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Type 2 diabetes mellitus is a leading cause of morbidity and mortality worldwide, given
its serious associated complications. Despite constant efforts and intensive research,
an effective, ubiquitous treatment still eludes the scientific community. As such, the
identification of novel avenues of research is key to the potential discovery of this evasive
“silver bullet.” We focus on this review on the matter of diabetic injury to endothelial
tissue and some of the pivotal underlying mechanisms, including hyperglycemia and
hyperlipidemia evoked oxidative stress and inflammation. In this sense, we revisited the
most promising therapeutic interventions (both non-pharmacological and antidiabetic
drugs) targeting oxidative stress and inflammation to hinder progression of vascular
complications of diabetes. This review article gives particular attention to the relevance
of mitochondrial function, an often ignored and understudied organelle in the vascular
endothelium. We highlight the importance of mitochondrial function and number
homeostasis in diabetic conditions and discuss the work conducted to address the
aforementioned issue by the use of various therapeutic strategies. We explore here the
functional, biochemical and bioenergetic alterations provoked by hyperglycemia in the
endothelium, from elevated oxidative stress to inflammation and cell death, as well as
loss of tissue function. Furthermore, we synthetize the literature regarding the current
and promising approaches into dealing with these alterations. We discuss how known
agents and therapeutic behaviors (as, for example, metformin, dietary restriction or
antioxidants) can restore normality to mitochondrial and endothelial function, preserving
the tissue’s function and averting the aforementioned complications.

Keywords: type 2 diabetes mellitus, oxidative stress, mitochondrial dysfunction, inflammation, diabetic vascular
complications, therapeutics

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is one of the 21st century’s global public health problems, with
estimates of the affected population reaching 425 million people (IDF, 2017). The global prevalence
of diabetes is rapidly growing in such a way that, according to the International Diabetes Federation
(IDF) estimates, by 2045 a total of 629 million people will have diabetes (IDF, 2017). The increase
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in diabetes prevalence is driven in large part by increasing rates
of obesity and aging of the global population as well as changes
in lifestyle related to unhealthy eating habits and sedentarism,
with significant costs to healthcare systems. In 2017, diabetes
caused more than 477 thousand deaths among adults in Europe
alone; 32.9% of these deaths were of people under the age of
60 (IDF, 2017). In Portugal, according to data from the Annual
Report of the Portuguese National Diabetes Observatory, the
estimated prevalence of diabetes in 2015 was 13.3% (out of a
population of 7.7 million individuals aged 20–79 years), meaning
that more than 1 million Portuguese citizens in this age group
have diabetes, of which 5.8% remain undiagnosed (Sociedade
Portuguesa de Diabetologia, 2016). Considering the constantly
increasing socio-economic and public health impact of diabetes
and its complications, it is therefore critical to identify the
underlying causes of diabetes to discover further measures of
effective prevention and treatment (Tol et al., 2013).

Type 2 diabetes mellitus is a complex metabolic disorder
associated with hyperglycemia, caused by defects in insulin
secretion and/or action (Bergman, 2013; Alam et al., 2014). Over
time, hyperglycemia induces toxic effects in virtually all of the
organs of the body, of which the vascular system is particularly
affected, resulting in multiple complications either at the
microvascular level (retinopathy, nephropathy and neuropathy)
or at the macrovascular level (stroke, coronary heart disease,
acute myocardial infarction and peripheral vascular disease)
(Calcutt et al., 2009; Gray and Jandeleit-Dahm, 2014; Heinonen
et al., 2015). Approximately 40% of people with diabetes have late
complications resulting from their disease progressing silently
before the diagnosis is performed or even completed (IDF, 2015).

The pathophysiology of the link between T2DM and vascular
complications is complex and multi-factorial. In fact, the precise
mechanism by which T2DM leads to the development of these
complications is complex and not yet fully elucidated, but
seems to be strongly related with the toxic effects derived from
hyperglycemia as well as by hyperlipidemia originated from
obesity – gluco and lipo toxicity, respectively. Hyperglycemia
induces oxidative stress, namely via mitochondrial dysfunction
and enhanced reactive oxygen species (ROS) generation, while
hyperlipidemia contributes to the release of pro-inflammatory
cytokines by the adipocyte tissue. The consequent oxidative
stress and low-grade-inflammation have been considered major
contributors for the progression of T2DM and its complications
(Santilli et al., 2015). In addition to the hyperglycemia
and hyperlipidemia-induced toxicity, insulin resistance and
hypertension promote damage at the level of blood vessel walls,
which are manifested through the development of endothelial
dysfunction (van den Oever et al., 2010), a condition that
precedes the early development of micro and macrovascular
diseases and complications (Cade, 2008).

Mitochondria play a key role in metabolic processes in
all cells within an organism. Along with the famous ATP-
generating oxidative phosphorylation, these organelles are critical
for calcium chelation, biosynthetic pathways, ROS generation
and cell death amongst many others. Unsurprisingly, interference
and hampering of mitochondrial function is a hallmark of
countless pathologic conditions and a central event of the

progression of many diseases (Duchen, 2004). Depending on
the endothelium location and functions, mitochondrial content
of endothelial cells (EC) varies dramatically, as so does their
function. Furthermore, their intracellular distribution is also
reflective of their role within the cell (Park et al., 2011). As such,
it is evident that mitochondrial dysfunction is at the core of
endothelial injury, typically by inflammation, oxidative stress, cell
death and loss of tissue function (Tang et al., 2014).

Even though there is a clear association between
hyperglycemia and diabetic complications, the benefits of strict
glycemic control on micro and macrovascular complications
have been questioned, and interventions able to protect
the organs targeted by diabetes are mandatory. Therapeutic
strategies targeting oxidative stress, mitochondrial dysfunction
and inflammation might be crucial to hinder the progression
of vascular complications of diabetes. This review summarizes
the contribution of the relationship between oxidative stress,
mitochondrial oxidative damage and inflammatory aspects
associated with endothelial dysfunction to the development
of diabetes-related vascular complications. We also discuss
therapeutic approaches that could prevent diabetic complications
by specially targeting oxidative stress, mitochondrial impairment
and inflammation pathways.

THE CROSSTALK BETWEEN OXIDATIVE
STRESS AND INFLAMMATION IN THE
PROGRESSION OF T2DM
COMPLICATIONS

Diabetic patients frequently have several risk factors for
development of vascular complications, including age, insulin
resistance, dyslipidemia, hyperglycemia and hypertension.
T2DM is not solely a metabolic disease but also a vascular
one, characterized by chronic hyperglycemia and alterations
of cellular homeostasis leading to vascular complications. The
link between insulin resistance/hyperglycemia and endothelial
dysfunction plays an important role in the development and
progression of atherosclerotic disease in T2DM (Onat et al.,
2006; Hadi and Suwaidi, 2007). Growing evidence suggests that
hyperglycemia-induced oxidative stress promotes endothelial
dysfunction by increased production of ROS, which plays a major
role in the pathogenesis and progression of diabetic vascular
complications (Pitocco et al., 2013; Figure 1).

