
Journal of Engineering Science and Technology 
Vol. 13, No. 4 (2018) 875 - 892 
© School of Engineering, Taylor’s University 
 

875 

COMPLEXITY REDUCED CHANNEL ESTIMATION  
IN WIMAX ENVIRONMENT FOR MIMO–OFDM SYSTEM  

K.V.N. KAVITHA*, KALA PRAVEEN BAGADI 

School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India 

*Corresponding Author: kvnkavitha@yahoo.co.in 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division 

Multiplexing (OFDM) are considered to be major methods for the ensuing high 

performance in next generation mobile communications. The undesirable 

effects on the transmitted signals need to be addressed and eliminated to 

improve the capacity of the systems. These effects depend on the physical 

properties of the channel. Hence, there is a need to provide perfect estimate of 

the channel to counteract these effects and thereby delivering precise base-band 

processes at the receiving end of the system such as signal demodulation and 

decoding. In this paper, the channel between multiple antenna elements are 

investigated and analysed for optimum technique with less complexity and less 

power requirement to estimate the characteristics of the channel. The bit error 

rate (BER) and normalised mean square error (NMSE) of the channels in 

MIMO-OFDM systems are examined for different channel tracking techniques. 

The simulation results are measured to investigate the working of the system 

model with different algorithms over Worldwide Interoperability for 

Microwave Access channel. An efficient QRD method is suggested in this 

paper based on the available system resources and specifications.  

Keywords: MIMO-OFDM, Channel Estimation, WiMAX, QR Decomposition, 

BER, NMSE, Computational Complexity.  

 

 

1.  Introduction 

The widespread development of multimedia based applications propelled the 

growth of wireless system technologies with high data rate capability. OFDM is a 

multi-carrier modulation (MCM) technique, commonly known as simultaneous 

MFSK, used extensively in high speed digital communication environments.  
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Nomenclatures 
 

K Correlation factor 
H Channel matrix 
𝑁𝑟 Number of receiving antennas 
𝑁𝑡 Number of transmitting antennas 

𝑅𝐻 Channel correlation matrix 

S Transmitted signal  

U Cyclic prefix added signal 

W AWGN noise 

Y Received signal  (ISI free) 
 

Greek Symbols 

ℐRMMSE Mean square error in RMMSE 

𝒥LS Mean square error in LS 

𝜎2 Received noise power 
 

Abbreviations 

BER Bit Error Rate 

FFT Fast Fourier Transform 

ICI Inter carrier Interference 

IFFT Inverse Fast Fourier Transform 

ISI Inter symbol Interference 

LAN Local Area Network  
LMMSE Linear MMSE 

LS Least Square 

MMSE Minimum Mean Square Error 

MIMO Multiple Input Multiple Output 

MSE Mean Square error 

NMSE Normalized Mean Square error 

OFDM Orthogonal frequency division multiplexing 

QRD QR Decomposition 

QRD LS QRD Least square 

SLS Scaled Least Square 

WiMAX  Worldwide Interoperability for Microwave Access 

Chang [1] proposed the OFDM technique in 1966 with the principle of 

transmitting messages simultaneously over multiple carriers in a linear band 

limited channel without ISI and ICI. Earlier form of OFDM included a huge 

number of oscillators and lucid demodulators. Weinstein and Ebert in 1971 

applied DFT to the modulation and demodulation processes [2].  

Further, in 1980, Peled and Ruiz introduced the idea of cyclic prefix to sustain 

frequency orthogonality over the dispersive channel [3]. OFDM is considered as a 

major technique for wireless multimedia communications beyond 3G. The 

complexity of a maximum likelihood or a suboptimal equalization used in a 

frequency selective channel increases exponentially with the product of the 

bandwidth and delay spread. The OFDM modulation is built with inverse FFT to 

transform a frequency selective fading channel into orthogonal flat fading 
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channels, thereby, maintaining a constant channel characteristic [4]. MIMO-

OFDM systems also converts a frequency selective MIMO channel into multiple 

flat fading channels [5], but also has the ability to exploit the multipath 

propagation. The separability of the MIMO channel depends on the existence of 

rich multipath, which builds the channel to be spatially selective. The maximum 

spatial diversity attained for a MIMO channel which is non-frequency selective 

fading type, is proportional to the product of the number of receiving and 

transmitting antennas [6].  

