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Managing investment and liquidity risks for derivatives within
a market impact perspective  

Abstract 

The recent period has experienced many instances when market volatility suddenly increased even when there were no 

well-known fundamental catalysts, as illustrated by the short-lived but sharp transitions from low volatility to high 

volatility, as many in the last six years as we have had in the prior two decades  increasing evidence that we are in a 

new volatility-of-volatility regime. Fundamentally, market impact is an illustration of market inefficiency: theories of 

efficient markets typically expect that investors buy and sell assets based on assessments of their intrinsic value, in 

contrast with large derivative players who often act based on market price movements which may not be linked to 

fundamentals. Market impact risk refers to the degree to which large size transactions can be carried out in a timely 

fashion with a minimal impact on prices. As a result, managing investment and liquidity risks for large players requires 

introducing an explicit market impact function, and applying to derivatives significantly depends on whether there is or 

not significant delta hedging activity: in case of no significant delta hedging activity, the risk appetite has significant 

influence on the optimal execution strategy, while in case of significant delta hedging activity the optimal trading 

involves feedback hedging effects translating into a modified Black  Scholes hedging strategy. 
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Introduction 

The short-lived but severe volatility spikes 
experienced over the past couple of years are not 
done, especially with low liquidity and low 
conviction.  Sharp transitions from low volatility 

to high volatility are becoming increasingly 

common, as many in the last six years as we have 

had in the prior two decades  increasing evidence 

that we are in a new volatility-of-volatility 

regime.  
 

Fig. 1. Almost as many transitions from lows to highs over 

the past 7 years as in the prior 20 years 

Source: Deutsche Bank, Bloomberg Finance LP.

Fig. 2. Sudden drops in SPX realized volatility from high 

levels to very low levels have become increasingly common 

Source: Deutsche Bank, Bloomberg Finance LP. 
 

Market liquidity risk refers to the degree to which 

large size transactions can be carried out in a timely 

mannes with a minimal impact on 

prices.1Fundamentally, market impact is an 

illustration of market inefficiency: actually, theories 

of efficient markets typically expect that investors 
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are buying and selling assets based on assessments 

of their value; in contrast, large derivatives players 

buy and sell based on observations of market price 

movements, thus have a utility function quite 

different from that of value investor.  

Although fears about growth or sovereign debts 

sustainability are valid explanations for significant 

declines in equities as experienced in May 2010 

(caused by the Greece sovereign debt crisis 

threatening the credibility and sustainability of the 

European Union Monetary Union), August 2011 

(triggered by the US government debt ratings 

downgrade by Standard & Poor’s agency), August 

2015 (due to strong concerns about China economic 
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growth) or February 2016 (due to lower than 

expected China economic growth), they do not fully 

explain neither the extreme magnitude of the shocks 

nor the repeated occurrence at the close in European 

and US markets. The recent period has experienced 

many instances when market volatility suddenly 

increased even when there were no well-known 

fundamental catalysts. 

Actually, derivatives activity by large players 

might help exacerbate the acuity of such volatility 

spikes  from the illiquidity premium in option 

markets since the nineties (the late 1990’s bull 

market with overwriting supplied volatility from 

pressure for income generation, or the period 

1997 2000 with strong demand for bond + call 

participation rates). An empirical study conducted 

by Christoffersen et al. (2014) presented strong 

evidence of this, stemming from a structural 

imbalance between supply and demand in 

derivatives as illustrated by:  

USD 5 trillion outstanding equity derivatives 

in the US: USD 3 trillion listed, i.e., 20-fold 

since 2000, above the cash equity volume 

during 2005 2007; USD 2 trillion in the OTC 

market in 2005 before 40% drop since 2008. 

Structural supply-demand imbalance in short-

dated volatility: 70% more put options 

outstanding than call outstanding, with 

directional users buying puts for portfolio 

protection; growth of the variance swap 

market requiring short positions in deep-out-

of-the money puts.  

Structural supply-demand imbalance in long-

dated volatility:  

1. from US variable annuities and Asian 

structured products hedging, translating 

into steepening of the term structure;  

2. from hedging US mortgages convexity 

(homeowners own the option to prepay, 

valuable when interest rates fall, leaving 

the market net short volatility): USD 900 

billion options hedge in 2005 (vs. USD 

200 billion in 1993. 