Hyperglycemia, associated with insulin resistance and
excessive free fatty acids (FFAs), initiates diabetic vascular
complications through many metabolic and structural
derangements, including in endothelial and vascular smooth
muscle cells (VSMCs), compromising the vascular physiology
and function. There are several proposed mechanisms underlying
this hyperglycemia-evoked vascular damage, including increased
production of advanced glycation end products (AGEs) and
expression of their receptors RAGE (Receptor for AGEs),
activation of protein kinase C (PKC) isoforms, as well as
increased activation of the polyol and hexosamine fluxes,
which induce increased mitochondrial ROS production,

Frontiers in Physiology | www.frontiersin.org 2 January 2019 | Volume 9 | Article 1857

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01857 January 14, 2019 Time: 14:45 # 3

Teodoro et al. Therapeutics for Mitochondrial Vascular Diabetes

FIGURE 1 | Schematic diagram representing the central role of oxidative
stress and inflammation, guided by insulin resistance, hyperglycemia and
hyperlipidemia (gluco and lipo toxicity), in the vascular changes underlying the
progression of micro and macrovascular complications of diabetes. AGEs,
advanced glycation end products; CRP, C-reactive-protein; EC, endothelial
cells; eNOS, endothelial nitric oxide synthase; ICAM-1, intracellular adhesion
molecule-1; IL, interleukin; IFN, interferon; JNK, c-jun NH2-terminal kinase;
LDL, Low Density Lipoprotein; MCP-1 (CCL-2), Monocyte chemotactic
protein-1; NF-κB, nuclear factor-κB; NO, nitric oxide; PKC, protein kinase C;
RAGEs, receptor for AGEs; ROS, reactive oxygen species; TLR, Toll-Like
Receptor; TNF-α, tumor necrosis factor-alfa; VSMC, vascular smooth muscle
cells; VCAM-1, vascular cell adhesion molecule; vWF, von Willebrand factor.

non-enzymatic glycation of proteins and auto-oxidation of
glucose. The activation of these pathways resulting from
prolonged hyperglycemia induces glucotoxicity (Brownlee, 2001;
Rolo and Palmeira, 2006).

The activation of the polyol pathway contributes to oxidative
stress as it causes nicotinamide adenine dinucleotide phosphate

(NADPH) depletion at the consequent decrease in intracellular
reduced glutathione levels (Pitocco et al., 2013). In an
environment of hyperglycemia, aldose reductase reduces glucose
to sorbitol, which is subsequently oxidized to fructose. In the
process of reducing the high intracellular glucose content, aldose
reductase consumes NADPH, which is the cell’s main reducing
agent and is also essential for the regeneration of the intracellular
antioxidant glutathione (Brownlee, 2001, 2005).

Advanced glycation end products are generated by non-
enzymatic glycosylation of proteins or lipids after prolonged
exposure to glucose (Tamura et al., 2003). The formation of AGEs
contributes to oxidative stress in several cell types through the
interaction with their receptor, mainly by activation of NADPH
oxidase and by the activation of the nuclear transcription
factor kappa-B (NF-kB) pathway, leading to inflammatory and
thrombogenic alterations that contribute to the pathogenesis
of vascular diabetic complications (Brownlee, 2005; Giacco and
Brownlee, 2010; Yamagishi et al., 2012). These glycated proteins
accumulate on the vessels’ walls exposed to hyperglycemia,
altering the structural integrity of the vascular wall and
neutralizing nitric oxide (NO), substantially affecting endothelial
function. The production of AGEs is also responsible for the
decrease in endothelial NO synthase (eNOS) expression as well
as macrophage-mediated inflammation in the vessels’ walls. In
addition, they increase endothelin-1 (ET-1), an endothelium-
derived potent vasoconstrictor, in EC (Santilli et al., 2015).
Furthermore, circulating AGEs appear to react directly with
lipoproteins, especially low-density lipoproteins (LDL), inducing
structural alterations and damaging the mechanisms of LDL-
receptor-mediated particle removal at tissue level (Bucala
et al., 1994). Indeed, these products have been identified in
atherosclerotic plaques, suggesting a possible role of AGEs in the
pathophysiological of cardiovascular complications in diabetic
patients (Figure 1).

The activation of PKC contributes to the production of
superoxide anion in vascular EC (Ceriello et al., 2004; Paneni
et al., 2013). The hyperglycemic environment causes chronic
elevation of diacylglycerol (DAG) levels in EC, with membrane
translocation of PKC isoforms. PKC phosphorylates NADPH
oxidase, stimulating the production of superoxide, further
aggravating oxidative stress (Paneni et al., 2013). This activation
interferes with the biosynthesis of NO by decreasing eNOS
activity through increasing the phosphorylation, also leading
to an increment of ET-1 production, promoting increased
vasoconstriction and platelet aggregation. In addition, it
stimulates the synthesis of the extracellular matrix and promotes
an inflammatory response through the activation of cytokines
and adhesion molecules (Giacco and Brownlee, 2010; Paneni
et al., 2013; Domingueti et al., 2016; Figure 1).

Another pathway that involves ROS generation is the
production of NO, which plays a central role in the modulation
of endothelial function, regulating vascular homeostasis and
the innate immune system. In addition, NO generation by
macrophages is elevated in various inflammatory conditions,
including atherosclerosis (Bashan et al., 2009; Pitocco et al.,
2013; Lundberg et al., 2015). The vasoprotective beneficial
actions of NO include vasodilatation, increase in blood flow,

Frontiers in Physiology | www.frontiersin.org 3 January 2019 | Volume 9 | Article 1857

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01857 January 14, 2019 Time: 14:45 # 4

Teodoro et al. Therapeutics for Mitochondrial Vascular Diabetes

hypotension, inhibition of platelet aggregation and adhesion, as
well as reduction of smooth muscle proliferation (Toda et al.,
2010). Endothelial dysfunction refers to an imbalance in the
release of NO or other vasodilatory factors and vasoconstrictor
substances, and is related to the pathology of diabetes and related
complications (Ouviña et al., 2001). Under diabetic conditions,
endothelial dysfunction leads to impaired NO availability, namely
by eNOS uncoupling, leading to its deficiency and increase
in vascular resistance, contributing to atherogenesis (Johnson,
2012). The reduction in vascular NO bioavailability is related to
its inactivation by ROS, in such a way that has been used as a
biomarker of oxidative stress (Pitocco et al., 2010).

In T2DM, the main sources of oxidative stress are the
mitochondria (Rolo and Palmeira, 2006; Asmat et al., 2016)
(details are discussed in the next section). Briefly, the increase
in the generation of mitochondrial ROS has been implicated
as a mediator between hyperglycemia and its pathological
consequences in the vessels, kidneys, neurons and retina (Bashan
et al., 2009). Glucose can directly stimulate the overproduction of
ROS, which leads to the activation of several enzymatic cascades
resulting in mitochondrial dysfunction, including activation of
NADPH oxidase, decoupling of NO synthases and stimulation
of xanthine oxidase (Giacco and Brownlee, 2010; Pitocco et al.,
2013).

Insulin resistance is also associated with endothelial
dysfunction, resulting in a reduction of biosynthesis and
biological activity of NO (Tessari et al., 2010). Endothelial
dysfunction caused by insulin resistance may also be
provoked by the activation of the extracellular-signal-
regulated kinase/mitogenic protein kinase (MAPK) pathways,
which is responsible for insulin signaling. Insulin is also
responsible for modulating the activity of eNOS through
the phosphatidylinositol-3-kinase/serine-threonine kinase
(PI3K/AKT) pathway (Sena et al., 2013). Thus, it has been
demonstrated that subjects that present a reduction in eNOS
expression are more susceptible to developing insulin resistance
(Capellini et al., 2010).

In recent years, several reports have indicated that oxidative
stress plays a crucial role in the development of inflammatory
state. These pathological conditions reinforce each other,
establishing a vicious cycle capable of extending and propagating
the inflammatory response, contributing to the pathogenesis of
T2DM and several other diseases (Lugrin et al., 2014). Moreover,
mediators of inflammation have been associated with T2DM
progression, and patients newly diagnosed with this condition
have high levels of acute-phase proteins and proinflammatory
cytokines, when compared to non-diabetic subjects (Yu et al.,
2011; Nunes et al., 2012; Akash et al., 2013). Furthermore, chronic
low-grade inflammation associated with states of obesity plays an
important role in the development of chronic complications of
diabetes (Nunes et al., 2012).