In MIMO-OFDM, high data rates are achieved without the necessity for 

higher bandwidth, as the parallel channels are formed over the same time and 

frequency [7, 8]. The higher bandwidth efficiency makes MIMO to be included in 

the future Broadband Wireless Access (BWA) standard. Hence the MIMO-

OFDM has become a smart technique for future high data rate systems [9-11].  

 

2.  System Model 

Random data input is mapped into symbols with suitable modulation technique 

following the WiMAX standard. At this phase, the sequences of symbols that are 

complex valued are obtained by converting the group of binary bits. In WiMAX, 

the conditions that define the mandatory constellations are QPSK and 16QAM. 

The 64QAM is a non-compulsory constellation, but it is implemented in some 

situations like the case of downlink transmission. The loss in signal strength at the 

receiver end due to signal fading and noise is balanced using space time coding 

techniques. In grouping with OFDM, the space time block codes give higher 

performance and the mapped symbols are encoded spatially using STBC [12].  

The total bin size is considered as N. To adjust the bin size, null subcarriers 

are used to represent carriers with zero energy or energy not offered. Assuming 

Nu as the data subcarriers in every parallel sub channel and Ng as the pilot 

subcarriers added to it, the total subcarriers takes the form of N (Nused + Npilot + 

Nnull = N) where Nnull is the set of null carriers added to adjust the size. Then the 

IFFT block are fed with symbols one by one, so that the time domain signal 

transformations take place as specified in Eq. (1). 

𝑠(𝑚) = ∑ 𝑆(𝐾)𝑒
𝑗2𝑛𝑘

𝑁𝐹𝐹𝑇

𝑁𝑢𝑠𝑒𝑑
2

−𝑁𝑢𝑠𝑒𝑑
2

, 0 ≤ 𝑚 ≤  𝑁 − 1,       (1) 

where 𝑘 ≠ 0.  Here, s(m) stands for nth modulated OFDM symbol. Nused denotes 

the count of subcarriers which are non-suppressed.  

The 𝑘𝑡ℎ modulated subcarrier is represented as, 

 𝑺(𝑚𝑁 +  𝑘) =

[
 
 
 
 
𝑆1(𝑚𝑁 + 𝑘)

𝑆2(𝑚𝑁 + 𝑘)
⋮
⋮

𝑆𝑁𝑡
(𝑚𝑁 + 𝑘)]

 
 
 
 

  (2) 

where 𝑘 ≠ 0.  Here, s(m) stands for nth modulated OFDM symbol. Nused  signifies 

the count of non-suppressed subcarriers. 

The quality of the signal transmitted depends on the process that takes place in 

the wireless channel. The SUI model is used to define the impulse response of the 
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channel. The procedure followed at the transmitter end is reversed to suit at the 

receiver side. Figure 1 portrays the entire signal processing method followed in 

the system model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. System model. 

The complex baseband equivalent receive signal is 

𝒓(𝑚𝑁𝑡𝑜𝑡 + 𝑛) = ∑ ℎ𝑙,𝑚𝒖(𝐿−1
𝑙=0 𝑚𝑁𝑡𝑜𝑡 + 𝑛 − 𝑙) + 𝒘(𝑚𝑁𝑡𝑜𝑡 + 𝑛),  (3) 

In the above equation, 𝑢(𝑚) − cyclic prefix added signal and 𝒉𝑙,𝑚  is 𝑙𝑡ℎ 

matrix-valued CIR coefficient. To combat ISI, the first 𝑁𝑔𝑁𝑟  elements of r(𝑚) 

are removed completely. The resulting OFDM symbol is y(𝑚) which is free from 

ISI.  Finally taking FFT on the 𝒚(𝑚) , we get the frequency domain MIMO-

OFDM signal with  𝑯𝑚,𝑑𝑖𝑎𝑔   block diagonal matrix as,  

𝒀(𝑚) = 𝑯𝑚,𝑑𝑖𝑎𝑔𝑺(𝑚) + 𝑾(𝑚) (4) 

Efficient channel tracking technique is used to estimate pilot sequence. This is 

employed for estimation of the data subcarriers. The original data is retrieved 

after decoding and demodulating. The training based estimation algorithm 

decreases the efficiency of the system but increases the accuracy of the 
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information. The pilot placing method and the number of pilots used decides the 

efficiency as well as the accuracy of the system. The use of higher number of 

pilots leads to increase in bandwidth and power requirements and vice versa. 