Given such suppy-demand imbalance in 

derivatives, the cost of placing one large order to 

close a position will be far greater than the sum of 

infinitely small orders differed in time. For this 

reason, an explicit modeling is required through a 

market impact function, the influence of which 

the agent will try to minimize. The optimal 

execution turns out to be the sequence of small 

trades over the course of several days that 

optimizes a target, e.g., minimizes the mean cost 

of trading over a fixed period. 

Such imbalance in the derivatives markets is also 

at the source of hedging inefficiencies, as 

illustrated by the impact of short gamma positions 

synthetic hedging, where market makers tend to 

sell more as the market drops or acquire 

additional long exposure as the market rallies, 

which may significantly contribute to market 

liquidity disruptions, independently of 

fundamentals and related to the growth of the 

options market, as illustrated by:  

The ‘02 sell-off inducing large-scale hedging 
amid extraordinary volatility and a spike in 
option prices. 

April 2005 decline in equity markets which 
was the largest two-day fall. 

The huge downward moves in October 2008 
triggered the 70% barrier of knock-in put 
embedded within autocallables sold in Asia, 
where the delta hedging effects have 
exacerbated the moves on the downside as the 
barriers were triggered. 

In this paper, we consider the optimal execution 
price and strategies of options when market 
impact is a driver of the option price, which 
depends on whether the delta hedging of the 
options is significant or not:  

In case of no or insignificant delta hedging 
(like for a life insurance company aiming to 
minimize the cost of buying a large quantity 
of put options to hedge liabilities), the optimal 
execution turns out to be strongly dependent 
on the risk appetite: in the mean cost 
minimization objective, the solution leads to a 
closed formula where the trading speed is of 
the inverse of a 3/2 power law (as the maturity 
approaches the agent must acquire faster as 
time passes). In contrast, in the mean-variance 
case objective (where the dispersion of 
revenues is taken into account) the agent tends 
to liquidate her position at the beginning in 
order to reduce the P&L variance. 

In case of significant delta hedging, the 

optimal execution strategy is determined by a 

no arbitrage framework that incorporates the 

specific impact of the large trader’s hedging 

activity (so called “hedging feedback 

effects”), which translates into a fully 

nonlinear modified Black-Scholes delta 

hedging strategy.  

In section 1, the most observed types of market 

impact on the investment and liquidity risks 

within derivatives strategies will be illustrated 

and analyzed from a qualitative perspective. 

Section 2 will be dedicated to the optimal 

strategies in derivatives based on appropriate 

modeling of the market impact, depending on 
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whether the is significant associated delta 

hedging activity or not. 

1. Empirical market impact on the investment 

and liquidity risks within derivatives strategies 

1.1. Using derivatives enables to hedge financial 

risks embedded within liabilities. Insurance 

companies, corporates or asset managers utilize 

derivatives in a variety of ways to manage and 

mitigate risks that are inherent in their investment or 

liability portfolios which can be characterized by 

three main features: medium long-term duration, 

large volumes and significant market risk exposure. 

Given the persistent low interest rate environment 

across the curve since the 2008 financial crisis, 

these large players need hedge their liabilities, as 

illustrated by the significant recent increase from 

USD 786 billion as of fiscal year 2010 to USD 

1,885 billion as of FY 2014 by insurance 

companies. As the guarantees embedded within 

those liabilities hold a convex risk profile with 

respect to the underlying stock, they need to buy some 

convex equity hedge assets such as options in order to 

match the liability risk profile to improve hedge 

effectiveness: ninety percent of the put options were 

purchased, implying the growing cost of hedging. 

As equity derivatives are highly sensitive to 

supply/demand balance, buying large hedge 

portfolios requires taking into account the 

transaction size explicitly, which is not explicitly 

considered by traditional models. Basel III and 

Solvency II are expected to further strengthen this 

illiquidity as they aim to match capital requirements 

with the economic risks embedded within the 

liabilities, thus requiring large quantities of options 

where prices will increase as a result of supply and 

demand imbalance. 

1.2. Such large derivatives imbalances are likely 

to imply net short positions in options by market 

makers, thus synthetic replication with 

significant delta-hedging activity likely to 

exacerbate market moves through “hedging 

feedback effects”. 