Gluco and lipo toxicity induce inflammation by several
mechanisms, including activation of NF-kB, which leads to
recruitment and activation of immune cells (Aminzadeh et al.,
2013). ROS-induced expression of adhesion molecules, such
as intracellular adhesion molecule-1 (ICAM-1) and vascular
adhesion molecule-1 (VCAM-1), results in inflammatory cells’

recruitment (Kaneto et al., 2010). ICAM-1 is expressed in both
the vascular endothelium and monocytes and, therefore, is
considered a biomarker of both endothelial dysfunction and
low-grade inflammation (Hubbard and Rothlein, 2000). Changes
in NO, cytokines, acute-phase reactants and cellular adhesion
molecules induced by the overproduction of ROS precede
atherosclerosis (Figure 1).

Increased inflammation promotes increased migration of
neutrophils and monocytes, causing increased production and
release of cytokines and mediators of inflammation, such as
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) as
well as monocyte chemotactic protein 1 (MCP-1), among other
pro-inflammatory proteins (Pedicino et al., 2013). C-reactive
protein (CRP) is considered an acute phase inflammatory
protein, synthesized by hepatocytes and predominantly regulated
by IL-6 and TNF-α, thus being considered a sensitive and reliable
marker of inflammatory state. Increased serum levels of CRP
are also present in chronic inflammatory conditions such as
atherosclerosis. Their levels are approximately tripled in the
presence of risk of peripheral vascular diseases. CRP promotes the
expression of adhesion molecules (ICAM-1 and VCAM-1), which
facilitate the adhesion of monocytes and T cells to the arterial
wall in the first steps of the atherogenic process. The high plasma
concentrations of CRP increase the risk of cardiovascular events
(peripheral vascular disease, myocardial infarction, stroke and
death), even among adults who did not present previous chronic
processes (Willerson and Ridker, 2004).

Increased levels of pro-inflammatory cytokines, including
TNF-α, IL-6 and CRP, also contribute to the reduction of
endothelial relaxation factor NO and to increased activity of
ET-1, which causes vasoconstriction by targeting VSMCs. Thus,
low-grade inflammation has been linked to increased vascular
permeability, altered vasoregulatory responses and the adhesion
of monocytes, neutrophils, and macrophages, resulting in cell
damage. In addition, cytokine release stimulates the expression of
plasminogen activator inhibitor type-1 (PAI-1), a pro-thrombotic
protein associated with vascular homeostasis (van den Oever
et al., 2010; van Hinsbergh, 2012). Elevated levels of PAI-1 may
also impair fibrinolysis in patients with T2DM (Pandolfi et al.,
2001).

The excess of FFAs influences the development of insulin
resistance through the activation of Toll-Like Receptors 4
(TLR-4) on the plasma membrane, subsequently activating the
inflammatory proteins c-Jun N-terminal kinase (JNK), IκB kinase
and NF-κB. TNF-α, an adipokine secreted by the adipose tissue,
is also capable of activating these inflammatory proteins (Stanley
et al., 2011; Stagakis et al., 2012). The inflammatory response
induced by these molecules implies the inhibition of eNOS by
the reduced expression and kinase activity of the insulin receptor,
leading to altered phosphorylation on tyrosine substrates (IRS-
1), with a subsequent decrease of the PI3K pathway. This results
in reduced NO production by EC; in addition, inhibition of
glucose transporter type 4 (GLUT4) translocation to the plasma
membrane causes a reduction of glucose uptake in peripheral
tissues, thus promoting endothelial dysfunction and peripheral
insulin resistance (de Alvaro et al., 2004; Fernández-Veledo et al.,
2009).
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Furthermore, in response to endothelial injury and
inflammation, oxidized lipids from LDL particles (Ox-LDL)
accumulate in the endothelial wall of arteries (Dokken, 2008).
Monocytes then infiltrate the arterial wall and differentiate
into macrophages, which accumulate oxidized lipids to form
foam cells. Once formed, foam cells stimulate macrophages
and the attraction of T-lymphocytes which, in turn, induce
smooth muscle proliferation in the arterial walls and collagen
accumulation (Fowler, 2008). Overall, the cellular damage caused
by oxidative stress is a trigger for inflammatory stress, which
reciprocally stimulates the production of free radicals, closing
the pathological cycle underlying progression of diabetes and of
its serious vascular complications (Lamb and Goldstein, 2008;
Figure 1).

MITOCHONDRIA-INDUCED
ENDOTHELIAL CELL DYSFUNCTION IN
DIABETES PROGRESSION

Endothelial cell mitochondria are highly dynamic organelles
in location, number and activity. Typically, angiogenesis leads
to a paradoxical increase in both glycolysis and fatty acid
oxidation, since glucose is more readily available than oxygen
but if fatty acid oxidation is impaired, so is vessel growth
(De Bock et al., 2013; Schoors et al., 2015). However,
there are no doubts about the effects of hyperglycemia as
present in diabetes. Endothelial cells are extremely sensitive
to high glucose levels, which leads to apoptosis and loss of
tissue function (Triggle et al., 2012) and is associated with
elevated mitochondrial fragmentation, altered mitochondrial
ultrastructure and increased ROS generation (Pangare and
Makino, 2012; Mishiro et al., 2014; Figure 2). Similar results were
found in isolated mitochondria from diabetic mouse coronary
EC. In fact, accompanying increased mitochondrial fission was
an elevated quantity of mitochondrial fission-regulating proteins,
such as DRP1 (Makino et al., 2010) and FIS1, the latter in
diabetic humans (Shenouda et al., 2011), although this does
not appear to be an ubiquitous process (Zhong and Kowluru,
2011). Interestingly, the expression of the mitochondrial biogenic
program regulator PGC-1α (peroxisome proliferator-activated
receptor gamma coactivator 1-alpha) affects the response of
EC mitochondria opposite fashions, depending on the source
(Sawada et al., 2014; Craige et al., 2016). We speculate that
this might be related to altered mitophagic processes, where
the removal of damaged mitochondria is not viable to the
cell. Clarification of mitochondrial dynamics and biogenesis in
EC diabetic stress will certainly contribute to novel therapeutic
approaches. Giving further relevance to the role of mitochondrial
function in EC are the numerous studies highlighting how
hyperglycemia leads to calcium overload and elevated pro-
apoptotic protein BAX content, which result in higher levels
of mitochondrial permeability transition induction, ending in
apoptosis (Kowluru and Abbas, 2003; Detaille et al., 2005).

Diabetes is typically associated with obesity, where a majority
of patients present high levels of LDL-cholesterol which, in its
oxidized form, has been shown to contribute to mitochondrial

