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Leukocytes play critical roles in preventing pathogenic infection and controlling

transformed cells, but must remain quiescent in response to healthy tissue. To

execute this function, immune cells need to integrate signals from a host of activatory,

co-activatory, and co-inhibitory immune receptors. When an immune cell interacts with

another cell containing ligands for these receptors, an immunological synapse is formed

at the contact interface that acts as a dynamic signaling hub into which cytoplasmic

enzymes are recruited and tethered. Within this interface competing tethered enzymatic

activities are integrated, ultimately leading to the cellular decision to respond or remain

quiescent. Here, we review recent advances in our understanding of tethered signaling

reactions, focusing on proximal signaling downstream of important T cell immune

receptors. We discuss how a class of co-inhibitory receptors require co-localization with

activatory receptors to function, how recent evidence that T cells use microvilli to probe

antigen presenting cell surfaces may be important for immune receptor function, and

how co-clustering between activatory and inhibitory receptors facilitates integration of

tethered reactions.
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INTRODUCTION

T cells play a critical role in the adaptive immune system, in which they must recognize and
respond to foreign antigens whilst remaining quiescent to normal tissue antigens. Upon activation
T cells undergo clonal expansion, differentiation, and mediate effector functions such as cytokine
production and direct target cell killing [1].

Fundamentally, T cell function is dependent on the orchestration of signals generated by
receptors found in their plasma membrane. T cells are activated when T cell receptors (TCRs) on
their plasma membrane interact with cognate peptide antigen-major histocompatibility complexes
(pMHC) presented on the surface of antigen presenting cells (APCs). These interactions occur at
the contact interface between T cells and APCs that, upon antigen recognition, matures into a
structure known as the immunological synapse [2]. In addition to the TCR there are numerous
co-stimulatory and co-inhibitory receptors, the signals from which must be integrated to culminate
in a specific output: the cell response [3]. Due to this integration of positive and negative regulation,
APCs can prevent, dampen or enhance a potential response of the T cells by the expression of
ligands for co-inhibitory or co-activatory receptors.

During the process of maturation, auto-reactive T cells are eliminated in the thymus [4],
however, some autoreactive T cells escape thymic selection, andmigrate to the periphery. Inhibitory
receptors play an important role in restoring tolerance and preventing self-reactive T cells from
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initiating auto-immune reactions [4–10]. Inhibitory receptors
that block the activation of T cells are also known as immune
checkpoint receptors for their ability to prevent inappropriate
autoreactive immune responses. Although this system is effective
at protecting healthy cells from being attacked by T cells, some
cancer cells and chronic viral infections take advantage of this
protection mechanism, expressing high levels of the ligands
for inhibitory receptors [11–13]. Due to the importance of
immune checkpoint receptors, they have become increasingly
important drug targets. Some of the most studied inhibitory
receptors are Cytotoxic T lymphocyte-associated protein 4
(CTLA-4), Programmed death-1 (PD-1) and B and T lymphocyte
attenuator (BTLA), with drugs targeting CTLA-4 and PD-1
already developed into frontline treatments for many cancers
[14–17].

Here we review the mechanism of signal integration for
a class of inhibitory receptors that function by recruiting
cytosolic phosphatases. Specifically, we highlight how physical
properties of the membrane and consequences of receptor-ligand
interactions occurring at cell-cell interfaces may be important
determinants of signal integration between these inhibitory
receptors and the activatory signaling they modify.

INHIBITORY AND ACTIVATORY
RECEPTORS NEED TO BE IN CLOSE
PROXIMITY TO INTEGRATE THEIR
SIGNALS

The TCR is a multi-chain complex consisting of alpha
and beta subunits, responsible for binding pMHC, and
CD3 chains (epsilon-delta, epsilon-gamma and zeta-zeta
dimers), responsible for signaling. Upon TCR-pMHC binding,
tyrosine residues within immunotyrosine-based activation
motifs (ITAMs) present in the intracellular tails of the CD3
chains are phosphorylated by the Src-family kinase Lck.
Phosphorylated ITAMs recruit the cytoplasmic kinase ZAP70
to the TCR complex, where the enzyme becomes activated
and phosphorylates the membrane adaptor protein linker for
activated T cells (LAT). Phosphorylated LAT in turn recruits
other cytosolic adaptors that propagate the signal leading to full
T cell activation [18, 19].

