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ABSTRACT  Adaptive T cell immune response is essential for tumor growth 
control. The efficacy of immune checkpoint inhibitors is regulated by intra-
tumoral immune response. The tumor microenvironment has a major role in 
adaptive immune response tuning. Tumor cells generate a particular metabol-
ic environment in comparison to other tissues. Tumors are characterized by 
glycolysis, hypoxia, acidosis, amino acid depletion and fatty acid metabolism 
modification. Such metabolic changes promote tumor growth, impair immune 
response and lead to resistance to therapies. This review will detail how these 
modifications strongly affect CD8 and CD4 T cell functions and impact immu-
notherapy efficacy. 
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INTRODUCTION 
The tumor microenvironment (TME) plays an important 
role in tumor progression and response to therapy. A grow-
ing number of publications show that CD8 T lymphocytes 
accumulation in tumor bed is a biomarker of a good clinical 
outcome in most cancer types [1]. Moreover, such an im-
mune response is also a surrogate marker of chemothera-
py efficacy in breast cancer setting and a biomarker of 
checkpoint inhibitors efficacy [2, 3]. Antitumor immuno-
therapy and in particular immune-checkpoint-targeting 
inhibitors are revolutionizing cancer therapy [4]. Check-
point inhibitors targeting PD-1 (programmed cell death 
protein-1)/PD-L1 (programmed death-ligand 1) lead to a 
response rate in many tumor types. However, in prevalent 
tumor types, such as colorectal cancer, lung cancer and 
breast cancer, substantial responses to checkpoint block-
ade have only been observed in specific subsets of patients, 

thus suggesting that both patient selection and therapy 
combination may be crucial [5]. Currently two concepts 
evolve in parallel to predict checkpoint efficacy: the pres-
ence of mutations in tumor cells and the presence of im-
mune infiltrate at tumor site (the concept of cold vs hot 
tumor). The ability of a tumor to respond to immunothera-
py depends on the presence of CD8 at the tumor site. 
However, a CD8 infiltrate does not perfectly correlate to 
the checkpoint response rate, thus suggesting that in addi-
tion to the number of immune cells, functional characteris-
tics of intratumoral infiltrating T cells must be taken into 
account. In addition to CD8 T cell infiltrate, many other 
cells influence antitumor immune response. For example, 
CD4 T cells are essential and different subsets are defined. 
Regulatory T cells (Treg) and Th2 cells have immunosup-
pressive functions while Th1 cells have an antitumoral ef-
fect and sustain CD8 antitumoral effects [1]. Th17 cells can 
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have different effects depending on the tumor type but 
frequently promote inflammation and neoangiogenesis [6]. 
The myeloid component of the immune system is also im-
portant to promote antitumoral T cell immune response or 
to drive immunosuppression. The presence of mature mye-
loid dendritic cells is essential for a good immune response. 
Myeloid derived suppressor cells (MDSC) are an essential 
component of the tumor induced tolerance and the ratio 
of Type 2/Type 1 Tumor Associated Macrophages is im-
portant to balance immune reaction from immunosup-
pression versus antitumoral response [6]. The recruitment 
and functions of immune cells in the TME markedly vary 
between patients even in the same tumor type for un-
known reason. 

While immune response is essential to control tumor 
growth and to promote checkpoint inhibitor efficacy, tu-
mor environment physical conditions may influence T cell 
response. Tumors are characterized by low oxygen level 
and hypoxia, extracellular milieu acidification, oxidative 
stress and glucose deprivation. In this review we will re-
sume how these physical modifications of TME affect T cell 
antitumoral immune response. 

 

HYPOXIA 
The physiological oxygen fractions called normoxia largely 
vary between tissues and within the same tissue [7-9]. For 
example, the maximum value of oxygen found in the body 
reaches 14% in lung alveoli but only 1% in the skin. These 
values have to be put in balance with the atmospheric level 
of oxygen of 21%, frequently used for in vitro experiments. 