1.2.1. Hedging feedback effects on short-dated 
vanilla options. Investors typically (i.e., 65-80 %) 
buy index put as protection for downside protection, 
thus market makers short put options which they 
hedge by selling futures to be market neutral. If the 
market suddenly drops, they would need to sell 
further to adjust which amplifies the down market 
move. Options dealers (delta-hedgers) are net-short 
options against outright investors (non-delta-
hedgers), and are large enough to move the equity 
market, which might further exacerbate market 
moves thus volatility. Their total risk exposure 
amounts to 40% of the total gamma, i.e. USD 7 
billion sold near market close for 1% move per day. 

 

Fig. 3. Expiration week return vs. net-delta of front-month 

S&P options on previous Friday 

Fig. 4. Gamma as a function of spot S&P 500 index options 

Source: Deutsche Bank. 

1.2.2. Hedging feedback effects on long-dated 
options: focus on autocallables. Structured products 
are often upside (capped) participation with capital 
guaranteed (floor), seller is long ATM vol and short 
OTM vol at both wings. 

As we approach maturity gamma becomes more 

localised around the strike, which tends to have 

greater effects on actual volatility in the spot 

market. It turns out that barriers can cause gamma to 

reverse across very small movements as spot rallies 

towards the KO barrier, and create much larger 

gamma positions than vanilla strikes, particularly 

near to expiry. In this case, the trader will be selling 

large amounts of spot as it approaches the barrier, 

which will tend to prevent the spot market from 

actually hitting the barrier. 

Despite this selling of spot and gamma, the barrier 

may at some point break. If this happens, the option 
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disappears, and the trader is left only with his 

hedge, i.e., a naked position, which he has to 

cover by buying back spot and gamma, where 

delta-hedging will tend to exaggerate spot moves 

even more (spot higher -> needs to buy -> drives 

spot higher, spot lower -> needs to sell -> drives 

spot lower) which will cause the spot market to 

become more liable to choppy trading and can 

cause the market to gap higher. 

Because of leverage in barrier options, the effect 

on vanilla market is disproportional to notional 

size: Closer to maturity, delta amounts grow to 

multiples of the size of the original option. 

2. Optimal derivatives strategies  

2.1. In case of no significant delta hedging activity, 
the optimal execution turns out to be strongly 
dependent on risk appetite. Here we consider that 
delta hedging is either nil or negligible in terms of 
market impact, which is consistent with practice on the 
main market indices as their exchanged volumes is far 
larger than for the corresponding options contracts, as 
illustrated below.  

Table 1. S&P 500 Historical Volume Data (2 Jan. 1951 – 31 Mar. 2012) 

 Total shares Avg. shares Correlation R2

1950s 5,777,550,000 2,298,150 0.66 0.44 

1960s 19,072,060,000 7,656,387 0.73 0.53 

1970s 57,655,100,000 22,833,703 0.48 0.23 

1980s 306,188,530,000 121,118,881 0.76 0.58 

1990s 1,195,610,210,000 473,134,234 0.93 0.86 

2000s 7,091,918,888,000 2,819,848,464 (0.07) 0.01 

2010s 1,274,419,730,000 4,058,661,561 (0.32) 0.1 

Total 9,950,642,068,000 0.72 0.52 

Source: Yahoo Finance. CFA Institute. 

The average shares traded per day for the S&P 500 

has grown from 2.3 million to 4.1 billion, with as 

busiest trading day ever for the S&P 500 the 10 

October 2008, when a phenomenal 11,456,230,400 

shares changed hands. In contrast options contracts 

exchanged volumes are significantly lower.  

Table 2. Listed options – most actively traded and open interest – S&P500 index options 

Listed options – most actively traded (average over past week)

 Expiry Strike Number of contracts 
Notional value of contracts 

(MM, local currency) 

PUT June 16, 2017 2,375.0 13,007 3,088.1

PUT April 21, 2017 2,300.0 12,793 3,033.1

CALL April 21, 2017 2,375.0 12,322 2,931.2

CALL June 16, 2017 2,375.0 12,071 2,865.7

PUT April 21, 2017 2,310.0 10,108 2,404.9

Listed options – largest open interest

 Expiry Strike Number of contracts 
Notional value of contracts 

(MM, local currency) 

PUT June 16, 2017 2,000.0 81,710 19,153.0

CALL April 21, 2017 2,375.0 76,091 17,835.9

PUT April 21, 2017 2,200.0 75,310 17,652.8

PUT April 21, 2017 2,300.0 75,147 17,614.6

PUT April 21, 2017 2,375.0 65,530 15,360.0

Source: Deutsche Bank. 

