields (0 to +21%; Figures 4C–F). Generally, these increases

FIGURE 3 | Model validation: comparison between observed and simulated

maize grain (A) and aboveground biomass (B) yield at harvest as affected by

combined application of 0 (NM) or 3 (3M) t ha−1 of manure and 0 (NF), 50

(50 F), or 100% (100 F) of the recommended mineral fertilization rate

(broadcast fertilizer) over 2 years. Error bars, standard deviation (n = 3); RMSE,

root mean-square error; E1, coefficient of efficiency; d, index of agreement.

in yield led to predictions that approached those observed
experimentally, with lower RMSEs (Supplementary Figure S3).
Overall, aboveground biomass and grain yield predictions were
found to be sensitive to the CTCNP2 coefficient only for N rates
below 55 and 70 kg ha−1 in 2014 and 2015, respectively.

Model Testing for Fertilizer Microdosing
Following the sensitivity analysis, the CTCNP2 value
was adjusted to 0.20 given the low RMSE values for the
N uptake, grain and biomass yields over the 2 years
(Supplementary Figure S3). This led to a reduction of the
N stress and to a satisfactory agreement and model efficiency
between simulated and measured values (Figure 5; Table 3).
From Figures 5C,D, it can be seen that the simulated grain yield
showed globally good agreement with measured data in both
years [d = 0.68 and RMSE = 323 kg ha−1 (10%) across years].
The optimized model was also accurate for the aboveground
biomass and N uptake as indicated by the performances
indicators [RMSE and d values of 620 kg ha−1 (8%) and 0.79,
and 7.1 kg ha−1 (10%) and 0.86 for aboveground biomass and
N uptake, respectively, across years; Table 3]. However, the

Frontiers in Environmental Science | www.frontiersin.org 7 February 2019 | Volume 7 | Article 13

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Tovihoudji et al. Simulating Maize Response to Microdosing

FIGURE 4 | Sensitivity of maize aboveground N uptake (A,B), grain yield (C,D) and aboveground biomass (E,F) at harvest to incremental changes in the N stress

coefficient from 0 to 90 kg ha−1 of N fertilizer rates using the hole-placement method at 0.10m depth in 2014 (A,C,E) and 2015 (B,D,F). Error bars denote standard

deviation (n = 3) for the two microdosing rates without manure (NM-MD1 and NM-MD2).

optimized model generally simulated biomass yield better than
the baseline model in 2015 compared to 2014 where the opposite
was observed (not shown). The latter will not affect the model
use for scenario analyses since it is the grain yield data that will
be used for this purpose.

Long-Term Scenario Analysis Regarding
Microdosing
The annual rainfall over the simulation period ranged between
843 and 1,472mm (average of 1,182 ± 171mm) while the
cumulative rainfall from sowing to harvest maturity ranged
between 490 and 1,030mm (735± 121mm). The highest annual
rainfall amounts were observed in 2002, 2009, and 2012, while
the lowest were observed in 1986 and 1987. For the cumulative
rainfall from June 15 to harvest maturity, the highest amounts
were observed in 1988 and 2000, and the lowest in 1984, 1986,
and 1987.

Based on the long-term simulations using the optimized
model, aboveground biomass, and grain yields responded

similarly to fertilizer and organic amendment inputs. Hence,
only grain yield data was used to perform all analyses. The
cumulative probability distribution of the simulated grain yields
showed that yields were consistently higher with microdosing
and further enhanced when combined with manure, compared
to the no input treatment (Figure 6). For instance, average grain
yield increased by 1,272 kg ha−1 for MD1 without manure and
by 1,458–1,647 kg ha−1 for MD1 with manure (1–3 t ha−1),
respectively, compared to the no input treatment (1,398 kg
ha−1). On average, the yield difference between the NF and
MD or 100 F treatments tended to decrease with increasing
rates of manure. In addition, the yield difference between
MD1 and MD2 tended to decrease with increasing manure
additions, becoming negligible for 3M (Figure 7). The average
grain yield was not affected by the rate of manure application
(0–3 t ha−1) for the 100 F treatment. Finally, the average yield
difference between MD and 100 F tended to decrease with
increasingmanure additions, becoming nearly nil for 2M and 3M
(Figure 7).