Hypoxic areas can often be found within solid tumors. 
The oxygen level in tumors is frequently low, below 1%, 
and a high level of hypoxia is often associated with poor 
prognosis [10]. At the cellular level, hypoxia promotes tu-
mor cell heterogeneity, epithelial to mesenchymal transi-
tion, tumor cell stemness, migration and metastatic pro-
cess, and resistance to classical cytotoxic treatments such 
as radiotherapy and chemotherapy [11-14]. Molecular 
mechanisms underlying hypoxia mainly rely on the stabili-
zation of hypoxia inducible factors (HIF1 and 2). These 
transcription factors mediate the cellular response to hy-
poxia by regulating the expression of different genes such 
as proangiogenic factors like VEGF (vascular endothelial 
growth factor) and glycolysis related genes. Indeed, low 
oxygen may impair energy production via oxidative phos-
phorylation and requires glycolysis which is less dependent 
on oxygen level. 

It was recently shown that HIF-1 is able to regulate the 
balance between Treg and Th17 differentiation in CD4 T 
cells. Although TGF-β (transforming growth factor) is re-
quired for both Th17 and Treg differentiation, these cell 
types have opposing functions. While Th17 are pro-
inflammatory cells, Tregs have an anti-inflammatory role 
[15-20]. Tregs master regulator is the transcriptional factor 
FoxP3 (forkhead box P3). In addition to TGF-β, Th17 cells 
require IL-6 for differentiation and expression of the tran-
scriptional factor RORγt (RAR-related orphan receptor), the 
master regulator of this cell type. Hypoxia promotes accu-

mulation of Th17 cells and decreases the number of Tregs 
(Figure 1 top). Mechanistically, HIF-1α enhances Th17 de-
velopment. HIF cooperates with STAT3 (Signal transducer 
and activator of transcription) to promote expression of 
RORγt and then cooperates with RORγt and p300 to trans-
activate IL-17 production. In contrast, HIF-1α blunts Treg 
differentiation by binding to FoxP3, promoting its ubiquiti-
nation and subsequent degradation by the proteasome 
[21]. While Tregs frequently promote tumor growth and 
mediate immunosuppression, we can hypothesize that 
such mechanism could promote antitumoral immune re-
sponse by limiting Treg dependent immunosuppression 
and activating proinflammatory Th17 cells which could 
exert some antitumoral effects. 

CD8 T cell priming under hypoxia can promote differen-
tiation toward lytic effector cells, with increased expres-
sion of interferon gamma (IFNγ), granzym B (GZMB) and 
Fas ligand (FASL), but might reduce cell expansion [22-25]. 
Hypoxia promotes a metabolic switch from an oxidative 
phosphorylation metabolism toward a glycolytic metabo-
lism [26] which promotes effector and limits memory dif-
ferentiation, largely dependent on oxidative phosphoryla-
tion and fatty acid oxidation [26, 27]. Such data suggest 
that the use of hypoxia to generate ex vivo transgenic T 
cells or Chimeric Antigen Receptor-T cells for adoptive an-
ticancer immunotherapy could be attractive. Moreover, it 
would be interesting to compare the efficacy of adoptive 
transfer of cells differentiated under hypoxia with in-
creased cytotoxic effector functions and less stem cell 
memory properties, to the transfer of younger cells less 
cytotoxic with stemness capacity and better persistence 
and self-renewal [28-30].  

Hypoxia can also affect activated memory CD8 T cells. 
This context is closer to tumor reality since memory cells 
migrate to tumor site and are then reactivated. Hypoxia 
prevents memory CD8 T cell expansion by decreasing both 
cell proliferation rate and viability, partly through apopto-
sis induction. Additionally, hypoxia promotes adenosine 
production by TME and adenosine could inhibit CD8 T cell 
functions. Hypoxia effect is also dependent on T cell recep-
tor (TCR) engagement and no effect of hypoxia is observed 
on resting memory T cells [26]. Hypoxia could also have 
positive effects and enhance IL-10 production in CD8 T 
cells. Although IL-10 could have an immunosuppressive 
function, it could also sustain the development of memory 
CD8 T cells. In addition, hypoxia could promote CD25 and 
CD137 expression. CD137 is a checkpoint activator that can 
be targeted to reinvigorate CD8 T cells [31-33]. In some 
tumor models, hypoxia enhances PD-L1 expression on tu-
mor cells and thus it might enhance the efficacy of check-
point inhibitors targeting PD-1/PD-L1 [34]. 

