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Alzheimer disease (AD) is the fourth major cause of death in the elderly following

cancer, heart disease and cerebrovascular disease. Finding candidate causal genes

can help in the design of Gene targeted drugs and effectively reduce the risk of the

disease. Complex diseases such as AD are usually caused by multiple genes. The

Genome-wide association study (GWAS), has identified the potential genetic variants for

most diseases. However, because of linkage disequilibrium (LD), it is difficult to identify the

causative mutations that directly cause diseases. In this study, we combined expression

quantitative trait locus (eQTL) studies with the GWAS, to comprehensively define the

genes that cause Alzheimer disease. The method used was the Summary Mendelian

randomization (SMR), which is a novel method to integrate summarized data. Two GWAS

studies and five eQTL studies were referenced in this paper. We found several candidate

SNPs that have a strong relationship with AD. Most of these SNPs overlap in different

data sets, providing relatively strong reliability. We also explain the function of the novel

AD-related genes we have discovered.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease and has become the fourth major cause of
death after cardiovascular disease, malignant tumor and stroke in the elderly (Senova et al., 2018).
The cause of Alzheimer’s disease remains difficult to explain. It is estimated that the impact of
related genes, on the risk of AD, is nearly 70% (Cruchaga et al., 2012). Therefore, screening for
candidate genes and loci associated with AD is of great significance to understand the pathogenesis
and treatment of AD.

At present, the Genome-wide association study (GWAS) is widely used to identify various
neurological susceptibility genes. The use of the GWAS analysis to find the risk genes of AD
was only started 10 years ago (Visscher et al., 2012). At the beginning of this century, many
research groups identified the susceptible locus of AD, but the actual results were not satisfactory.
The only susceptibility genes found by these different research groups was SOL1 (Meng et al.,
2007). The inconsistency of these research results were mainly due to the heterogeneity of
the experimental samples, the complex linkage disequilibrium patterns, differences in the allele
frequencies, and the size of the samples (Malhotra et al., 2012). Over the past 10 years, the
emergence of high-throughput sequencing technology has allowed researchers to simultaneously
detect millions of Single Nucleotide Polymorphisms (SNPs) on the genome. Through the efforts
of large organizations and companies, high-throughput sequencing technologies have led to the
discovery of many new pathways and susceptibility genes for AD in recent years. Researchers from
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the GWAS first identified four susceptible gene loci, CLU,
PICALM, CRL, and BIN1 (Kauwe et al., 2011; Barral et al.,
2012). Later, other research groups (Hollingworth et al., 2011; Naj
et al., 2011) found susceptibility loci such as CD33 and EPHA1,
using a larger sample of the GWAS analysis. The experimental
samples of these studies were mainly from Europe. The most
significant SNP population attribution scores, of the above-
mentioned susceptibility loci, are between 1 and 8%, and the odds
ratio (OR) varies from 1.16 to 1.20. In addition, Hillburns et al.
(2014) linked neurological Parkinson’s disease within the GWAS
and found a range of risk locus. Kauwe et al. (2008) used the
GWAS for AD research and found that risk genes such as ACE
andMMP3 are associated with Aβ amyloid and Tau protein levels
in cerebrospinal fluid.

However, limitations in the GWAS still remain. For example,
the strategy is based on the hypothesis of “disease-common
variations,” which misses rare variants [minor allele frequency
(MAF < 0.005)] that may play a more important role in the
cause of diseases; SNPs are not necessarily true pathogenic
locus, but only “tags” SNPs that are associated with LD in real
disease-causing locus. In particular, signals located in the so-
called “desert regions” of genes make it difficult to elucidate
the biological functions of genetic variation. The GWAS usually
analyzes the marginal effects of a single locus, based on the
most obvious principle of statistical discrepancies, while ignoring
the interaction of multiple genes in complex diseases (Battle
et al., 2014). Therefore, the GWAS still cannot fully reveal the
genetic susceptibility factors of complex diseases, which is an
important part of exploring genetic etiology mechanisms of
complex diseases. How to mine the susceptible locus of the
GWAS and how find the true pathogenic locus, as well as how to
explore the biological mechanism of these non-coding sequences,
is a major challenge in genetic research.