dysfunction and EC apoptotic death (Vindis et al., 2005).
Abnormally high generation of mitochondrial ROS in response to
increased nutrient availability (as occurs in obesity and diabetes)
also has a primordial source, the mitochondrial respiratory chain
and, in particular, complexes I and III of the aforementioned
chain. Excess nutrients are readily metabolized and generate
reducing equivalents for membrane potential generation in the
mitochondrial inner membrane (which is primarily used for
driving ATP synthesis at Complex V or ATP synthase) (Rolo
and Palmeira, 2006). However, the excessive reducing power far
outreaches the cell’s ATP needs, as membrane potential (19)
builds up (Teodoro et al., 2013). As a result, the redox reactions
of the mitochondrial respiratory chain decelerate immensely,
which results in more reduced respiratory complexes that have
no problem in being oxidized by molecular oxygen, leading
to heightened ROS generation. As such, a controlled leak of
protons back to the mitochondrial matrix presents itself as an
attractive target for dealing with excess nutrients. In fact, nature
has already developed such a system in the form of uncoupling
proteins (UCP). While UCP1 is typically associated (and present)
in brown adipose tissue, where it is responsible for this tissue’s
famous role in thermogenesis (by dissipation of 19), other
forms of U exist in many other tissues (UCP2 and 3 have been
shown to naturally occur in EC), where their role appears to
hinge on ROS management and prevention, as one of their more
efficient activators are free fatty acids products from triglyceride
breakdown (Davis et al., 2008). It has already been demonstrated
that UCP2 overexpression in EC reduces fatty acid-caused ROS
generation, inflammation and apoptosis (Lee et al., 2005; Koziel
et al., 2012), which directly correlates with vasoconstriction,
atherosclerotic plaque deposition and ischemic stroke (Szewczyk
et al., 2015). Further strengthening these observations is the
report that increased ROS generation leads to higher rates of
UCP2 expression in EC, which is dependent on the activation
of AMP-activated protein kinase (AMPK) and PGC-1α (Valle
et al., 2005; Szewczyk et al., 2015). Also, by removing UCP2,
ROS, and 19 are increased, which leads to an inflammatory
activation and increased EC death (Koziel et al., 2015; Szewczyk
et al., 2015). The mechanism by which UCP2 further alters EC
response to stress appears to hinge on p53 and its regulation of
mitochondria, which is activated by ROS when UCP2 is absent or
inactive (Shimasaki et al., 2013). These experimental data seem to
gain strength from human diabetic patients carrying a mutation
that leads to elevated UCP2 expression, which protects against the
increased coronary risk (Cheurfa et al., 2008). Further studies on
the matter of UCP2 and EC in diabetes have been reviewed before
(Szewczyk et al., 2015).

THERAPEUTIC STRATEGIES

As briefly reviewed, oxidative stress, inflammation and
mitochondrial dysfunction are closely linked with endothelial
dysfunction, which is critical in the progression of micro
and macrovascular diabetic complications (Figure 1). Thus,
therapeutic strategies targeting these biological mechanisms
could be pivotal to manage diabetes and its serious complications.
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FIGURE 2 | The central role of mitochondria in the progression or prevention of hyperglycemic injury in endothelial cells. When challenged with abnormally high levels
of glucose, endothelial cells progressively lose biochemical and functional capabilities, which are perfectly aligned with the loss of mitochondrial function. Here, the
excess nutrients lead to a deceleration of metabolic reactions and electron transport in the respiratory chain, leading to a higher generation of reactive oxygen
species (ROS). These in turn, when excessive, wreak havoc on cellular structures and biochemical processes, which might ultimately lead to cell death and loss of
tissue function. By directly targeting mitochondrial function (for example, by consumption of metabolically active agents or by restriction to caloric intake) one can
lead to improved mitochondrial activity by both post-transcriptional and gene expression alterations to mitochondrial function, with concomitant prevention of
excessive oxidative stress and preservation of cellular integrity and function. ROS, reactive oxygen species; AMPK, AMP-activated protein kinase.

Herein, we review the main antioxidant and anti-inflammatory
effects associated with some of the most efficient antidiabetic
non-pharmacological and pharmacological interventions.
A thorough revision of this matter is found below, and a table
highlighting the main features of this section is also provided
(Table 1).

Lifestyle Interventions
Non-pharmacological antidiabetic strategies encompass
nutritional guidance and implementation of balanced and
low-calorie diets as well as promotion of physical activity.
These cornerstone lifestyle interventions could be pivotal not
only to prevent diabetes’ appearance and/or progression but
also to ameliorate vascular complications, which coincide with
a multiplicity of beneficial effects, including antioxidant and
anti-inflammatory properties.

Physical Exercise (Training)
It has been evidenced that regular physical exercise (training)
improves metabolic health due to improvement in glycemic
control and insulin sensitivity, as well as due to a positive
impact on abdominal circumference and visceral fat (de Lemos
et al., 2007, 2009). Regular physical activity also favorably
modulates other cardiovascular risk factors associated with
T2DM, including blood pressure and lipid profile, demonstrated

by the reduction of triglycerides, total-cholesterol and LDL-
cholesterol levels together with the increase of high density
lipoprotein (HDL)-cholesterol (Bassuk and Manson, 2005; de
Lemos et al., 2007). In addition, physical exercise improves
vascular function, namely by enhancing NO bioavailability
(Green et al., 2004; Kwon et al., 2011). During physical exercise,
an increased formation of free radicals is observed, mainly due
to increased O2 consumption by active tissues (Teixeira-Lemos
et al., 2011; Vierck et al., 2012; Radak et al., 2013). Most of
this O2 consumed is used in the mitochondria for oxidative
phosphorylation, where it is reduced to water; however, a small
fraction (of about 2–5%) is converted into ROS (Teixeira-Lemos
et al., 2011). Chronic physical activity of moderate intensity
(training) positively alters the oxidative homeostasis of cells and
tissues due to a reduction of basal levels of oxidative damage and
to an increase in oxidative stress resistance (Cooper et al., 2002).
In fact, regular exercise leads to an adaptation in antioxidant
capacity, as viewed by the increment of superoxide dismutase
and glutathione peroxidase activities, thus protecting cells against
damage caused by oxidative stress (Teixeira-Lemos et al., 2011;
Radak et al., 2013).

Furthermore, long-term training is an efficient
anti-inflammatory measure, expressed by the reduction
of pro-inflammatory mediators, such as CRP, interleukin-
6 and TNF-α, and simultaneously by the increment of
anti-inflammatory cytokines such as IL-4, IL-10 and adiponectin
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TABLE 1 | Therapeutic strategies targeting some of the biological mechanisms (e.g., oxidative stress, inflammation and mitochondrial dysfunction) underlying endothelial
dysfunction, which is critical in the progression of micro and macrovascular diabetic complications.

Therapeutic strategies Main outcomes References

Lifestyle interventions

Physical exercise (training) Improves glycemic control, insulin sensitivity, blood pressure,
lipid profile, vascular function (NO availability); antioxidant and
anti-inflammatory activity.

Green et al., 2004; Bassuk and Manson, 2005; de Lemos
et al., 2007, 2009; Balducci et al., 2010; Kawanishi et al.,
2010; Kwon et al., 2011; Teixeira-Lemos et al., 2011;
Radak et al., 2013; Robinson et al., 2015.

Dietary interventions Improves glycemic control, lipid profile and endothelial
function; protects against atherosclerosis and reduces
cardiovascular risk; antioxidant, anti-inflammatory and
antifibrotic properties.

Gey, 1998; Barclay et al., 2007; Aguirre and May, 2008;
Abbatecola et al., 2009; Nazıroğlu et al., 2010; Cho et al.,
2013; Wang et al., 2013; Yan et al., 2013; Weickert and
Pfeiffer, 2018.

Oral antidiabetics drugs

Metformin Hypoglycemic activity, improvement of insulin sensitivity and
cardiovascular risk profile; amelioration of vascular dysfunction
(e.g., by restoring NO availability and inhibiting AGEs
formation); antioxidant and anti-inflammatory properties.

Ersoy et al., 2008; Yoshida et al., 2009; Sena et al., 2011;
Kelly et al., 2012; Krysiak and Okopien, 2012, 2013;
Batchuluun et al., 2014; Cheang et al., 2014; Vasamsetti
et al., 2015; Triggle and Ding, 2017.

Thiazolidinediones Hypoglycemic activity, improvement of insulin sensitivity and
beneficial modulation of inflammatory, oxidative and
endothelial vascular functions.

Cheng and Fantus, 2005; Sourij et al., 2006; Derosa and
Sibilla, 2007; Dandona et al., 2008; Orasanu et al., 2008;
Zhao et al., 2010; Hamblin et al., 2011; Jin et al., 2016.