An agent who is willing to trade a large quantity of 

options will see the impact as an important dilemma, as 

the cost of placing one large order to close his position 

will be far greater than the sum of infinitely small orders 

differed in time. In practice they are usually broken up 

into smaller ones and executed over the course of 

several days (see for example, Chan & Lakonishok, 

1995 & Keim & Madhavan 1995): only 20% of the 

market value of the trades splits in their set of data are 

completed within a day, and that over 53% are spread 

over four trading days or more. For this reason, an 

explicit modeling is made through a market impact 

function (depends on the “temporary impact strength” 

that is proportional to the main empirically observed 

drivers such as the speed of option trading, i.e., the 

number of options per unit of time, the equity stock 

level and the option sensitivity to the equity 

stock), the influence of which the agent will try 

to minimize. The optimal execution turns out to 

be the sequence of trades that optimizes the 

target, e.g., minimizes the mean cost of trading 

over a fixed period, or the mean-variance 
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criterion if the volatility of revenues is taken into 

account.  

2.1.1. The market impact function and resulting 

option price in case of no significant delta hedging. 

The model is inspired from Leland’s option 

replication with transaction costs that is 

incorporated into the option price as an additional 

variable within the volatility function: 

( )2 2

t tf t , x ,x , .  

where  is the asset volatility and f is the market 

impact function (depends on time, volatility, 

inventory and trading speed). The option effective 

price is then expressed through a Black-Scholes 

like PDE with such modified “enlarged” volatility 

in order to compensate for the market impact cost. 

Finally, regarding the best execution strategy, we 

set up a stochastic control framework and solve a 

Hamilton-Jacobi-Bellman equation using finite 

differences methods.  

In terms of market impact function, we follow the 

approach by Almgren and Chriss (2000) and 

Almgren (2003) where the price impact is  

a combination of two components: a permanent 

component  that  reflects the information 

transmitted to the market by the buy/ 

sell  imbalance;  and  a  temporary component that 

reflects the price concession needed to attract 

counter-parties within a specified short time 

interval. The number of shares of the traded asset is 

described by an absolutely continuous trajectory 

tt x , tx , its derivative w.r.t time corresponds to 

the speed of trading of the security.  

In the absence of market impact, the asset is 

modeled by a geometric Brownian motion (GBM): 
2

t

1
t W

2
t 0S S e . When market impact is taken 

into account, the execution price is defined by 

( ( ))t t t t 0S S 1 x x x , where S is the 

unaffected stock price process, and  and  are 

constants. The term 
tx  corresponds to the 

temporary or instantaneous impact of trading 

txdt  shares at time t and only affects this current 

order. The term ( )t 0x x  is the permanent 

price impact which was accumulated by all 

transactions until time t.  

We adapt such formula to the “enlarged volatility” 

expression as follows: 

( ( ))2 2

t t t 0
ˆx x x T t , 

where 8

h
 and 

8
.

h
 Finally, the option price under market impact follows the PDE: 

( ) ( )

( ) ( )

2 2

u t ss

1 ˆP u ,S S P u ,S 0 , ( u ,S ) t ,T 0 ,
2

ˆP T ,s K s .

  

Using a simple Taylor approximation to the first-

order, we can rewrite the above expression as a sum 

of the Black-Scholes option price and an additional 

term corresponding to the option market impact: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

t t t v t t t t 0 t

1 ˆP t,S P t,S P t,S P t,S x x x T tv t,S
2

,

where tv(t,S ) P  is the Black-Scholes vega of the option:  

( ) ( ) ( )t t 1 2
ˆ ˆv t ,S T tS N ' d T tKN ' d   

( )

( )

( )

2x

2

2t

1

2t

2 1

1
N ' x e ,

2

S 1 ˆlog T t
K 2d ,

T̂ t

S 1 ˆlog T t
K 2 ˆd d T t .