TCRmediated cellular activation can bemodified by a number
of co-stimulatory and co-inhibitory receptors [3]. Co-stimulatory
receptors, such as CD28, can amplify T cell responses and in
many contexts are essential for robust T cell mediated immune
responses [20]. Similar to the TCR, when CD28 binds either of its
ligands, CD80 and CD86, tyrosines on the intracellular tails are
phosphorylated by Lck. These phosphorylated tyrosines recruit
cytosolic mediators, such as phosphoinositide 3-kinase and Grb2,
thereby augmenting T cell activation [21].

Conversely, co-inhibitory receptors, including PD-1, halt
T cell activation [3, 22]. There are several mechanisms by
which inhibitory receptors interfere with T cell activation.
For example CTLA-4 competes with CD28 for CD80 and
CD86 and thus limits co-activation via CD28. Alternatively,
co-inhibitory receptors produce inhibitory intercellular signals

that by recruiting cytosolic phosphatases that are subsequently
integrated into the activating signals of the TCR and co-
stimulatory receptors. In this category of co-inhibitory receptors,
in which PD-1 belongs, the physical principles of signal
integration are key. This subset of receptors has intracellular
tails that harbor immunotyrosine-based inhibitorymotifs (ITIM)
or immunotyrosine-based switch motifs (ITSM), which are
phosphorylated by Lck when these receptors bind their
cognate ligand. Once phosphorylated, the endodomains of
inhibitory receptors recruit phosphatases, such as Src homology
region 2 domain-containing phosphatase-1 (SHP-1) or Src
homology region 2 domain-containing phosphatase-2 (SHP-
2) that dephosphorylate activatory receptors, or SH2 domain-
containing inositol 5′-phosphatase (SHIP) that dephosphorylates
phosphatidylinositol-3,4,5-trisphosphate [23].

Cellular studies have shown that co-ligation of PD-1 with
TCR and/or CD28 results in decreased phosphorylation of CD3
chains, CD28 and proteins of the downstream cascade such
as Vav1, protein kinase C (PKC)-θ and extracellular signal-
regulated kinase (ERK)1/2 [24–26] and in vitro reconstitution
experiments show that SHP-2 recruited to PD-1 can directly
dephosphorylate CD3ζ and CD28 cytoplasmic tails [22]. At
this point it is useful to make a distinction between receptor
triggering and signal propagation. Van der Merwe and Dushek
summarized it best when they defined TCR triggering as “[t]he
process by which TCR binding to peptide–MHC molecules
leads to biochemical changes in the cytoplasmic regions of
the CD3 complex. . . ” [27]. From this perspective, events such
as ZAP70 recruitment or phosphorylation of LAT can be
considered signal propagation downstream of TCR triggering.
There are many competing models of TCR triggering [27,
28], but it is hard to imagine how a receptor like PD-1
might realistically interfere with any of the proposed triggering
processes. Rather, the available data indicates that PD-1
intervenes post-triggering of individual TCR or CD28 receptors
by decreasing the amount of phosphorylated receptor at any one
time, or the lifetime of individual phosphotyrosines, on activatory
receptors.