 

ACIDOSIS AND GLYCOLYSIS 
Median extracellular pH in human tumors ranges between 
6.9 and 7.0 (compared to 7.4 in normal tissues) [35] while 
intracellular tumor pH remains unaltered in tumor bed [36]. 
Acidification of the TME has direct protumoral functions 
such as angiogenesis,  prometastatic effect, and  resistance  
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to radiation or cytotoxic chemotherapies and is thus 
associated with poor prognosis [37-62]. Acidification of 
TME is due to local metabolism, which favors glycolysis and 
lactic acid production (Figure 1 bottom) [63-65]. Anaerobic 

glycolysis and production of lactic acid are strongly 
correlated with hypoxia but glycolysis could also arise in 
normoxic conditions. As glycolysis is energetically less 
efficient than oxidative phosphorylation, tumors must 

FIGURE 1. Top: Role of hypoxia in Th17/Treg balance disregulation. Hypoxia within the tumors enhances the Th17 development over the 
Treg development. This is due to the induction of HIF-1 that will in one side promote the expression of RORγt through its cooperation with 
STAT3 and in the other side bind to Foxp3 inducing its ubiquitination and degradation. Bottom: Hypoxia promotes immunosuppression. 
Cancer cells have a high glycolytic activity manifested by glucose intake through Glut1 transporter that is metabolized into pyruvate and 
then into lactic acid through LDH activation induced by HIF-1. The lactic acid is exported within the tumor microenvironment and induces 
its acidification. Effector T lymphocytes are also dependent of their glycolytic activity and must release lactate by SLC16A1; best known as 
MCT1. In this context of acidification, MCT1 is inhibited thus blocking the glycolysis and consequently the activation of the effector T cells. 
Moreover the high lactate concentration within the tumor microenvironment will promote Treg biology by inducing FoxP3 expression. In 
these conditions hypoxia leads to immunosuppression through the activation or inhibition of different immune cells populations. 



F. Chalmin et al. (2019)  Metabolic stress and antitumor immunity 

 
 

OPEN ACCESS | www.cell-stress.com 12 Cell Stress | JANUARY 2019 | Vol. 3 No. 1 

develop an important glycolytic flux to generate enough 
energy [66], this process is called the Warburg effect. 
Consequently lactic acid accumulates inside the TME [56], 
thus reducing pH. This acidification has a negative impact 
on T cell behavior and many studies demonstrated that low 
intra-tumoral pH leads to downregulation of anti-tumor 
immune responses [67]. In vitro experiments showed that 
at pH lower than 6.6 and similar to tumor pH [35], T cell 
proliferation, cytotoxicity and cytokine production are 
impaired [68]. This effect on T cells is rather dependent on 
pH than on the presence of lactate [25, 69, 70]. 
Interestingly, T cell function could be restored after pH 
neutralization [25, 69-72]. Such data underline that 
acidosis mostly inhibits T cell function rather than inducing 
T cell death [70-72]. In vivo, tumor-derived lactic acid also 
impedes anti-tumor immunity [73]. The LDHA (lactate 
dehydrogenase) gene, which codes for the LDH-2 protein, 
converts pyruvate into lactate. LDHA gene deficient tumors 
grow slower than control tumors in immunocompetent 
mice, but not in immunodeficient mice, thus 
demonstrating that lactate impedes immune response in 
vivo. Effector T lymphocytes are also dependent on their 
glycolytic activity and release lactate by SLC16A1 (best 
known as monocarboxylate transporter 1 MCT1). In TME, 
in the context of acidification, MCT1 is inhibited, thus 
blocking glycolysis and consequently the activation of 
effector T cells. In this context, we have observed reduced 
IFNγ and GZMB production by T cells. In humans, LDH 
expression in melanomas negatively correlates with T cell 
survival and activation [73]. On the other hand, Treg 
biology is promoted by high lactate concentration. FoxP3, 
Treg master regulator, shifts cellular metabolism from 
glycolysis toward oxidative phosphorylation [74]. Lactic 
acid inhibits T cell glycolysis leading to FoxP3 expression 
and promoting Treg differentiation [75-77]. Moreover, 
lactate uptake is required for Treg immunosuppressive 
effects [78]. At a mechanistic level, lactate is secreted by 
cancer cells via a monocarboxylate co-transporter, which 
induces acidification of the tumor with the release of 
lactate and H+. A high concentration of lactate and H+ 
blocks the monocarboxylate co-transporter of T cells. This 
blockade induces accumulation of these compounds in T 
cells, thus blunting glycolysis [79]. This leads to a reduction 
of the intracellular phosphoenolpyruvat level, a crucial 
glycolysis metabolite necessary for TCR mediated 
activation [73]. 