 

3.  Channel Estimation Techniques 

The channel information like its amplitude and phase measurement is a very 

important and mandatory signal processing in a wireless communication to improve 

the performance of the designed system.  Because of this, much research work is 

going on, in the channel estimation area [13, 14]. More channel estimation 

approaches have work in co-operation with other techniques like signal detection to 

further improve the capacity of channel estimation as well as the bit error rate 

performance of the system. Minimising the computational complexity and making it 

suitable for a practical implementation is also necessary, in addition with the bit 

error rate improvement [15, 16]. Reduction in the number of the mathematical 

computations helps us to reduce the bandwidth and energy requirement.  

The channel estimation in a MIMO-OFDM system is a primary and 

challenging task, as the signals received is a combination of the signals from 

several transmits antennas. In training based algorithm, pilot sequence is used to 

estimate the channel, while it is not required in blind estimation technique. In the 

earlier phase of MIMO-OFDM system usage, pilot allocation methods that 

convert channel estimation of MIMO-OFDM into the channel estimation of 

SISO-OFDM were proposed generally. For a given pilot scheme, only one of the 

transmitter antenna sends its pilot signal at a given subcarrier while the others 

remain silent [17]. The WiMAX systems also use similar pilot scheme suitable 

for two antenna situation. 

The transform domain methods are successfully applied in MIMO-OFDM 

systems that are using pilots [18, 19]. A lower bound is defined to eliminate the 

interference from other antennas.  In MIMO-OFDM systems, in addition to the 

frequency and time domain correlations, the spatial domain correlation can also 

be explored. The use of spatial domain correlation provides additional gain 

subjected to the observation, when the correlation is beyond 0.8. With 

uncorrelated CIR taps, the spatial correlation between the subcarriers having the 

same indices is the same as between the antenna elements. The utilization of the 

spatial correlation is also explored through Kalman filtering approach for channel 

tracing in time domain [20]. The additional benefit of using spatial correlation is 

that it improves the channel estimate of MIMO systems through pre-filtering in 

time domain. Here, the time domain LMMSE channel estimation is utilized [21]. 

3.1. Classical channel estimation algorithms and modified channel 

estimation algorithm 

The Least Square (LS) and Minimum Mean Square Error (MMSE) algorithms 

belong to classical channel estimation algorithm. The SLS and RMMSE come 

under modified channel estimation algorithms [22]. The complexity reduced 

algorithm is analysed finally and selected as an optimal one. The obtained 

transmitted pilot’s inverse is multiplied by the received pilot in simple channel 

estimating cases. This method is known as LS estimator [23] and the channel 

estimation based on this technique is represented as, 
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𝑯̂𝐿𝑆 = 𝑺†𝒀  (5)  

𝑆† = (𝑆𝐻𝑆)−1𝑆𝐻 is the pseudo-inverse of S. 

The LS estimator does not require any channel statistics, but they are affected 

by mean square error in a huge amount. To overcome this limitation, the estimator 

is scaled, improved and named as scaled LS (SLS) estimator. The SLS estimation 

of the channel can be expressed as,  

 

𝑯̂𝑆𝐿𝑆 = 𝛾𝑜𝑯̂𝐿𝑆  (6) 

=
𝑡𝑟{𝑹𝑯}

ℐ𝐿𝑆+𝑡𝑟{𝑹𝑯}
𝑯̂𝐿𝑆 =

𝑡𝑟{𝑹𝑯}

𝜎2𝑁𝑟𝑡𝑟{(𝑺𝑺𝐻)
−1

}+𝑡𝑟{𝑹𝑯}
𝒀𝑺† (7) 

 

𝑁𝑟- the number of receiving antennas; 𝑹𝐻 = 𝐸{𝐻𝐻𝐻} – channel correlation 

matrix; Receive noise power−𝜎2; Note that the SLS estimator is a function of the 

ratio(
𝑡𝑟{𝑅𝐻}

𝜎2 ).  Therefore, before using the SLS approach, this ratio should be 

estimated.  