The integration of phosphatase activity tethered to co-
inhibitory receptors with the kinase activity tethered to the
TCR and co-inhibitory receptors can only occur if the spatial
organization is such that the reach length of the phosphatase
and kinase overlap. Since both signaling enzymes are tethered
to the membrane via the recruitment to the respective receptors,
it has become critical to examine the co-localization and co-
clustering of activatory or co-activatory receptors in biological
membranes. When ligands for PD-1, TCR, and CD28 are
presented on the same surface the engaged receptors co-localize
within clusters in the T cell [22, 26]. In an elegant series
of experiments, Yokosuka et al. used PD-1 constructs with
ectodomains elongated to different extents to demonstrate that
the degree of mismatch between TCR/pMHC and PD-1/PD-
L1 dimensions correlated inversely with co-localization and
inhibitory function [26]. Elongating receptor-ligand interactions
can have the additional effect of reducing the efficiency of
receptor phosphorylation, which can be understood in the
context of the kinetic segregation mechanism [29], and to
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separate this effect the authors used PD-1 constructs with SHP-
2 fused to the intracellular tail, thus circumventing the need
for triggering. These experiments build on earlier work by
Köhler et al. and Eriksson et al. who demonstrated a similar
principle with inhibitory and activatory receptors in NK cells
[30, 31]. Accordingly, it was noted that most known inhibitory
and stimulatory receptors that bind surface-associated ligands
form similar ligand-receptor dimensions, which are smaller than
the large surface phosphatases that regulate their triggering
[32], suggesting that this is a common requirement for signal
integration between activatory and co-inhibitory receptors.
Taken together, it seems that the degree of co-localization of some
receptors is an important determinant in the integration of their
function.

Before we review the complex mechanisms that underlie
receptor co-localization, we would like to point out that co-
localization does not seem to be a requirement for CD28-
mediated co-stimulation, and is thus not a universal requirement
for T cell signal integration. If ligands for CD28 are presented
on separate cells from agonistic pMHC molecules, T cells still
have enhanced responses, although the effect appears to be less
efficient than if both ligands are presented on the same cell
surface [33].

MECHANICS OF RECEPTOR-LIGAND
INTERACTIONS AT CELL-CELL
INTERFACES

Bonds occurring between membrane-bound receptors and
ligands are subject to forces that have consequences for the
organization of proteins at the surface. In this section we will
review the evidence for how these forces impact on the formation
of initial bonds and how they result in the size-based segregation
and clustering of surface proteins.

For bonds to occur between the TCR, co-inhibitory and
co-activatory receptors and their respective membrane-bound
ligands, the T cell andAPCmembranesmust be the right distance
apart. However, most immune receptor-ligand complexes span
a short distance compared with the length of the glycocalyx.
Given this size difference it is relevant to ask how bonds between
smaller receptor-ligand pairs occur at all. To overcome the
glycocalyx, which normally repulses the close apposition of two
cell membranes, T cells actively probe APCs using thin (100–
200 nm) actin-dependent finger-like membranous protrusions
known as microvilli [34, 35] (Figure 1). These processes are
highly dynamic and are continuously protruding and retracting
[35]. Using a combination of super-resolution microscopy
approaches Jung et al. suggested that these flexible projections
are enriched with adhesion molecules and TCRs. However, it
should be noted that all the molecules the authors investigated
appeared to be enriched at the tip of microvilli, with the
exception of CD45, which was modestly depleted [34]. The tips
of microvilli were closer to the coverslip in their experiments
and the authors may not have adequately corrected for the
greater signal-to-noise at these points, which would be reflected
in a greater probability of detection. Nevertheless, mounting

evidence suggests that T cells probe the surface of APCs with
these microvilli and that these are likely the sites of the initial
bonds formed between the TCR, co-inhibitory and co-activatory
receptors [34, 35].

Once ligand-receptor interactions form across a cell-cell
interface this has consequences for the organization of other
proteins in the membrane. For example, the TCR-pMHC
complex spans approximately 15 nm so that wherever these
bonds exist the membranes of the two cells will be held
apart at a distance equivalent to the complex dimensions
(Figure 1). This gap will establish a size threshold that
will segregate other surface proteins with an ectodomain
larger than the interface height. CD45 is the best studied
example of this and is excluded from points of TCR-pMHC
bonds due to its large extracellular domain [36, 37]. This
concept was also recently demonstrated in a reductionist
system by Schmid et al. who used giant unilamellar vesicles
coated with binding and non-binding fluorescent proteins
of different dimensions [38]. Since this vesicular system
lacked any cellular machinery the results demonstrate that
segregation of proteins just 5 nm larger than the binding
interface can occur purely as a result of the energy penalty
caused by membrane bending to accommodate the larger
protein.