Expression quantitative trait loci (eQTL) are quantitative traits
based on the expression level of the gene mRNA. Traditional
QTL methods are used to locate the genetic loci and to locate the
genetic locus of the target gene expression. This mappingmethod
requires measuring the genotype and the gene expression levels
for each individual, and then compares the association between
the genotype and gene expression levels using an association
analysis (outcrossing population) or a linkage analysis (pedigree
or experimental hybridization population) (James Ronald, 2007;
Clément-Ziza et al., 2015). It was found that about 80% of
the genetic susceptibility loci detected by the GWAS were
located in the non-coding region of the genome, suggesting
that the pathogenic loci may have regulatory functions on gene
expression. Nicolae et al. (Dan et al., 2010) compared the SNPs,
found in the common complex diseases of the GWAS, with other
random sampling SNPs with same typing platform matching the
allelic frequency distribution, and found that the former clearly
contained more eQTLs (Cheng et al., 2016, 2018a,b). Therefore,
an important role of the large-scale eQTL research is to be able to
prioritize the screening of possible pathogenic sites among SNP
loci in the GWAS susceptible regions (Cheng et al., 2018c; Hu
et al., 2018), and to speculate the possible biological mechanism
through the impact of DNA polymorphism on biological traits.
At present, many studies have used eQTL analysis as a very

effective tool (Libioulle et al., 2007; Moffatt et al., 2007) to
interpret the results of the GWAS. By increasing the sample
size, the problem of low statistical efficiency caused by the small
sample size in the past, has been gradually improved (Albert
and Kruglyak, 2015), and the number of eQTLs found has
significantly increased.

Therefore, if we combine the GWAS with eQTL, we will
find many genes and loci related to diseases. In this paper,
we introduce the “Summary Mendelian Randomization, SMR”
method. This method can find disease-related SNPs from the
summary level of data. SMR is first proposed in the paper by Zhu
et al. (2016) as the “Integration of summary data fromGWAS and
eQTL studies predicts complex trait gene targets.” They used this
method to identify several genes which are related to five complex
traits. Since the paper was published, many researchers use SMR
to identify disease-related SNPs. Pavlides et al. (2016) used the
SMR in 28GWAS datasets to identify genes with expression levels
associated with traits and diseases due to pleiotropy or causality.
Meng et al. (2018) applied the SMR to identify bone mineral
density (BMD) related genes. Du et al. (2018) also identified genes
and pathways associated with Amyotrophic Lateral Sclerosis
using the SMR. Fan et al. (2017) identified six genes associated
with neuroticism using the SMR. Yengo et al. (2018) identified
an enrichment of eQTLs amongst lead height and BMI signals,
prioritizing 684 and 134 genes, respectively, using the SMR. Liu
et al. (2018) used the SMR for research on Obesity and found
20 BMI associated genes. Veturi and Ritchie (2018) compared
two popular methods: The MP and SMR using different datasets.
Looking at these studies and the evidence, we concluded that the
SMR is an effective tool.

METHODS

SMR
TheGWAS has identified thousands ofmutations associated with
various traits and diseases. However, due to the complex linkage
effects and statistical errors of the samples, the mechanisms
and effects of these mutations on diseases remain unknown.
If the level of a gene expression is affected by mutation, the
level of gene expression will be different among individuals of
different genotypes, therefore, if the level of expression of a gene
affects the disease, then different genotypes will have different
phenotypic effects on the disease. The idea is therefore very
similar to Mendelian Randomization (MR), where SNPs can
serve as instrumental variables to explore the association between
genes and diseases. Therefore the newwork flow of generalization
of Mendel’s randomized method is as Figure 1.

eQTL refers to regions on chromosomes that specifically
regulate the expression of the mRNAs and proteins. The
expression level of the mRNAs or proteins is proportional to
the quantitative traits. eQTLs can be divided into cis-eQTLs and
trans- eQTLs. Cis-eQTLs are the eQTLs of a gene that are located
in the genomic region of the gene, indicating changes in mRNA
levels that may be caused by differences in the gene itself; trans-
eQTLs are the eQTLs of a gene that are located in other genomic
regions, indicating other genes. These genetic differences control
the different mRNA levels of the gene. The corresponding data of
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FIGURE 1 | Generalization of Mendel’s randomized method.

FIGURE 2 | Work flow of SMR.

gene expression levels of individuals with different genotypes will
then be obtained with eQTL.

The basic ideas are as follows: first, set y as the phenotype
(output variable), x as the expression of gene (exposure factor),

and z as the gene mutation (instrumental factor). Then, bxy is
the effect of x on y. bzx is the effect of z on x. bzy is the effect
of z on y. finally, bxy is defined as bxy = bzy/bzx, that is the
effect of gene expression on the phenotype without confounding
factors. The work flow of SMR is shown in Figure 2. First, bxy
can be obtained using the GWAS, as GWAS data can reflect
the SNP effect on the trait. Then, bzx can be obtained by
the eQTL, as eQTL data can reflect the SNP effect on gene
expression. Finally, we could use a Chi-square test to obtain
significance.