To further reduce the MSE, the MMSE estimator makes use of the channel’s 

second order statistics [24]. The primary challenge in designing a robust 

communication system is to provide a higher capacity system with reduced 

computational complexity. In MMSE technique [23], power delay profile (PDP) 

with uniform value is employed to strike a balance between the two. But the 

computational process complexity for the observed samples is found to increase 

in an exponential way. To overcome this limitation, linear MMSE (LMMSE) 

technique is developed, in which the subcarrier of pilot’s channel response is 

measured by LS or LMMSE. This initial information helps in detecting data 

subcarrier using interpolation method. The LMMSE gives better performance at 

small SNR compared to that of LS, but at the expense of increase in complexity. 

The MMSE channel estimate in the frequency domain is, 

 𝑯𝑀𝑀𝑆𝐸 = 𝒀𝑨 (8) 

The matrix A is calculated as,  

𝑨 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐴

 𝐸{‖𝑯 − 𝒀𝑨‖2
𝐹}  (9) 

The optimal value of  𝐴  can be obtained from 𝜕𝜀 𝜕𝐴⁄ = 0  and is expressed 

by   

𝑨 = (𝑺𝐻𝑹𝑯𝑺 + 𝜎2𝑁𝑟𝑰)
−𝟏𝑺𝐻𝑹𝑯  (10) 

 

Hence, the linear MMSE estimator can be represented as 

𝑯̂𝑀𝑀𝑆𝐸 = 𝒀(𝑺𝐻𝑹𝑯𝑺 + 𝜎2𝑁𝑟𝑰)
−𝟏𝑺𝐻𝑹𝑯 (11) 

In the above expression, 𝑹𝑯 indicates the covariance matrix of the channel 

with a variance of σ
2
. If the noise is to be ignored, set σ

2
=0. In this case, both LS 

and MMSE estimators become one and the same. The need of covariance matrix 

of the channel in both the time and frequency domains is the major disadvantage 

of the LMMSE estimation. 
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At the receiver end the channels covariance matrix is unknown. It has to be 

predicted based on the previous information on channel estimates. But, it is 

difficult to track the channel covariance matrix due to sudden changes in the 

channel characteristics in applications such as mobile communication. For 

example, it is possible to know the restraints on the covariance matrix of a real 

channel only when the maximum delay of the channel and Doppler spread data 

are known. In traditional LMMSE algorithm, it is required to know full channel 

covariance information. Later on, the modified LMMSE algorithm is developed 

with improved performance in which only fractional information on covariance 

matrix is needed. In relaxed MMSE algorithm (RMMSE), which is an improved 

version of the linear MMSE, only small amount of channel correlation matrix at 

the receiver end is sufficient [3].  

The MMSE requires perfect knowledge of the correlation matrix assumption. 

This assumption is not reachable in practical situations. It can be alternatively 

written as αI in lieu of RH .  To minimize the error, the parameter α  can be 

adjusted.  

Replacing 𝑹𝑯 with 𝛼𝑰  and applying the matrix inversion lemma, we can 

rewrite this equation as, 

𝐇̂ = α𝐘(α𝐒H𝐒 + σ2Nr𝐈)
−𝟏𝐒H (12) 

By assuming orthogonal training, the channel MSE can be computed as 

ℐRMMSE = (E {‖𝐇 − 𝐇̂‖
2

F
}).  

MSE can be minimized by substituting optimum value of α. for any training 

matrix, the RMMSE channel estimator is given by 

𝐇RMMSE =  𝐘 (𝐒H𝐒 +
σ2NrNt

tr{𝐑𝐇}
𝐈)

−𝟏

𝐒H      (13) 

tr{RH} is assumed to be known or estimated.  

The RMMSE algorithm estimation error is given by, 

𝒥RMMSE =
tr{𝐑𝐇}σ2NrNt

2

tr{𝐑𝐇}tr{𝐒H𝐒}+σ2NrNt
2  (14) 

and 

𝒥RMMSE

𝒥LS
=

tr{𝐑𝐇}tr{𝐒H𝐒}

tr{𝐑𝐇}tr{𝐒H𝐒}+σ2NrNt
2  (15) 

 

If  𝜎2 > 0 , then 𝒥𝑅𝑀𝑀𝑆𝐸 < 𝒥𝐿𝑆  and hence the relaxed MMSE channel 

estimation method operates always greater than the LS estimator. The 

enhancement of the RMMSE estimator over the LS estimator is notably 

prominent if the SNR is low. The above cited papers considered AWGN, 

Rayleigh and WLAN channels.  In this research, all this algorithms have been 

applied in WiMAX scenario and tested over SUI channel model. Different fading 

conditions have been analysed. 