Frontiers in Environmental Science | www.frontiersin.org 8 February 2019 | Volume 7 | Article 13

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Tovihoudji et al. Simulating Maize Response to Microdosing

FIGURE 5 | Comparison between observed (box-and-whisker plots) and simulated (black points) N uptake (A,B), maize grain (C,D), and aboveground biomass (E,F)

yield at harvest as affected by combined application of 0 (NM) or 3 (3M) t ha−1 of manure and two microdosing rates (MD1–MD2) in 2014 and 2015 using CTCNP2 =

0.20. MD1 = microdosing option 1; MD2 = microdosing option 2.

Like the long-term average grain yields, the minimum yields
also increased steadily with an increase in N inputs from manure
and fertilizer. The minimum grain yields increased from 411 to
1,541 kg ha−1 in the no fertilizer treatment to 1,800–2,328 kg
ha−1 in MD1 and 2,473–2,686 kg ha−1 in 100 F across manure
rates (Figure 7). Thus, applying MD1 alone guarantees at least
1,800 kg ha−1 every year. At the high microdosing rate (MD2),
the minimum guaranteed yield was 1,963 kg ha−1 while at the
high recommended rate (100 F), the minimum guaranteed yield
was 2,473 kg ha−1.

Considering the inter-annual standard deviation (INST), the
variability of grain yields following microdose fertilization alone

was lower or similar to the no fertilizer treatment NF (Figure 7).
Applying the 100 F treatment resulted in slightly lower or
similar yield variability compared to microdose fertilization.
Yield variability was little affected by manure application (1–3 t
ha−1).

Based on average input and output prices, microdose
fertilization (alone or combined with manure) appears to be
economically profitable each year when considering a VCR
threshold of 2 (Table 4). Under no manure application, the
VCRs ranged from 2.3 to 4.9 irrespective of microdosing
rates (Table 4). Combining hill-placed manure (1–3 t
ha−1) with microdosing decreased the median VCRs by
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TABLE 3 | Statistical indicators showing the relationship between simulated and measured maize grain and biomass yield as affected by the combined application of 0

(NM) or 3 (3M) t ha−1 of manure and two microdosing rates (MD1-MD2) over the 2 years (2014–2015).

Baseline model Optimized model

Indicators Grain yield Biomass yield N uptake Grain yield Biomass yield N uptake

RMSE (kg ha−1) 494.5 782.5 12.9 322.5 620.0 7.1

RRMSE (%) 15.5 10.5 17.5 10.0 8.0 9.5

d (–) 0.59 0.76 0.55 0.64 0.79 0.86

RMSE, root mean-square error; d, index of agreement MD1, microdosing option 1; MD2, microdosing option 2.

FIGURE 6 | Frequency distributions of maize grain yields as simulated by DSSAT over a 32 year period (1984 to 2015) in response to combined application of manure

and fertilizer microdosing. NF, no fertilizer; NM, no manure; MD1, microdosing option 1; MD2, microdosing option 2. 1M, 2M, and 3M correspond to the application of

1, 2, and 3 t ha−1 of manure.

0.8 (MD1) to 1.0 (MD2) point, compared to the sole
microdosing application as a result of increased labor costs,
but the probability to achieve VCR ≥ 2 remained high
(88–97%). Based on a VCR threshold of 4, sole microdose
fertilization was noticeably less risky than microdose + manure
(Table 4).

DISCUSSION

Model Response to Manure and
Conventional Fertilization
The model calibration resulted in good predictions of
phenological stages like anthesis and maturity as indicated
by the different indicators (Table 2). DSSAT also accurately
simulated the changes in soil water content in the various
layers of the soil profile (Figure 1). Finally, model performance

regarding biomass and grain yields at harvest was good across
treatments and years (Figure 3). Such good performance
was achieved in spite of the fact that maize response to
P and K was not considered in the simulations yet P is
often a strongly limiting factor in Sub-Saharan Africa (e.g.,
Nziguheba et al., 2016). This good model performance
may be explained by the fact that all fertilizer and manure
treatments considered here included proportional amounts
of P and K such that N remained the most limiting element
in all treatments. Alternatively, one may consider that plant
response to N in the calibrated model in fact reflects plant
response to the combined additions of N, P, and K. The
latter does not invalidate the model use for scenario analyses
as long as treatments similar to those used for calibration
are being investigated, which is the case in the present
study.
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FIGURE 7 | Maize yield variability as simulated by DSSAT over the study period (32 years-−1984 to 2015) in response to combined application of manure and

fertilizer microdosing. NF, no fertilizer; NM, no manure; MD1, microdosing option 1; MD2, microdosing option 2; 100 F, 100% of the broadcasted recommended rate.

1M, 2M, and 3M correspond to the application of 1, 2, and 3 t ha−1 of manure. INST, inter-annual standard deviation.

TABLE 4 | Summary of simulated impact of seasonal climate variations (32 years−1984 to 2015) on value cost ratio (VCR) in response to the combined application of

manure and fertilizer microdosing.