RESULTS

As shown in Table 1, we totally got 2 GWAS datasets and 5
eQTL datasets. We combined these datasets for a total of 10
experiments. From these 10 experiments, we detected SNPs with
statistical effects in five experiments. In total, we found 27 SNPs
which are associated with AD.

Most of the SNPs are overlapped in these five experiments,
evidence that our method is effective. The false positive is low.

Since one single SNP could be labeled by different probes
in the eQTL, one SNP could be screened and associated with
AD several times. We collate the number of times that SNP
is repeatedly screened. As shown in Figure 3, most SNPs were
screened for four times. Only three SNPs were screened once.
This illustrates the high accuracy, to some extent, of the SNPs
screened.

TABLE 1 | The number of SNPs obtained in five experiments.

GWAS eQTL Number of SNPs

IGAP_stage_1 CD4-cis-eQTLsFDR-ProbeLevel0.5 10

IGAP_stage_1 CD8-cis-eQTLsFDR-ProbeLevel0.6 9

AD_GERAD_GWAS_

autosomal_additive

Hap300_CER_AD 1

AD_GERAD_GWAS_

autosomal_additive

CisAssociationsProbeLevelFDR0.5 40

AD_GERAD_GWAS_

autosomal_additive

associations_1e6 43

FIGURE 3 | The number of repetitions of SNPs.
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TABLE 2 | Detailed information of selected SNP.

Index SNP GENE P-value

1 rs10402271 MS4A2 1.59e-05

2 rs4663105 BIN1 5.63e-06

3 rs11682128 BIN1 1.65e-05

4 rs6733839 BIN1 1.75e-05

5 rs10194375 BIN1 1.79e-05

6 rs56368748 BIN1 2.13e-05

7 rs6859 PVRL2 1.22e-13

8 rs377702 PVRL2 1.56e-08

9 rs157580 PVRL2 1.64e-08

10 rs439401 PVRL2 1.38e-07

11 rs8106922 PVRL2 1.31e-06

12 rs610932 MS4A6A 2.19e-06

13 rs662196 MS4A2 7.14e-06

14 rs583791 MS4A6A 7.41e-06

15 rs2075650 PVRL2 1.12e-05

16 rs676309 MS4A6A 1.14e-05

17 rs12610605 GEMIN7 1.31e-05

18 rs1562990 MS4A4A 1.39e-05

19 rs11667640 PVRL2 2.78e-05

20 rs440277 PVRL2 2.82e-05

21 rs667897 MS4A6A 3.27e-05

22 rs405509 PVRL2 6.38e-05

23 rs540170 MS4A6A 7.40e-05

24 rs581133 MS4A6A 7.92e-05

25 rs11606287 SPI1 9.49e-05

26 rs7926344 MS4A6A 9.63e-05

27 rs744373 BIN1 2.60e-05

As shown in Table 2, we screened 27 SNPs belonging to seven
genes. Most of these genes were repeatedly chosen. Figure 4
shows the number of times the genes were screened.

As shown in Figure 4, PVRL2 was screened nine times. This
gene is therefore very likely associated with AD.

Gene Function
Next, we searched for known AD-related genes on different
databases (as shown in Table 1) to identify which genes were
novel and which genes are known.

First, we used the DisGeNET (Piñero et al., 2015) database
to search for AD-related genes. In total 2244 AD-related genes
were found. Three genes were identified in this database; MS4A2,
MS4A6A and MS4A4A. Then, we used the ALZgene (Bertram
et al., 2007) database to search for AD-related genes. Four
novel genes were identified in this database; SPI1, GEMIN7, and
MS4A2.

We searched for the seven genes on the ALZgene database,
and the number of papers found in the ALZgene are shown
in Figure 5. Since MS46A and MSA4A are both included both
databases, we will not discuss them in detail below. We will
discuss the functions of the following five genes: BIN1, PVRL2,
GEMIN7, SPI1, and MS4A2.

FIGURE 4 | Number of gene duplication.

FIGURE 5 | The number of papers found in the ALZgene.

BIN1
BIN1 is an encoding gene with the product name; Myc box-
dependent-interacting protein 1. Several isoforms of a nucleo-
cytoplasmic adaptor protein are encoded by BIN1. The isoforms
expressed in the central nervous system may participate in the
endocytosis of synaptic vesicles and may interact with activator
proteins, synaptic proteins, endothelin and reticulin (Lee et al.,
2002). Mouse studies show that this gene plays an important
role in the development of myocardium. Alternatively splicing of
genes leads to several transcriptional variants encoding different
types of allotypes. Abnormal splicing variants expressed in tumor
cell lines are also described.