Another important consequence of the uneven interface
between the T cell and APC is that bonds formed between
molecules on opposing membrane are much more likely to
occur in regions where bonds of compatible dimensions already
exist [39–41]. Thus, new ligand-receptor bonds gather around
existing bonds, promoting the co-clustering of size-compatible
ectodomain receptors, which is required for co-localization and
signal integration between activatory and inhibitory receptors
(Figure 1). As discussed earlier, initial interactions are likely
formed at the tip of microvilli, but as the immune synapse
evolves at later time points the contact interface flattens.
Although, the nanoscale topology of the contact interface
remains a topic of active investigation, receptor-ligand pairs
with modestly different dimensions are known to segregate in
the immunological synapse at late time points (several minutes
after initial contact), with LFA1-ICAM-1, CD2-CD58, and TCR-
pMHC forming a “bulls-eye” pattern of concentric circles in the
synapse [42].

It should be noted here that TCR activation precedes
full immunological synapse formation [43] and the typical
“bulls-eye” pattern of the synapse (reviewed in detail elsewhere
[2, 44]). It is easy to conflate events happening on the scale
of the entire synapse (µm length scale, minutes time scale)
with events happening at the scale of microvilli/clusters (100–
200 nm length scale, 10 s of seconds time scale). This can
be particularly confusing since the synapse-like patterns
of integrin bonds surrounding TCR-pMHC bonds also
occur in the form of micro-adhesion rings that surround
TCR clusters at early timepoints [45]. However, as we will
argue in the following section, signal integration between
activatory and inhibitory receptors likely occurs at the scale of
microvilli/clusters, and thus this distinction is important to keep
in mind.
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FIGURE 1 | Microvilli of T cell probing an APC surface. The arrows indicate the free diffusion of unbound receptors on the membrane. This diffusion follows a random

distribution of receptors except in the interface between the microvilli and the APC, where proteins larger than the size of the interface, such as CD45, are excluded.

The zoomed in region illustrates how compatible receptor-ligand dimensions become co-clustered at points of close contact initiated at the tips of microvilli.

PHYSICAL PROPERTIES OF RECEPTOR
TAILS ARE AN IMPORTANT
DETERMINANT OF SIGNAL INTEGRATION

To understand why inhibitory receptors must co-localize with
activatory receptors to function effectively we will conclude by
more closely considering themolecularmechanisms of inhibitory
signaling.

Proximal signaling downstream of the TCR and co-
stimulatory receptor activation, initially occurs on the tails of
the receptors, but eventually spreads to other proteins that are
spatially separated from the receptors. In contrast, co-inhibitory
receptors that recruit phosphatases do not seem to generate long-
range inhibitory signals, but rather appear to function locally.
The phosphatases that mediate inhibitory receptor function,
SHP-1 and SHP-2, only become fully catalytically active when
their SH2 domains are engaged by phosphorylated ITIM peptides
[46, 47].

The concentration of substrate that SHP-1 or SHP-2
encounter when they are recruited to inhibitory receptors
depends on the reach and flexibility of the cytoplasmic tail
they are recruited to, the scale of co-localization with activatory
receptors containing phosphorylated tyrosines, and the reach
and flexibility of the cytoplasmic tail of the activatory receptors

(Figure 2). The overall reaction rate is thus dictated by the
binding kinetics between the recruited enzyme and the immune
receptor tail, the intrinsic catalytic rate, and the reach and
mechanical properties of the immune receptor tail. There are
some similarities between these membrane-tethered reactions
and signaling reactions on scaffolds [48]. However, since immune
receptors diffuse in the membrane, cluster and co-cluster with
other immune receptors the situation is analogous but more fluid
than scaffold signaling and some authors have used the term
“tethered signaling” to describe proximal signaling reactions
occurring on the tails of immune receptors [49].