Incretin-based therapies Insulinotropic effects, gastric emptying delaying and reduction
of endogenous glucose production by inhibiting glucagon
secretion; reduction in blood pressure; improvement in
endothelial dysfunction; extra-pancreatic cytoprotective
properties, including anti-inflammatory, antioxidant and
anti-apoptotic (e.g., against diabetic nephropathy and
retinopathy.

Courrèges et al., 2008; Bergenstal et al., 2010; Ferreira
et al., 2010; Hattori et al., 2010; Mega et al., 2011, 2014,
2017; Gonçalves et al., 2012, 2014; Lee et al., 2012;
Shiraki et al., 2012; Dai et al., 2013; Ishikawa et al., 2014;
Marques et al., 2014; Nakamura et al., 2014; Sun et al.,
2015.

SGLT-2 inhibitors Decrease blood glucose levels, body weight and blood
pressure; cardiovascular and renal protection via
anti-inflammatory and antioxidant effects; attenuate
atherosclerotic lesion formation, with reduction of
cardiovascular morbidity and mortality.

Hasan et al., 2014; Chilton et al., 2015; Ojima et al., 2015;
Scheen, 2015; Tikkanen et al., 2015; Zinman et al., 2015;
Leng et al., 2016.

Mitochondrial-targeting strategies

Antioxidants/ ROS scavengers (e.g.,
MitoQ-TPP and TEMPOL)

Improve vascular prognosis in diabetics by contributing to
reduce oxidative stress and blood pressure, thus improving
vascular relaxation. Protect against hypertension by preserving
EC function, which correlates with improved cardiac function;
in addition, prevent inflammation at atherosclerotic plaque
sites.

Graham et al., 2009; Dikalova et al., 2010; Mercer et al.,
2012.

Caloric restriction Increases mitochondrial biogenesis and efficiency, and
reduces vascular inflammation thus improving EC dysfunction;
ameliorates atherosclerosis, diminishes ROS generation, and
overall reduces plaque deposition, hypertension and other
cardiovascular complications in humans.

Guo et al., 2002; Fontana et al., 2004; Nisoli et al., 2004;
López-Lluch et al., 2008; Lefevre et al., 2009; Finckenberg
et al., 2012.

Metabolic modulators: (i) Sirtuin 1
activators (e.g., resveratrol) (ii) AMPK
activators (e.g., metformin) (iii) PPARγ

activators (e.g., pioglitazone)

(i) Decreases p66Shc overexpression induced by
hyperglycemia; p66Shc promotes oxidation of several targets
in the EC mitochondria, thus contributing to endothelial
dysfunction. Resveratrol leads to AMPK activation, eNOS
increment, reduction of ROS generation and plaque
deposition, culminating in improved EC function. (ii) Inhibit the
induction of the mitochondrial permeability transition leading to
the prevention of EC apoptosis and endothelial loss of
function. (iii) Activates PGC-1α, leading to improved
mitochondrial biogenesis in EC, thus contributing to improve
endothelial dysfunction.

Wang et al., 2005; Schulz et al., 2008; Csiszar et al., 2009;
Fujisawa et al., 2009; Zhou et al., 2011; Price et al., 2012.

(Balducci et al., 2010; Teixeira-Lemos et al., 2011; Radak et al.,
2013). One hypothesized mechanism through which training
might exert an anti-inflammatory activity may be related to the
modulation of TLR-dependent pathways (Kawanishi et al., 2010;
Robinson et al., 2015) as viewed by the reduced expression of
TLR2 and TLR4 in monocytes, lymphocyte and neutrophils

in obese adults with a higher risk for developing T2DM after
training of moderate intensity (Robinson et al., 2015).

Dietary Interventions
Lifestyle intervention programs in T2DM patients, especially
in those who are obese, have been mainly focused on the
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reduction of caloric intake and on body weight loss, which
seem per se to have a major beneficial impact on glycemic
control and cardiovascular risk (Buse et al., 2006). Several studies
have been carried out to identify the perfect combination of
macronutrients able to prevent the onset of CVD; nevertheless,
the best combination of proteins, carbohydrates and lipids
varies according to the individual, which makes it difficult to
define a universal food plan for this type of patients (Franz
et al., 2004; Grundy et al., 2005). However, it is known that
some foods (and nutrients contained therein) exert anti-diabetic
and vasoprotective properties, in particular because they have
antioxidant and anti-inflammatory effects.

Numerous studies have shown that diets rich in whole
grains, omega (ω3) fatty acids and fibers, associated with a low
consumption of trans fatty acids carbohydrates and cholesterol,
are recommended strategies to improve the lipid profile and
to reduce cardiovascular risk in T2DM patients with a high
glycemic index (Barclay et al., 2007; Abbatecola et al., 2009;
Cho et al., 2013; Weickert and Pfeiffer, 2018). More precisely,
there is a wide variety of antioxidative substances found in food,
mainly in fruits and vegetables, which can synergistically act in
the protection of cells and tissues (Blomhoff, 2005; Halvorsen
et al., 2006). Several epidemiological studies have suggested a
direct association between vitamin E intake and reduction of
cardiovascular morbidity and mortality (Wang et al., 2013),
although limited information is available regarding the impact of
vitamin E supplementation on T2DM patients (Boshtam et al.,
2005; Giannini et al., 2007). On the other hand, a combination
of vitamins C and E seems to be an effective strategy due to
inhibition of lipid peroxidation and protection against DNA
damage, as previously reported (Gey, 1998; Nazıroğlu et al.,
2010). Vitamin C can afford protection in several types of
vascular cells involved in the process of atherosclerosis: ascorbate
helps to prevent endothelial dysfunction, stimulates the synthesis
of type IV collagen and increases proliferation, while also
inhibiting differentiation and proliferation of vascular smooth
muscle cells in areas of injury and reducing oxidative stress
in macrophages (Aguirre and May, 2008). Antioxidants can
inhibit lipid peroxidation directly by scavenging the peroxide
radicals and indirectly by regenerating the active form of
other antioxidant compounds, like vitamin E, flavonoids and
glutathione (Aguirre and May, 2008).

Consumption of ω3-polyunsaturated fatty acids (PUFAs)
seems to provide cardioprotection in diabetic conditions due to
pleiotropic properties, including those of an antioxidant, anti-
inflammatory and antifibrotic nature. Regarding the impact on
inflammation, ω3-PUFAs were associated with attenuation of
both TLR4 and TNF-α-mediated pro-inflammatory signaling in
macrophages and inhibition of the inflammasome via effects on
NLRP3 in high-fat diet (HFD)-induced diabetic mice (Yan et al.,
2013).

Oral Antidiabetics Drugs
Metformin
Metformin is a first-line pharmacological treatment for most
T2DM patients. This anti-hyperglycemic agent is an activator of

AMPK and suppresses hepatic glucose synthesis and improves
insulin sensitivity by enhancing insulin-stimulated peripheral
glucose uptake (Yoshida et al., 2009). In addition to its
hypoglycemic effect, other beneficial effects of this drug are
being studied, including its role on the prevention of vascular
complications. Clinical trials that have enrolled overweight
adult patients with or without T2DM support the decrease
of cardiovascular risk profile induced by metformin (De Jager
et al., 2005; Ersoy et al., 2008; Kelly et al., 2012); however, the
underlying mechanism of metformin’s cardioprotective actions
remains to be fully understood. Emerging evidence suggests that
metformin boasts both direct and indirect antioxidant and anti-
inflammatory properties (Sena et al., 2011; Krysiak and Okopien,
2012, 2013; Vasamsetti et al., 2015). The activation of AMPK
pathways plays a pivotal role on its pharmacological effects and
might explain the variety of pleiotropic actions of this drug.
In fact, several mechanisms that explain metformin’s beneficial
actions have been proposed, including NF-kB inhibition, NO
production incrementation and inhibition of AGEs formation.