Due to its ubiquitous expression in the brain, many scholars
research the relationship between BIN1 and AD. Chapuis et al.
(Chapuis et al., 2013) suggested that BIN1 mediates AD risk
by modulating Tau pathology. Yuan et al. (Chen et al., 2018)
considered that allele C at the rs744373 locus of the BINl gene
was a risk factor for aMCI. The recessive model CC/CT+TT at
the rs744373 locus of the BINl gene, particularly increased the
risk of aMCI. Experiments were performed on 107 aMCI patients
and 150 normal people.

PVRL2
PVRL2 encodes a single pass type I glycoprotein. The protein
is one component of the plasma membrane. It also acts as an
entry point for the herpes simplex virus and pseudorabies virus
mutants and is involved in the intercellular transmission of these
viruses (Almire et al., 2010). The variation of the gene is related
to the severity of multiple sclerosis.
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Since PVRL2 is proven to be related to multiple sclerosis
causing glial fibrils to proliferate and form calcified plaques, it is
very similar to the clinical symptoms of AD. Therefore, it could
be a candidate AD-related gene. Yashin et al. (2017) collected data
from the Framingham Heart Study (FHS), the Cardiovascular
Health Study (CHS), the Health and Retirement Study (HRS)
and the Late Onset Alzheimer’s Disease Family Study (LOADFS).
They used logistic regression and Cox’s regression and found that
APOE, TOMM40, PVRL2 (NECTIN2), and APOC1 are strongly
associated with AD.

GEMIN7
The gene encodes the components of the core survival of
motor neurons (SMN) complex, which plays a crucial role in
the splicing pre-mRNAs in the nucleus. It has been found
that the gene encodes three transcriptional variants of the
same protein. It mainly expresses in the lymph nodes and the
spleen.

Since, Baccon et al. (2002) discovered GEMIN7 as a
new component of SMN in 2002, many researchers have
studied the mechanism and protein structure of GEMIN7.
SMN is a product of the disease gene of the common
neurodegenerative disease spinal muscular atrophy. AD is a
type of neurodegenerative disease and some patients also
displayed symptoms of movement disorders. Therefore, we
speculate that GEMIN7 may cause motor nerve lesions and then
causes AD.

SPI1
The ETS domain transcription factor is encoded by SPI1. It
could activate gene expression during myeloid and B lymphocyte
development (Zakrzewska et al., 2010). Alternative splicing of the
target gene is also regulated by its protein. It broadly expresses in
bone marrow.

SPI1 is expressed by microglia which are the resident
immune cells of the brain. Some researches (Huang et al., 2017;
Krasemann et al., 2017) suggest that PU.1, a transcription factor
encoded by the gene SPI1, is a central hub in the AD gene
network and is associated with AD pathology.

MS4A2
MS4A2 (Ferreira et al., 2010) encodes the high affinity
immunoglobulin epsilon receptor subunit beta, which is a
member of the membrane-spanning 4A gene family. Allergic
reactions involve the binding of allergens to receptor-bound
IgE receptors, which are present on the surface of mast
cells and basophils. Members of this new protein family
share common structural characteristics and similar intron/exon
splicing boundaries and exhibit unique expression patterns in
hematopoietic and non-lymphoid tissues. Alternative splicing

results inmultiple transcript variants encoding different proteins.
It has a biased expression in lung and ball bladder.

Many researches (Lambert et al., 2010; Jones et al., 2012) have
found that AD is related to the overworking of the immune
system. The immune system over-clears neuronal synapses,
cutting off the connections between neurons, causing AD (Blasko
and Grubeckloebenstein, 2003). We suggest that MS4A2 may
cause abnormalities in the immune system.

CONCLUSION

AD can cause progressive memory impairment, cognitive
impairment, personality changes and language disorders and
other neuropsychiatric symptoms, seriously affecting people’s
social, occupational and life functions. Identifying AD-related
genes is of great clinical significance for the early diagnosis and
treatment of AD.

In this paper, we used SMR to identify AD-related genes and
locus. Using two GWAS datasets and five eQTL datasets, we
completed ten experiments and collected effective results from
a total of five experiments. In total, we identified 27 SNPs that
are associated with AD. These SNPs correspond to seven genes:
MS4A2, BIN1, PVRL2, MS4A6A, GEMIN7, MS4A4A, and SPI1.
To verify the effectiveness of our method and the accuracy of
our results, we compared the results with known databases.
We found three of the seven genes in the DisGeNET database
(BIN1, PVRL2, GEMIN7, and SPI1 is novel genes) and six of
seven genes in the ALZGENE (SPI1, GEMIN7, and MS4A2
are novel genes). This confirms the accuracy of our results. To
explain the mechanism of genetic pathogenesis, we described the
function of the novel genes and speculated the mechanism of its
pathogenesis.
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