Recently it has been shown that tumor bed acidifica-
tion blunts the efficacy of checkpoint inhibitors [80-82]. 
High LDH activity in blood is negatively correlated with the 
clinical outcome in melanoma patients treated with ipili-
mumab [83], pembrolizumab [82], or a combination of 
CTLA-4 and PD-1 blockade [84]. Similar results were ob-
served with lung cancer treated with anti PD-1 [85], sug-
gesting that combination of checkpoint inhibitors with 
drugs that lower tumor acidity could be interesting. Many 
drugs are currently tested such as glycolysis, lactate trans-
porter and proton transporter inhibitors but also buffer 
therapies. Glycolysis and lactate are essential for T cell 
biology. Consequently, therapies targeting either glycolysis 

or lactate transporters are probably not ideal. In contrast, T 
cells are less dependent on proton transporters. Therefore, 
proton pump inhibitors and bicarbonate based therapies, 
which both can neutralize acidification, are probably better 
candidates to enhance immune response and to promote 
checkpoint inhibitors efficacy and adoptive T cell therapies. 

 

AMINO ACIDS 
In addition to glucose, amino acids are essential elements 
for energy generation in tumor cells and immune cells [86]. 
Cancer cells have the ability to consume a high level of 
amino acids, leading to T cell deprivation. Both arginine 
and tryptophan are essential for T cells and cannot be 
produced by T cell metabolism. Consequently, 
consumption of these amino acids by cancer cells controls 
the local immune response by inducing T cell metabolic 
stress (Figure 2). 

Arginine can be used in oxidative phosphorylation and 
as a substrate for glycolysis in T cells [87]. Arginine availa-
bility favors memory T cell generation [88]. Arginine is con-
verted by arginase or nitric oxide synthase, normally ex-
pressed in myeloid cells such as myeloid-derived suppres-
sor cells, macrophages, dendritic cells and cancer cells. 
Arginase is highly expressed in many tumor types and in-
duces T cell function inhibition via arginine deprivation 
[89]. Nitric oxide synthase, also frequently expressed in 
tumors, degrades arginine into nitric oxide. Nitric oxide 
could directly blunt T cell proliferation and secreting func-
tions and promote T cell apoptosis [90]. 

Tryptophan is critical for several metabolic pathways 
and proliferation. Indoleamine-2,3-dioxygenase (IDO) 1 
and 2 are key enzymes that transform tryptophan into its 
metabolite kynurenine. In tumors, IDO induces tryptophan 
deprivation and kynurenin accumulation. Tryptophan is 
essential for T cell biology and its depletion induces eukar-
yotic translation initiation factor 2 alpha kinase 4 (EIF2AK4; 
also known as GCN2, General Control Non-derepressible 2 
kinase) activation and CD3 ζ-chain downregulation. These 
events reduce T cell effector functions and limit their pro-
liferation [91, 92]. Similarly, kynurenine restrains T cell 
proliferation [93] and could activate arylhydrocarbon re-
ceptor, promoting the switch of CD4 T cells into Treg cells 
[94]. Recent data demonstrated that both cancer cells and 
tumor infiltrating myeloid cells could have a high level of 
IDO enzyme expression [95-97]. IDO is not constitutively 
expressed and its induction is dependent on inflammatory 
signal stimulation such as IFNγ [95-99]. IDO acts as a nega-
tive feedback loop of Th1 response in cancer. 