Despite the importance of mechanics to tethered signaling

reactions, the reach and flexibility of the cytoplasmic tails of
activatory and inhibitory receptors remain largely unstudied.
Local substrate concentration is an important consideration

since tethering an enzyme to a poor substrate can override
catalytic specificity and drive what would otherwise be an

unfavorable reaction [50]. Mathematical modeling has been
used to predict the local concentrations of enzymes tethered
to substrates by unstructured linkers [51–53], which can

dramatically enhance reaction rates. These studies often rely on
modeling the unstructured regions of proteins the enzymes are

tethered to, such as the tails of immune receptors, using the

wormlike chain model. The worm-like chain model uses two
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FIGURE 2 | Co-clustering of compatible size receptor-ligand bonds in the cell-cell interphase allows signal integration. The colored areas indicate the span of action of

each membrane tethered enzyme. (A) If receptor-ligand bonds are spaced too far apart at the cell-cell interface, inhibitory receptors are not able to carry out their

function and activatory receptors can initiate their signaling cascade, indicated by the black arrows. (B) Co-clustering of receptor-ligand bonds allows the cytoplasmic

domains to overlap and for phosphatases recruited to the cytoplasmic tails of co-inhibitory receptors to reach substrate phosphotyrosines, allowing signal integration.

parameters to describe the behavior of polymers: persistence
length (quantifying the stiffness of the polymer) and contour
length (the end-to-end length of the polymer). Although a good
estimate, the specific sequence of the unstructured region can
significantly affect the behavior [54, 55] and furthermore the
size and orientation of the enzyme tethered to tail is often
neglected. Windisch et al. used mesoscale modeling to address
this second point finding that, for a tethered reaction in a
bacterial chemotaxis receptor pathway, the physical size of
the rigid enzyme impeded its ability to explore a significant
portion of the tether-restricted space [51]. Given the difficulties
in predicting the local enzyme concentrations on membrane
tethers, we found it necessary to develop an experimental system
that can capture the various parameters involved in tethered
signaling independently.

To directly measure important parameters describing tethered
signaling reactions, Goyette et al. recently described a novel
biophysical assay utilizing surface plasmon resonance (SPR) [49].
The method can be used to measure the binding, catalytic and
effective reach parameters for a phosphatase interacting with

and dephosphorylating a phosphotyrosine-containing peptide
immobilized on the SPR chip surface. The authors investigated
the interaction of SHP-1 with an ITIM containing peptide
derived from the inhibitory receptor leukocyte associated
immunoglobulin like receptor 1 (LAIR1), finding that binding
of the enzyme to the ITIM increased the catalytic rate 900-
fold through a combination of allosteric activation and increased
local substrate concentration [49]. Although the peptide used
did not represent the full-length cytoplasmic tail of LAIR1 but
was instead the ITIM portion with a PEG linker with shorter
dimensions that the native tail, the results suggest that the
enzyme itself contributed significantly to the effective reach
length, which was measured to be 23 nm. Future studies using
this technique with full length cytoplasmic tails of inhibitory
receptors will hopefully shed some light on the effective reach and
biophysical properties of tethered signaling reactions.

Based on the information with immobilized tethers, we
know that the local concentration of recruited enzyme falls
off rapidly with distance from the ligand-engaged receptor,
highlighting the importance of close co-localization between
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receptors. Although we do not know the exact physical properties
of immune receptor tails, for a reasonable estimate of receptor
cytoplasmic tail length, a change in co-localization distance from
5 to 50 nm can cause a 1,000-fold decrease in effective enzyme
concentration [49], assuming that no lateral diffusion takes place.
Beyond the maximum reach of the tether, the recruited enzyme
is unable to catalyze reactions. These considerations explain
the observed requirement for co-localization and compatible
receptor-ligand dimensions between activating and inhibitory
receptors discussed in the previous section, but also suggest a
relevant scale for the co-localization (<50 nm). This scale fits
well with the dimensions of the tips of microvilli (Figure 1),
suggesting that they could be the primary sites of signal
integration. It also fits well with results from Cai et al. who
patterned ligands for the TCR receptor at defined intermolecular
distances and found a lateral spatial threshold of <50 nm
to maintain robust signaling [56]. The authors note that
this distance corresponds well the predicted reach length of
intracellular tails of the TCR complex, suggesting that this allows
the signaling to be reinforced. We are proposing a similar
mechanism, with opposite consequences, for the co-clustering of
activatory receptors such as TCR or CD28, with co-inhibitory
receptors, such as PD-1.