Manure Fertilizer Mean SD Median Min Max %VCR ≥ 2 %VCR ≥ 3 %VCR ≥ 4

NM MD1 3.7 0.58 3.8 2.3 4.9 100 91 32

MD2 3.7 0.58 3.8 2.3 4.9 100 88 28

100F 2.4 0.55 2.3 1.4 3.5 72 9 0

1M MD1 3.0 0.47 3.0 1.9 4.0 97 56 3

MD2 2.9 0.53 2.9 1.7 4.0 97 44 3

100F 2.0 0.47 1.9 1.1 2.9 47 3 0

2M MD1 3.0 0.53 3.1 1.9 4.2 97 63 6

MD2 2.9 0.58 2.9 1.7 4.2 97 47 3

100F 1.9 0.46 1.9 1.1 2.8 38 0 0

3M MD1 3.0 0.59 3.0 1.8 4.4 97 63 6

MD2 2.8 0.61 2.8 1.6 4.3 88 34 3

100F 1.9 0.46 1.8 1.1 2.7 34 0 0

NM, no manure; MD1, microdosing option 1; MD2, microdosing option 2. 1M, 2M, and 3M correspond to the application of 0, 1, 2, and 3 t ha−1 of manure.

DSSAT Response to Fertilizer Microdosing
Practice
Using the default value of the N stress coefficient and the
0.10m depth hole-placement setting, DSSAT tended to under-
predict maize growth and yields in response to microdosing,
especially for grain yield and in 2015. Fertilizer microdosing is
known to increase fertilizer use efficiency compared to broadcast
fertilization (Ibrahim et al., 2015). This positive effect has been
attributed to faster early crop development (Hafner et al., 1993;
Tabo et al., 2007; Aune and Bationo, 2008; Ibrahim et al.,
2014, 2015). In addition, localized application of nutrients may
promote rapid fine root and root hair proliferation (Hodge,
2004; Ibrahim et al., 2014, 2015). Ibrahim et al. (2014, 2015)
have reported an increase in root dry weight, total root length,
and root length density, which may result in higher plant water
and nutrient uptake and lower nutrient losses by leaching. In

addition, an increase in lateral roots within the upper soil layers
at early growth stages could stimulate the uptake of native
nutrients.Without further adjustments, DSSAT did not seem able
to correctly simulate crop response to fertilizer microdosing. On
the contrary, strong N stresses were simulated given the very low
quantities of N supplied during microdosing.

DSSAT and the CERES-Maize models have been extensively
tested in the low-input cropping systems of West Africa under
broadcast fertilization conditions (e.g., Soler et al., 2011; Fosu-
Mensah et al., 2012; Adnan et al., 2017a; Saïdou et al., 2017;
Amouzou et al., 2018), but not under fertilizer microdosing
conditions. A few studies have previously used APSIM to
simulate fertilizer microdosing (Cooper et al., 2008; Twomlow
et al., 2008; Turner and Rao, 2013), but none of these studies
report on how microdosing was implemented in the model nor
do they provide information regarding APSIM’s performance.
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Hence the present study appears to be the first to report on the
performance of a conventional soil-plant-atmosphere model in
the context of fertilizer microdosing.

Following the sensitivity analysis, and given that N stress
seemed to play a major role in the underestimation of maize
yields in microdose treatments, the CTCNP2 value was adjusted
in order to scale simulations of grain and biomass yields and
N uptake to the observed values in both years (Figure 4). After
optimization, model prediction at harvest matched satisfactorily
with experimental observations, with a strong improvement in
grain yield estimation (Figure 5; Table 3). Although adjusting
the CTCNP2 factor does not capture the full complexity of the
effects of fertilizer point-placement, other studies have previously
had to adjust the N-stress factor in order to better model crop
growth and N uptake under specific conditions (Liu et al., 2012;
Yakoub et al., 2017). Adjusting the CTCNP2 factor offers a
simple yet effective means of modeling the effect of microdose
fertilization. Nevertheless, this approach should be confirmed
in the future by testing the model against data from across
a wider range of environmental and management conditions.
Furthermore, it may be worthwhile in the future to investigate
in more detail the physiological response mechanisms of maize
to fertilizer microdosing so as to better represent them in 1-D
soil-plant-atmosphere models such as DSSAT.

Long-Term Scenario Analysis and
Recommendations Regarding Fertilizer
Microdosing
Before widely promoting fertilizer microdosing in smallholder
maize farming systems, and given that smallholder farmers
are usually risk-averse, it must be demonstrated that the
microdose technology does not substantially increase inter-
annual variability in yield and income caused by variable
rainfall conditions. The use of calibrated and validated decision
support systems like DSSAT provides an efficient means to
assess the long-term variability in maize yields following fertilizer
microdosing. Overall, the predicted grain yields from the long-
term simulations are within the ranges reported in on-farm
experiments under the same microdosing treatments in northern
Benin (Tovihoudji et al., 2018). This suggest that the results
can be confidently used to make recommendations regarding
fertilizer microdosing.