The antioxidative effect of metformin may be related with
the reduction of DAG levels, inhibition of PKC translocation to
the cellular membrane, and suppression of the NADPH oxidase
activity, leading to reduced ROS production (Piwkowska et al.,
2010; Batchuluun et al., 2014). In obese mice fed with a HFD,
treatment with metformin improved endothelial function by
reducing endoplasmic reticulum stress, superoxide production
and by increasing NO bioavailability (Cheang et al., 2014).
Metformin has been shown to directly inhibit ROS production
from complex I (NADH: ubiquinone oxidoreductase) of the
mitochondrial electron transport chain (Owen et al., 2000) and
to increase the AMP/ATP ratio. Moreover, Sartoretto et al.
(2005) reported that metformin increases NO activity, but not
expression, and that it improves microvascular reactivity to
histamine, bradykinin or acetylcholine of arterioles and venules
in T2DM animal models. A number of basic and clinical studies
investigated the effect of metformin on endothelium-dependent
vascular function (Mather et al., 2001; Sena et al., 2011; Triggle
and Ding, 2017). In particular, Sena et al. (2011) have reported
that metformin restored endothelial function by enhancing NO
bioavailability and reducing oxidative stress and inflammation
in the aortic rings of normal and high fat-fed diabetic GK
rats. The authors showed that metformin treatment reduced
monocyte chemoattractant protein-1 (MCP-1/CCL2) levels that
were increased in T2DM rats, indicating an inhibition of early
inflammation in the aorta (Sena et al., 2011).

Previous studies have described that metformin inhibits
proinflammatory responses in vascular endothelial and VSMCs
(Hattori et al., 2006; Isoda et al., 2006). Hattori et al. (2006)
have reported that metformin inhibited cytokine-induced
NF-kB activation via AMPK activation in human vascular EC.
Another report demonstrated that metformin may attenuate
Ox-LDL-induced proinflammatory responses in monocytes
and macrophages and inhibit monocyte-to-macrophage
differentiation (Huangfu et al., 2018). Vasamsetti et al. (2015)
reported that metformin inhibits monocyte-to-macrophage
differentiation by decreasing STAT3 phosphorylation through
increased AMPK activation and leads to a reduction of
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proinflammatory cytokine production. Furthermore, clinical
studies also suggest that metformin may modulate the
inflammatory status as viewed by the reduction of several
proinflammatory cytokines (Krysiak and Okopien, 2012, 2013).
Krysiak and Okopien (2013) demonstrated that metformin
could reduce the monocyte secretion of TNF-α, IL-1β, IL-6,
MCP-1, and IL-8, as well as plasma CRP levels, in patients with
impaired fasting glucose. Another study with obese diabetic
patients showed that after 12 weeks of metformin therapy, there
was a decrease in PAI-1 and in vascular endothelial growth
factor (VEGF) (Ersoy et al., 2008). Moreover, De Jager et al.
(2005) also observed, in patients with T2DM, that treatment
with metformin for 16 weeks reduced levels of plasma VCAM-1,
soluble E-selectin, PAI-1, and von Willebrand factor (vWF),
whereas markers of inflammation were unaffected. Thus, in
clinical trials the anti-inflammatory effects of this drug remain to
be fully clarified.

Thiazolidinediones
Thiazolidinediones (TZDs), including rosiglitazone and
pioglitazone, are a class of drugs known to improve insulin
sensitivity in peripheral tissues. These drugs bind to and
activate the peroxisome proliferator-activated receptor gamma
(PPARγ), which is found in the liver, muscle, heart, kidney, and
adipose tissue and is involved in the regulation of expression of
insulin-sensitive genes, which are crucial to glucose and lipid
metabolism. Apart from the hypoglycemic effects, TZDs have
showed an ability to modulate inflammatory, oxidative and
vascular functions.

The anti-inflammatory action of TZDs has been suggested by
the increment of adiponectin and parallel reduction of cytokine
production from the adipose tissue, such as TNF-α and resistin
(Cheng and Fantus, 2005). Furthermore, it was suggested that
pioglitazone decreases inflammation partly through inhibiting
AGE-induced classical macrophage polarization in diabetic HFD
fed mice (Jin et al., 2016). A meta-analysis showed that
pioglitazone and rosiglitazone significantly decreased serum CRP
levels in subjects with and without diabetes, irrespective of
the effects on glycemia (Zhao et al., 2010). Previous studies
have suggested an improved endothelial function with TZD
treatment (Derosa and Sibilla, 2007; Dandona et al., 2008).
In in vitro and in vivo studies, pioglitazone protects against
oxidative stress, reduces blood pressure and decreases VCAM-
1 expression on EC through modulation of NF-κB activity via
a PPARα-dependent mechanism (Orasanu et al., 2008; Hamblin
et al., 2011). Concurrent with this, pioglitazone was also shown
to improve endothelial function in non-diabetic individuals with
coronary artery disease, suggesting that pioglitazone exerts a
direct effect on the endothelium (Sourij et al., 2006). In addition,
in obese and diabetic patients, pioglitazone has been shown to
reduce arterial stiffness and reduce blood pressure and CRP
levels, independently of changes in glycemic control (Satoh
et al., 2003; Clarke et al., 2017). Although there are several
studies describing the beneficial vascular effects of PPAR agonists,
including the PROACTIVE (Prospective Pioglitazone Clinical
Trial in Macrovascular Events) trial, the cardiovascular effects
of TZDs are still not well understood, and current clinical

evidence leaves this hypothesis unproven. The recognition of an
increased risk of myocardial infarction and heart failure in some
patients using rosiglitazone therapy (Nissen and Wolski, 2007),
which caused its withdrawal in Europe and limited use in the
United States, added controversy to this subject, leading to a need
for further clarification.

Incretin-Based Therapies
Glucagon-like peptide-1 (GLP-1) is an incretin hormone
primarily synthesized by the endocrine L cells of the
gastrointestinal tract during and after food intake and stimulates
glucose-dependent insulin secretion by pancreatic β cells.
The insulin secretory response of incretins is known as the
incretin effect, and accounts for at least 50% of postprandial
insulin secretion. In addition to its insulinotropic effects, GLP-1
delays gastric emptying and also reduces endogenous glucose
production by inhibiting glucagon secretion by pancreatic α-cells
(Triplitt et al., 2006). This incretin is rapidly metabolized by the
ubiquitous enzyme dipeptidyl peptidase-IV (DPP-IV) to inactive
metabolites, which are then eliminated by the urine (Ranganath,
2008), resulting in the inactivation of the incretin effect (Holst,
2007). The recognition, and further characterization of an
impaired incretin effect (known as the incretin defect) in diabetic
patients was the base for the development of a new class of
antidiabetic agents, the incretin-based therapies, which includes
DPP-IV inhibitors and GLP-1 receptor (GLP-1R) agonists
(Gallwitz, 2005). Over the last years, extra-pancreatic protective
effects, behind glucose-insulin control, have been suggested in
distinct vascular conditions (Scirica et al., 2013; Godinho et al.,
2015).