 

3.2. Decomposition in channel estimation 

In wireless communications, MIMO and OFDM are recognized as one of the 

most important breakthroughs in advanced communications [25].But in practical 
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applications, apart from the goals, targets and achievements, still there is a gap 

with the theoretical bound [26]. Availability of imperfect channel information and 

growing mathematical computational complexity are the major reasons for this. In 

this section, complexity reduced channel tracking algorithm will be discussed.  

The computation of the LS solution is a complex phenomenon, as it involves 

matrix inversion. This is unfavourable for hardware implementation. The schemes 

that avoid explicit inversions include Cholesky, SVD, QR decomposition (QRD) 

and lower upper. They are robust and more appropriate for hardware 

implementation and also help to reduce the computational complexity of the 

system. The QR decomposition uses an orthogonal matrix triangularization 

technique to reduce a full rank matrix into a simpler form. When QR method is 

preferred for channel tracking, the decomposition has to be performed every time 

when a new channel estimate is available. 

Bai and Yuan [27] combined the good features of the  decomposition and the 

required features of the lattice structure to form QRD-LSL algorithm and proved 

that it can be extended to linear interpolation from linear prediction. Jenq-Tay 

Yuan [28] further extended the QRD-LSL algorithm from filtering to 

smoothening without compromising the computational cost. The QR 

decomposition algorithm is most preferred in modern MIMO-OFDM systems for 

data detection [29, 30]. After the channel response is QR decomposed, the 

procedure for signal processing gets simplified and the data can be kept in 

orthogonal form. After decomposition, the channel response is transformed to an 

upper triangular matrix, thereby reducing the interference in every received 

signal. The complexity of the equalizer is decreased and therefore the total size 

will not be increased due to the decomposition process. 

The different techniques used to compute QR decomposition are Gram-

Schmidt orthonormalization method, Givens rotations method and the 

Householder reflections. In QRD method, the complexity is found to increase 

linearly with the number of transmit antennas of the system compared to the 

exponential increase in the case of LS method. Therefore, QRD method is 

preferred where more transmit antennas are used, as it will not explode in 

complexity like the LS method [31]. The major goal in developing the 

communication systems is to choose more suitable channel estimation technique 

that can be made adaptive to the environment. The adaptation can be done by 

using information from other physical layer blocks too. For example, the 

information available at blocks such as frequency offset estimation, timing offset 

estimation and the output of the decoder can all be used to determine the most 

appropriate channel estimation technique.  

QR decomposition is an alternative method for determining matrix inversion 

required in LS. Let us define the received signal in frequency domain as, 𝒀 =
𝑯𝑺 + 𝑾, with W -noise parameter.  It can be redefined with Fourier matrix F as, 

𝒀 = 𝑿𝑭𝒉 + 𝑾 = 𝑽𝒉 + 𝑾. 

The following steps present the QRD algorithm to find solution for LS 

problem:  

1. The initial step is to represent the LS error function, ε = 𝒀 − Vh̃. 

2. The 𝑉 matrix is decomposed into upper triangular matrix 𝑅 and Hermitian 

matrix 𝑄 using Householder algorithm as, 
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𝒀 = 𝑽𝒉̃ = 𝑸𝑁𝑡×𝑁𝑡
[
𝑹
0
]
𝑁𝑡×𝑁𝑟

𝒉̃ 

3. Hermitian of 𝑄 has to be multiplied on both sides of the equation  yields, 

[
𝑹
0
]
𝑁𝑡×𝑁𝑟

𝒉̃ = 𝑸𝑁𝑡×𝑁𝑡

𝑯𝒀 

4. Finally, the solution for the channel is obtained using back substitution 

In this work, Householder is chosen other than the Gram- Schmidt because of 

its stability over Gram-Schmidt algorithm. 