Inhibition of IDO and arginase could restore T cell func-
tions and could improve the effector T cells/Treg ratio. 
Multiple IDO and arginase inhibitors are currently in devel-
opment, associated to adoptive T cell therapy or check-
point inhibitors [94]. However first reports are disappoint-
ing and phase III clinical trials evaluating efficacy of combi-
nation therapies involving IDO1 inhibitors and pembroli-
zumab in patients with melanoma are stopped (ECHO-
301/KEYNOTE-252 study). 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/kinase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cd247
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FATTY ACID METABOLISM 
Alterations in lipid metabolism are frequently observed in 
cancer cells [100]. Tumor aggressiveness is linked to its 
capacity to store high levels of lipid and cholesterol [101-
103]. 

Fatty acid metabolism has a role in T cell differentia-
tion. Effector CD8 T cells use de novo fatty acid synthase 
and fatty acid uptake, whereas memory T cells degrade 
endogenous esterified fatty acids [104]. Endogenous fatty 
acid generation is essential to maintain energy level after 
PD-1 activation [105]. PD-1 activation impairs glucose and 
glutamine uptake but promotes fatty acid oxidation and 
utilization of endogenous lipids. Endogenous T cell lipid 
reserves provide energy and may be related to T cell ex-
haustion and T cell ability to be reactivated by checkpoint 
inhibitors [106]. Lipids produced by tumor cells could also 
have an impact on T cells by their transformation into pros-
taglandin by cyclooxygenase 2. Prostaglandin could then 
induce inflammation [107]. 

Concerning CD4 T cells, competition between de novo 
fatty acid synthase and exogenous uptake controls the 
decision between Th17 and Treg cells differentiation [108, 
109]. Inhibition of acetyl-CoA carboxylase 1 and the related 
de novo fatty acid synthase restrains Th17 differentiation 
and promotes Treg cells. Such data suggest that in tumor 

tissue where fatty acids are mostly directed to tumor cells, 
the deficit in exogenous fatty acids promotes de novo fatty 
acid synthase and Th17 response [108]. The molecule 
mTOR (mammalian target of rapamycin) is essential to 
control Treg differentiation, function, and survival notably 
by its ability to control many lipid metabolism genes [110, 
111].  

Targeting fatty acid metabolism could be useful to im-
prove antitumor immune response [109]. Fatty acid oxi-
dase is required not only for memory CD8 T cell develop-
ment but also for Treg cell differentiation [112], therefore 
its blockade limits Treg dependent immunosuppression. 
Similarly, fatty acid oxidase has a critical role in MDSC-
mediated T cell suppressive function [113, 114]. Thus, in-
hibiting fatty acid metabolism may affect multiple immune 
populations and could have unpredictable outcomes. In 
contrast, fibrate which enhances fatty acid oxidase activity 
and enhances endogenous production of fatty acids, may 
enhance functions of exhausted CD8 T cells and delay tu-
mor growth when used together with PD-1-blocking im-
munotherapy [115].  

 

CONCLUSION 
TME is metabolically different from healthy tissues. Tumors 
are characterized by glycolysis, hypoxia, acidosis, amino 

FIGURE 2: Amino acid consumption by cancer cells promotes immunosuppression. Cancer cells deplete essential amino acids for T cell 
activity leading to a decrease of their antitumoral function. For instance cancer cells import arginine that will be metabolized in Urea by 
Arginase 1 (ARG1) or in L-citruline + Nitric oxide (NO) by Nictric oxide synthase 2 (NOS2). The diminution of Arginine within the tumoral 
microenvironment as well as the production of NO by the cancer cells are inhibitor of T cells. The diminution of tryptophan in the tumoral 
microenvironment will also inhibit T cell. Moreover, the increase in kynurenine (tryptophan metabolite produced by IDO) will promote 
Treg cell activity. 
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acid depletion and fatty acid metabolism modifications. 
These modifications strongly affect CD8 T cell functions 
and T helper cell differentiation. Consequently, better un-
derstanding of tumor environment metabolic changes will 
provide key information for the development of novel 
therapies that improve T cell immune functions. A better 
knowledge of the metabolic pathways not shared between 
cancer and immune cells will allow the selection of drugs 
targeting specifically cancer or immune cells. The use of 
these novel drugs in combination with immunotherapies 
such as checkpoint inhibitors or adoptive cell transfer may 
open new opportunities to improve cancer treatment. 
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