Considering the inter-annual standard deviation in grain yield
(INST), applying microdose fertilization alone (MD1 or MD2)
resulted in a lower variability compared to the no fertilizer
input treatment (NF) but slightly higher or equal variability
compared to 100 F (Figure 7). Interestingly, yield variability was
little affected by manure application (1–3 t ha−1). Hence, it may
be concluded that intensification strategies combining manure
and microdosing appear to be less unstable (“less risky”) for
smallholder farmers compared to the sole application of manure
or microdosing. Equally interesting, applying microdosing alone
guarantees at least 1,800 kg ha−1 every year without inducing
additional inter-annual variability.

However, in smallholder subsistence farming, the economic
risk associated with the adoption of a new technology are more

important than temporal yield stability. The results show that
combining microdosing with manure increases the economic
risk. Indeed, while SD values are similar, the mean VCR is lower
for manure+microdose compared tomicrodose alone (Table 4).
Nevertheless, a VCR of 2 is reached in almost 100% of the
years, indicating that the level of risk associated with manure +
microdose remains acceptable. Only if farmers have a very strong
aversion for risk (e.g., require a VCR of 3 or 4; CIMMYT, 1988),
does one see a notable short-term advantage for microdosing
compared to the combined application of fertilizer and manure.
This is because of the added labor costs related to hill-placed
manure application. For instance, a VCR ≥ 3 is reached 88–91%
of the time under sole microdose fertilization, compared to 34–
63% when combined with manure (Table 4). Even though the
application of 100 F treatment resulted in a slightly lower yield
variability than microdose fertilizer, the economic risk is much
higher since a VCR of 2 could be achieved in only 34–72% of the
years and a VCR of 3 in only 0–9% of the years depending on the
rate of manure.

Model simulations do not take into account the long-
term cumulative impacts of the technologies on the soil.
Further experimentation is needed to assess the extent of
these residuals effects in the special case of point-placed
fertilizers and manure. Nevertheless, complementing microdose
fertilization with manure would be recommended for soil quality
considerations and to increase the long-term sustainability of
the system even though it may compromise the short-term
benefits. Although combining fertilizer microdosing and manure
increases the total amount of N applied and hence the risk of
N leaching, this risk remains limited since N balances generally
remain negative for the rates tested here as was shown by
Tovihoudji et al. (2017). Finally, it may be preferable for farmers
to apply the lower microdosing rate (MD1) irrespective of the
manure application rate because the VCR values can depend
greatly on fluctuations in input and output market prices within
and between seasons (Tovihoudji et al., 2018).

CONCLUSION

In this study, we examined the ability of the DSSAT CERES-
Maize model to accurately simulate maize response to fertilizer
microdosing, and whether the validated model can be used
to assess the effects of seasonal climate variability on maize
productivity and economic risk. Using independent datasets
for the calibration and validation, DSSAT exhibited good
performance when simulating phenological stages, LAI, total
biomass, grain yield and total N uptake, capturing the whole
range of these variables, for conventional fertility management
practices (broadcast fertilizer). For fertilizer microdosing, the
N stress coefficient (CTCNP2) needed to be adjusted to avoid
the occurrence of large N stresses during simulation. After
optimization, the model could adequately reproduce grain yields
for fertilizer microdosing, indicating that it could be used as
decision support tools through long-term scenario analysis.
The 32 year, long-term simulation with the validated model
showed that the application of 2 g of NPK15−15−15 fertilizer +
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1 g urea per hill (equivalent to 23.8 kg N ha−1, 4.1 kg P ha−1,
and 7.8 kg K ha−1) improved both the long-term average and
the minimum guaranteed yield without increasing inter-annual
variability and the economic risk compared to unfertilized plots.
Combining the application of fertilizer microdosing with hill-
placedmanure (1–3 t ha−1) consistently reduced the inter-annual
yield variability. Even though combining the application of
fertilizer microdosing with hill-placed manure was economically
slightly riskier than microdose fertilizer alone, this risk remained
low since a VCR of 2 could be achieved in almost 100%
of the years. Considering this as well as the other benefits
of manure for soil health, combining fertilizer microdosing
with small quantities of manure would be recommended to
increase the sustainability of the system. Besides additional
validation on the basis of broader datasets, more in-depth
investigations of the physiological response mechanisms of crops
to fertilizer microdosing should be carried out so as to better
represent them in 1-D soil-plant-atmosphere models such as
DSSAT.
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