Using Householder algorithms, the transmission matrix 𝑺𝑁𝑡×𝑁𝑟
 can be 

processed as follows. 

1. Take a column of matrix 𝑉 for example 𝑋1 and calculate‖𝓧‖ = |𝛼|. 

2. Then, the expressions for 𝑈, 𝑃, 𝑄, 𝑄1 are computed as ,  

𝑈 = 𝑋 − 𝛼𝑒1  

𝑃 =
𝑈

‖𝑈‖
  

𝑄 = 𝐼 − 2𝑃𝑃𝑇  

𝑄1𝑉 = [

𝛼1 ∗ … ∗

0
⋮ 𝑉̂
0

] 

This procedure has to be repeated again for 𝑉̂, Resulting in a Householder 

matrix 𝑄2
′ . This procedure can be used continuously to transform a 𝑁𝑡 × 𝑁𝑟 

matrix in to upper triangular matrix. 

4.  Simulation Study and Discussion 

The system model is simulated using Matlab taking the standard SUI channel 

model parameters along with system parameters mentioned in Table 1for different 

fading conditions. The performance of various channel estimation algorithm like 

LS, SLS, MMSE, and RMMSE, QRD-LS and QRD-MMSE are analysed and 

compared. Results are tested in two different terrains with high fading and low 

level fading scenario. 

Table 1. MIMO OFDM system parameters. 

 
Specification 

Number of Transmitting, Receiving antennas 2×2 

Number of OFDM subchannels 1024 

Number of transmitted OFDM frames  1024 

Space Encoding STBC 

Symbol Mapping BPSK 

Figure 2 shows the normalized mean square error of all the classical channel 

estimators measured under SUI-1 channel for various value of correlation factor k 

from zero to one [32]. It is verified that the RMMSE algorithm is superior to other 

mentioned algorithms. 
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(a) Correlation factor=0. 

 
(b) Correlation factor=0.2. 

 
(c) Correlation factor=0.4. 

 
(d) Correlation factor=0.7. 

Fig. 2. SUI-1Channel estimation at different values of correlation factor. 
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It is observed that the LS algorithm is the least preferred one compared to all 

other algorithms discussed in the model. The scaling factor introduced in the 

scaled linear estimator helps to reduce the normalized error and it is verified in 

the above results. The MMSE algorithm is found to perform better than the LS 

and SLS estimators. But the MMSE requires channel information to be provided 

well in advance. In a highly correlated channel, the MMSE performance 

decreases with the usage of orthogonal probing. However, when the number of 

antenna at the transmitter end is large as well as with low SNR this effect 

becomes more prominent.  From the above Matlab simulation, it is observed that, 

estimator error performance improves with the increment in the correlation factor 

value as discussed in the theory and it is tested with low traffic condition. If 

RMMSE has been considered for analysis, NMSE is reduced from 0.0898 to 

0.0506 at -6dB when correlation factor is 0, 0.7 respectively. 

The estimator’s efficiency is measured in terms of NMSE metric with heavy 

to moderate traffic condition and it is shown in the following Fig. 3.  As it is 

observed that the LS estimators are not efficient at low bit energy level, it is not 

included in the remaining process. 

 

(a) Correlation factor=0. 

 

(b) Correlation factor=0.2. 
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(c) Correlation factor=0.4. 

 

(d) Correlation factor=0.7. 

 

(e) Correlation factor=1. 

 

Fig. 3. SUI-6 Channel estimation at different values of correlation factor. 
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It is observed that, in heavy traffic scenario also, reduced MMSE estimator 

performs better than all other estimators. From the above Matlab simulation, it is 

observed that, estimator error performance improves with the increment in the 

correlation factor value in moderate to heavy traffic condition fading scenario too. 

From the above results, it has been verified that the RMMSE outperforms the 

other mentioned algorithms at low signal to noise ratio in all traffic conditions. 

But the complexity in terms of number of multiplications, divisions and additions 

are higher in these algorithms. So it leads to the requirement of complexity 

reduced technique in signal detection.  

System with multicarrier transmission (OFDM) is simulated with 1024 

subcarriers and the number of taps =3 in Matlab under Rayleigh fading 

environment.  BER and MSE are measured for various values of  Eb No⁄  and it is 

shown in in Fig. 4. 

 

(a) BER performance. 