In addition to regulating glucose and metabolic control, GLP-
1 has a potential beneficial effect on multiple pathways involved
in atherogenesis. Although the mechanisms of vascular effect
are still unclear, it seems that the protective action of GLP-1
may be related to an improvement in endothelial dysfunction
through its anti-inflammatory and antioxidant effects (Nyström
et al., 2004). Several studies performed in T2DM patients showed
a positive impact of GLP-1R agonist treatment in endothelial
function (Nikolaidis et al., 2004; Sokos et al., 2006). Liraglutide
and exenatide therapy were able to reduce the levels of PAI-
1 inhibitor, a regulator of plasminogen activation implicated
in EC dysfunction (Courrèges et al., 2008; Liu et al., 2009;
Bergenstal et al., 2010). Although the exact mechanisms remain
to be fully elucidated, several studies reporting on treatment
with these two GLP-1R agonists have consistently demonstrated
a reduction in blood pressure in patients with T2DM as well as
a reduction in brain natriuretic peptide (BNP) levels (Courrèges
et al., 2008; Bergenstal et al., 2010; Sun et al., 2015). Moreover,
in a human vascular endothelial cell line, liraglutide inhibited
TNF-α, fibrinolysis inhibitor PAI-1, and the mRNA and protein
levels of VCAM-1 and ICAM-1 (Liu et al., 2009). Likewise,
it has been reported that liraglutide exerts marked antioxidant
and anti-inflammatory effects on vascular EC by increasing NO
production, with inhibition of PKC-α, NADPH oxidase, NF-κB
and JNK signaling, while also leading to the overexpression of
superoxide dismutase (SOD) and catalase protective antioxidant
enzymes (Hattori et al., 2010; Shiraki et al., 2012). Additionally,
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also in in vitro studies, lipopolysaccharide (LPS)-stimulated
inflammatory responses were inhibited by exendin-4, a GLP-1
analog, in cardiomyoblasts (Chen et al., 2012) and in human
peripheral mononuclear cells (PBMCs) (Hogan et al., 2014). In
ob/ob mice, treatment with recombinant adenovirus producing
GLP-1 inhibited macrophage infiltration and adipose tissue
expression and production of IL-6, TNF-α, and MCP-1 (Lee
et al., 2012). Dai et al. (2013) reported that liraglutide protects
against atherogenesis by the reduction of Ox-LDL-induced
mitochondrial ROS in human aortic VSMCs. In addition, these
inhibitory effects were abrogated by the overexpression of lectin-
like oxidized low-density lipoprotein scavenger receptor-1 (LOX-
1), suggesting that LOX-1 plays an important role in the
antioxidant effects of GLP-1R agonists.

Dipeptidyl peptidase-IV inhibitors, another group of incretin-
based therapies, increase endogenous incretin levels availability
(such as GLP-1) and exert several insulinotropic effects that
contribute to maintain normal glucose levels (Godinho et al.,
2015). In particular, DPP-IV inhibitors are able to enhance
glucose-stimulated insulin secretion, inhibit glucagon secretion
and promote beta-cell proliferation and survival (Brubaker and
Drucker, 2004). Apart from the insulin-dependent effects, DPP-
IV inhibitors, namely sitagliptin (the first drug of this new
class of antidiabetic agents), exert extra-pancreatic cytoprotective
properties. Our group has already demonstrated antioxidant
and anti-inflammatory effects of sitagliptin in animal models of
diabetic nephropathy and diabetic retinopathy (Ferreira et al.,
2010; Mega et al., 2011, 2014, 2017; Gonçalves et al., 2012,
2014; Marques et al., 2014). In models of type 1 and type 2
diabetes, sitagliptin was able to ameliorate diabetic retinopathy
by preventing nitrosative stress, inflammation and apoptosis
in retinal cells and by exerting beneficial effects on the blood
retinal barrier (Gonçalves et al., 2012). In the Zucker Diabetic
Fatty (ZDF) rat, a model of obese T2DM, sitagliptin ameliorated
diabetic nephropathy, which was accompanied by an antioxidant
effect and by a significant reduction in inflammatory state and
cell death by apoptosis (Mega et al., 2011, 2017; Marques et al.,
2014).

Other studies in both animals and humans have suggested
similar protective properties in other tissues and conditions,
including a positive impact on vascular endothelium with anti-
atherosclerotic action (Ishikawa et al., 2014; Nakamura et al.,
2014), usually based on the anti-inflammatory activity of these
antidiabetic agents (Lee et al., 2012; Satoh-Asahara et al.,
2013). In fact, T2DM patients treated during 12 weeks with
sitagliptin presented a reduction in circulating inflammatory
markers, like CRP and IL-6 and reduced monocyte expression
of mRNA transcripts associated with inflammation (Makdissi
et al., 2012). Furthermore, treatment with sitagliptin improved
the inflammatory state, vascular endothelial function and
prevented the progression of carotid atherosclerosis in a dose-
dependent manner independent of its glucose-lowering effects
(Ayaori et al., 2013). Considering the direct effects regarding
the glycemic control and the pleiotropic effects on extra-
pancreatic tissues, DPP-IV inhibitors as well as GLP-1R agonists
are promising options for managing diabetes and vascular
complications.

SGLT-2 Inhibitors
Selective sodium/glucose co-transporter 2 (SGLT-2), is a
high-capacity, low-affinity glucose transport protein, which is
primarily found in the kidney but also in the intestine (Hasan
et al., 2014). This glucose transporter is responsible for about
90% of glucose reabsorption in the kidney (Vallon, 2011).
Empagliflozin, canagliflozin, and dapagliflozin are SGLT-2
inhibitors, also known as gliflozins, currently available in
Europe and in the United States for diabetes management.
In diabetic conditions, the kidneys increase expression of
SGLT-2 and, unlike the liver, increased glucose ingestion
elevates kidney gluconeogenesis even in diabetic patients
(Meyer et al., 1998; Hasan et al., 2014). SGLT-2 inhibitors
exert their effect on the kidneys, preventing reabsorption
of glucose from the proximal tubules via SGLT-2 (Scheen,
2015). Clinical trials of SGLT-2 inhibitors have shown that
these drugs decreased glucose levels independent of insulin
(Scheen, 2015). SGLT-2 inhibitors may also have additional
benefits related with weight loss and with reductions in blood
pressure that occur because of the osmotic effect of glucose
excretion and subsequent inhibition of the renin-angiotensin
system (Scheen, 2015). Recently, a few studies indicated
that SGLT-2 inhibitors may exert their cardiovascular and
renal protection via anti-inflammatory and antioxidative
effects (Ojima et al., 2015). Leng et al. (2016) found that
dapagliflozin can attenuate the formation of atherosclerotic
lesions, increase the stability of lesions, reduce the production
of IL-1β by macrophage infiltration, and decrease mitochondrial
ROS generation. These effects may be associated with an
inhibitory effect on the NLRP3 inflammasome in diabetic
atherosclerosis, which provides further evidence for its
benefits in diabetic patients. Moreover, also in diabetic rats,
empagliflozin was shown to improve hyperglycemia, reduce
urinary excretion levels of tubular injury markers, decrease
expression levels of oxidative stress biomarkers (AGEs and
RAGE), and reduce inflammatory and fibrotic markers in
the kidney, including MCP-1, ICAM-1, PAI-1, TGF-β (Ojima
et al., 2015). The authors suggest that a blockade of SGLT-2
by empagliflozin might protect proximal tubular cells from
glucotoxicity in diabetic nephropathy partly via suppression
of the AGE-RAGE-mediated oxidative stress generation.
Furthermore, empagliflozin given to patients with T2DM was
shown to reduce both blood pressure and arterial stiffness
(Chilton et al., 2015; Tikkanen et al., 2015), and data from
the EMPA-REG OUTCOME (Empagliflozin Cardiovascular
Outcome Event Trial in Type 2 Diabetes Mellitus Patients–
Removing Excess Glucose) trial showed that empagliflozin
is the first antidiabetic drug compound to conclusively
reduce cardiovascular morbidity and mortality (Zinman
et al., 2015).