While in the SPR assay and Cai et al’s ligand patterning,
proteins are immobilized on the surface, in the plasmamembrane
individual receptors can diffuse laterally. The diffusion of
receptor-ligand bonds on opposing membranes at a cell-cell
interface however, is less clear. While there are many imaging
approaches to measure membrane diffusion [57] and we recently
engineered a FRET sensor that measures TCR clustering
dynamics [58], it is difficult to distinguish engaged from non-
engaged receptors at cell interfaces with these technologies.
The problem is confounded in that only ∼23% of the TCRs
signaled when stimulated with excess antigen or activating
antibodies [20]. Thus, the diversity of receptors—engaged vs.
non-engaged, signaling vs. non-signaling receptors—that are
genetically and biochemically identical makes interpretation
of bulk measurements difficult. In addition, we lack a detail
understanding of the spatial organization when a T cell
transitions from the first contact with an APC via microvilli to
a mature synapse. The best indication we have is from single
molecule imaging of live cells, which show that when the TCR
binds pMHC on opposing membrane (in this case a supported
lipid bilayer), the resulting ligand-receptor complex does not
undergo free diffusion and is localized in the same diffraction-
limited (>200 nm) spot on the timescale of seconds [59].
Ultimately, over the course of tens of seconds to minutes, the
complex associates with the actin cytoskeleton and is transported
to the center of the synapse where internalization and signal
down-regulation occurs [42]. These experiments suggest that
either complex formation drastically reduces mobility of the
receptor and ligand, or the complex undergoes very confined
diffusion within a small close-contact region, or both occur.

Finally, even the assumption that the tip of a microvillus or
the mature synapse represents a 2-dimensional zone for ligand-
receptor interactions is likely too simplistic. Even when opposing
membranes are held very close to the optimal distance for
binding, thermal fluctuations and cortical cytoskeletal stiffness

can have large effects on binding kinetics on small scales
(<100 × 100 nm) and receptor-ligand bonds can dampen
thermal fluctuations, thus enhancing on-rates and reducing
off-rates for compatible dimension receptors in their vicinity
[60]. The theoretical upshot of this would again be distance-
dependent synergy in compatible dimension receptor-ligand
bond formation on a scale similar to the reach length of tethered
reactions [49].

CONCLUDING REMARKS

A T cell must be able to integrate signals from inhibitory
and activatory receptors. A possible mechanism is to use
biophysical principles such as the spatial organization on the
molecular scale to regulate biochemical reactions. This linkage
occurs on two different levels: firstly, on the extracellular
side, receptor engagement can lead to receptor clustering
and co-localization and secondly, on the intracellular side,
kinases and phosphatases can be tethered to the membrane
by recruitment to phosophorylated receptor tails. The first is
a result of the topology of the plasma membrane, including
microvilli, together with passive mechanical forces acting to
aggregate compatible dimension receptor-ligand complexes in
close contact regions. Although some important specifics about
the nanoscale topology of the contact interface and organization
of receptors in the membrane remain uncertain, we propose
a model in which these close contact points are the main
site of co-inhibitory receptor signal integration. This model
explains the requirement for compatible ectodomain dimensions
between activatory and inhibitory ligand-receptor pairs and
suggests that mechanical properties of receptor tails will
have important consequences for the effectiveness of signal
integration.

The relevant distances for these processes are on themolecular
scale (tens of nanometres), which make them very difficult
to study in situ. For this reason, modeling and reductionist
systems have been important for highlighting the relevance of the
biophysical properties of the cytoplasmic tails. With advances in
microscopy techniques, and the development of complimentary
biophysical methods, a clearer picture of how tethered signaling
reactions occur within the complex environment of T cell-APC
contact interfaces will emerge. As our understanding of signal
integration processes becomes more nuanced it may become
possible to manipulate and utilize them to construct more
effective therapeutic strategies, such as synthetic chimeric antigen
receptors [61].
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