 

(b) MSE performance. 

Fig. 4.  LS and decomposed LS algorithm performance in OFDM 
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QR decomposition algorithm is simulated on Space time coded MIMO with 

simultaneous MFSK system and the performance is compared with LS in terms of 

number of erroneous bit per transmitted sequence and it is represented in Fig. 5. 

 

Fig. 5. LS and decomposed LS algorithm performance in MIMO OFDM. 

 

It is observed that, in both systems, LS and QR applied LS gives the same 

performance in both OFDM and MIMO OFDM. The primary aim of using QR 

decomposition is to lessen the complexity of computation of the LS channel 

estimation. The computational complexity in terms of number of mathematical 

operations has been measured and the result is given in the following figures for 

various values of channel taps and Transmitting antennas. 

Figure 6 shows the result when the transmitter antenna elements increased 

from 1 to 6.  Since the size of the channel matrix increases, the number of 

operations involved in both algorithms also increases. But lesser number of 

computations is involved in QRD than LS. Also, the complexity increases with 

the number of array element at the transmitter is linear in nature in QRD but is in 

exponential in case of LS algorithm. 

 

Fig. 6. Complexity of LS and QRD-LS  

for various number of transmitting antennae. 
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Figure 7 shows the complexity comparison when the number of channel 

length is varied for a given number of transmitted antennas. Since the amount of 

strange parameters to be calculated increases, when larger length channel is 

included, the flops involved increases in both algorithms. But, in this scenario 

also, QRD gives better performance than LS as usual. 

 

Fig. 7. Complexity vs channel taps in LS and QRD-LS. 

 

The complexity equations are derived by counting each type of operations in the 

various algorithms by considering N number of subcarriers and L-channel length 

(𝑀 = 𝐿 × 𝑁𝑡). The total number of mathematical operations involved in LS and 

decomposed LS with two transmitting antennas and three taps are summarized in 

Table 2. The Worldwide Interoperability for Microwave Access (WiMAX) is a 

promising wireless technology which delivers data at high rates covering larger 

area. To retrieve desired signals in such technology, we need to incorporate 

appropriate Channel estimation and signal detection techniques at the receiver.  In 

this paper, efficient QR based channel estimation has been proposed. Further 

improvement in system efficiency in terms of reduction in bit error rate is possible 

with the inclusion of optimum signal detection technique at the receiver [33]. 

Table 2. Complexity comparisons of  

LS and QRD channel estimation techniques. 

Technique LS QRD 

Order Total Order Total 

Number of 

Multiplications 
NM 80088 M2

2⁄ − M
2⁄  61346 

Number of 

Additions / 

Subtractions 

NM − M 73902 M2

2⁄ + M
2⁄ − 1 58256 

Number of Divisions 0 57 0 18 

Number of Square 

Roots 
0 0 0 12 

Simulation Time in 

Sec. 
 0.0013  0.0017 
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5.  Conclusions 

A number of training-based MIMO channel estimation methods and their 

performance are investigated. The prevalent LS, MMSE schemes are measured 

along with a novel SLS and relaxed MMSE techniques. The SLS and RMMSE 

techniques are found to give better performance than the other two schemes. The 

different kind of training matrices are analysed and optimal selection is made and 

applied. For each of the considered techniques, performances are measured and 

compared in terms of normalized mean square error. The LS algorithm technique 

shows the least performance compared to SLS, MMSE and RMMSE. The MMSE 

performance decreases when the channel is highly correlated. The functioning of 

the estimator is observed to improve with the increase in correlation. The system 

is simulated in Matlab with SUI-1 and SUI-5 Channel model for various 

combinations of transmitting and receiving antennae and for different correlation 

values. From the simulation results, the RMMSE estimation is found to perform 

better in all situations. 

 In SUI-6 channel, normalized mean square error of 0.1 is achieved at -6dB.  

Because of lower level of fading in SUI-1 channel, it takes less than -6dB to 

achieve the same error level. 

 In a decomposed algorithm, computational complexity reduction has been 

achieved up to 81.64% with lesser number of channel lengths and it reaches up 

to 63.68% with the length increased to 6 than other algorithms which are not 

decomposed.  Reduction in the number of mathematical operations leads to less 

energy requirement in data transmission system. 
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