Mitochondrial-Targeting Strategies
By targeting mitochondrial ROS generation, it is possible to
increase endothelial activity and improve endothelial dysfunction
in diabetes (Figure 2). For example, it has been shown
that the nicotinamide adenine dinucleotide phosphate oxidase
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4 (NOX4) enzyme regulates mitochondrial ROS generation,
leading to vessel relaxation and lower blood pressure (Santillo
et al., 2015). This is further confirmed by the fact that
higher levels of low-density lipoproteins, typically associated
with obesity and diabetes, increase NOX activity, which leads
to increased oxidative stress and cell death (Li et al., 2016).
Also, NOX activity has been implicated in altered angiogenesis
and increased susceptibility to hypoxia and stroke (Amanso
and Griendling, 2012; Caja and Enríquez, 2017). Interestingly,
NOX4 exists in EC and, in certain conditions, is present
within mitochondria, where it can block the respiratory chain
complex I, leading to increased ROS generation (Kozieł et al.,
2013) and elevating the interest in this enzyme for diabetic-
associated ROS management (Touyz and Montezano, 2012).
Another regulator of mitochondrial ROS, with clear implications
for endothelial dysfunction, is p66Shc, which responds to
high glucose by migrating to mitochondria and inducing
oxidation of key effectors, leading to cell death and loss of
tissue function (Camici et al., 2007; Paneni et al., 2012). In
particular, p66Shc can oxidize reduced cytochrome c, which
accumulates in anoxic conditions, a prevalent situation in
diabetes in certain tissues where cell enlargement (ex: adipocytes)
is present (Giorgio et al., 2005). The NAD+-dependent
deacetylase Sirtuin 1 is a known regulator of mitochondrial
function and cellular homeostasis (Price et al., 2012). It has
already been demonstrated that EC-specific Sirtuin 1 activation
decreases p66Shc overexpression by hyperglycemia, which is
predictably related to improved endothelial function (Zhou et al.,
2011).

Another factor of ROS-mediated EC injury is the oxidation
of NO by ROS. Not only is NO removed (leading to increased
vasoconstriction and thus hypoxia and further ROS generation,
as well as mechanic injury to the vessel due to elevated
blood pressure) but NO synthase activity is also compromised,
resulting in even further ROS generation (Forstermann and
Münzel, 2006). As such, antioxidant therapy or elevation of the
natural antioxidant defenses in mitochondria has been shown to
significantly improve vascular diabetic prognosis by contributing
to reduced oxidative stress, vascular relaxation and reduced blood
pressure (Dikalova et al., 2010).

However, since ROS has transitioned from simply toxic
agents toward a signaling function, a careful approach to
indiscriminate antioxidant therapy must be taken. In fact,
mitochondrial ROS are implicated in normal physiological
roles of EC, such as shear-stress-induced vasodilation, hypoxia
handling, autophagy, and inflammation (Caja and Enríquez,
2017). Nevertheless, pathological surges in ROS generation are
undoubtedly connected to loss of vascular function (Brownlee,
2001; Yu et al., 2006). This has been demonstrated by the
use of mitochondrial-targeting ROS scavengers. Mitoquinone
(mitoQ) attached to triphenylphosphonium (TPP) protected
against hypertension by preserving EC function, which correlates
with improved cardiac function (Graham et al., 2009), while
it can also prevent inflammation at atherosclerotic plaque sites
(Mercer et al., 2012). Similarly, the use of mitochondria-targeting
TEMPOL, a known ROS scavenger, yielded similar results by
decreasing hypertension (Dikalova et al., 2010).

A different approach hinges on preventing heightened ROS
generation by limiting nutrient availability, whether by caloric
restriction or agents that mime its effects. Unsurprisingly, calorie
restriction increases mitochondrial biogenesis and efficiency
(Nisoli et al., 2004; López-Lluch et al., 2008), which can be
harnessed for management of diabetic-induced EC dysfunction.
In fact, this is far from a novel idea, since Young and collaborators
have shown that calorie restriction improves blood pressure in
hypertense rats (Young et al., 1978), but it was recently confirmed
that it reduces cardiac hypertrophy and vascular inflammation,
in part by targeting mitochondrial function (Finckenberg et al.,
2012). This is further demonstrated by the fact that caloric
intake reduction improves atherosclerosis, diminishes ROS
generation (Guo et al., 2002), and overall reduces plaque
deposition, hypertension and other cardiovascular complications
in humans (Fontana et al., 2004; Lefevre et al., 2009). These
effects, unsurprisingly, involve the modulation of the activity
of many previously discussed agents, such as Sirtuin 1 and
AMPK, so much so that their activity modulating compounds
are widely considered calorie restriction mimetics (Fontana
et al., 2010). For example, the widely consensual Sirtuin 1
activator resveratrol (Price et al., 2012) leads not only to AMPK
activation, as the activity of this protein elevates eNOS, but also
reduces ROS generation and plaque deposition, culminating in
improved EC function (Wang et al., 2005; Csiszar et al., 2009).
Similarly, the known AMPK activator metformin inhibits the
induction of the mitochondrial permeability transition, leading
to the prevention of EC apoptosis and endothelial loss of
function (Schulz et al., 2008). Finally, by activating PPARγ,
the TZD pioglitazone activates PGC-1α, leading to improved
mitochondrial biogenesis in EC. PGC-1α can also be activated
by both AMPK and Sirtuin 1, which highlights the interaction
and interconnection of these metabolic agents and pathways
(Fujisawa et al., 2009).

The most common class of ion-selective channels are
potassium transmembrane channels (Szewczyk et al., 2015).
While the majority of these channels are present in the plasma
membrane, they are also present in the inner mitochondrial
membrane, where they regulate potassium fluxes and thus
modulate various mitochondrial functions and parameters, such
as membrane potential, ATP and ROS generation, mitochondrial
volume and calcium import (Bernardi, 1999; Szabo and Zoratti,
2014). Given the accumulation of negative charges in the
mitochondrial matrix, the positively charged potassium ions
enter the mitochondria in favor of the gradient and cause
a dissipation of membrane potential and thus decrease ROS
generation. As expected, EC mitochondria have potassium
channels where their activation decreases 19 and thus lead
to vasodilation (Katakam et al., 2013), an effect that might
be described by the apparent physical coupling of potassium
channels with the respiratory chain (Bednarczyk et al., 2013).

CONCLUSION AND PERSPECTIVES

Vascular complications represent the major cause of morbidity
and mortality in T2DM patients and are responsible for the lower
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life expectancy of these subjects. Given the complexity of the
mechanisms involved in disease appearance and progression, it
is unlikely that a single therapeutic measure could efficiently
control all the factors underlying the slow but consistent
deregulation of micro and macro vascular beds. While some
patients may greatly benefit from interventions based on
changes in lifestyle habits, for the majority of T2DM subjects,
pharmacological interventions are unavoidable and crucial.
However, apart from the most recent trial with the SGLT-2
inhibitor empagliflozin (EMPA-REG OUTCOME), the extensive
list of oral antidiabetic drugs already available for treating
T2DM patients has failed to show consistent reduction in
cardiovascular mortality, despite collectively, in mono and/or
combined therapy, being able to provide good glycemic control.
This evidence suggests that we still need to improve the
knowledge about disease and complications in order to be
able to develop newer targets of intervention. In order to
circumvent the current limitations and improve our capacity
to fight T2DM and its serious complications, there is growing
interest in looking for some of the mechanisms that play a major
role, such as hyperglycemia and hyperlipidemia-evoked oxidative
stress, mitochondrial dysfunction and inflammation. By better
controlling the causes of vascular disease(s) and targeting the
mechanisms involved, with older or newer agents, we can expect
improvements in the cardiovascular morbidity and mortality
outcomes of T2DM patients.
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