T̂ t

 

It follows that the market impact function is defined by 
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( ) ( ) ( ) ( ) ( )t t t t t t t 0 t

1 ˆt,S ,x ,x : P t,S P t,S x x x T tv t,S
2

This allows to write the option execution price as the 

sum the option price in the absence of market impact 

plus a positive term reflecting  the  additional cost due to  

market impact. Using the Vega-Gamma relationship 

(i.e., 2S  we can rewrite the market impact term 

as a function of the option Gamma: 

( ) ( ) ( ) ( )
3

2 2
t t t t t 0 t t

1 ˆt,S ,x ,x x x x S T t t,S
2

, 

where 
( ) ( )

( ) 1 2
t

2

t t

N ' d KN ' d
t ,S ,

ˆ ˆS T t S T t

 

controls the temprorary impact strength in USD 

× hour/N of options;  controls the permanent 

impact strength and in USD N shares;  

xt is the quality held at time t and xt is the speed 

of trading in number of options per time unit;  

is the delta sensitivity w.r.t to the asset price  

( ( ) )tt, S 0. 

 

Fig. 5. Put price as a function of the moneyness 

As illustrated above, the approximation by the 
Taylor expansion is almost equal to the closed 
formula, which will be very convenient to solve the 
optimal trade execution problem. 

As a result the option price under market impact is 
found to verify a Black-Scholes like PDE with an 
“enlarged” volatility, where buying the option will 
typically lead to increasing its price, as expected: 
the higher the trading speed and quantity, the higher 
the volatility and thus the option price.   

2.1.2. The optimal execution problem. As explained 

above, the optimal execution is a strategy that 

unfolds over the course of several days and which 

ought to adapt to changing market conditions. This 

is intuitively true for market options as well, even 

though very little literature deals with this issue. 

Taking this into an account, instead of executing his 

orders at once, the agent has to split them over the 

time interval [0,T] by means of a dynamic order 

execution strategy. 

Let us consider a buying trade execution strategy in 

which an initial long position of X options with fixed 

strike K and maturity T is liquidated by a fixed time 

horizon [0,T]. We describe such a strategy by the asset 

position x(t) held at time t. The initial position x(0) is 

negative for a buying strategy and the condition 

Tx 0  assures that the initial position has been 

unwound by time T. The path ( )t t 0 ,T
x x  will be 

nondecreasing for a pure buying strategy. The end-

user’s purpose is to hedge the risk of a complex product 

(structured product, Variable Annuity, etc.) indexed on 

an underlying asset, by acquiring vanilla put options on 

that same underlying asset.  
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Let ( ),F,  be the usual probability space on the 

filtration 
t t R( F )  satisfying the usual assumptions. In 

the absence of market impact and under a null risk-free 
rate, the no-arbitrage price of a put option is defined by 

( )ˆt Q tT
P E K S F .  under the risk-neutral 

probability measure Q in which the asset price is a 

martingale. At each time tt , x dt  options are bought at 

price 
tP  which is the option impact price defined by the 

PDE or the price equation above. Thus, the cost arising 

from the strategy x is ( )
T

t t
0

C x : Px dt.  

The agent’s objective is then to minimize a certain 
objective  function,  which  takes  into  account  his  risk 

aversion, and may involve both cost and risk terms, 

over the class of admissible trading strategies x with 

side conditions 0x X  and Tx 0 . This is known 

as the optimal trade execution problem. In this 

paper, we will consider two risk aversion cases:  

The mean cost ( )E C x  

The mean-variance case 

( ) ( )E C x Var C x  (which includes the 

mean case with =0) 

We will develop the framework under the Black and 

Scholes case a temporary market impact only, with 

permanent impact excluded, i.e., 0 . In that case, 

the effective price is given by:  

( ) ( )
3

2 2
t t t t t

1 ˆP P x S T t t ,S
2

. 

We can rewrite the cost function as follows:  

( ) ( ) ( )
3

T T
2 2 2

t t t t t
0 0

1 ˆC x P x dt x S T t t ,S dt.
2

  

Using a simple integration by part and Ito’s formula, the cost arising from the strategy x becomes 

( ) ( ) ( ) ( )
3

T T
2 2 2

0 t t t t t t t
0 0

1 ˆC x XP x S t ,S dW x S T t t ,S dt
2

, 

where  is the Black-Scholes delta of the option calculated on . 

The mean cost of the strategy x is then 

( ) ( ) ( )
3

T
2 2 2

0 t t t
0

1 ˆE C x XP E x S T t t ,S dt
2

. 

Theorem 1. The optimal strategy x* resulting in minimizing the mean cost under the Black and Scholes 

framework is characterized by 

( )

( )

( ) ,

( )

* 1
t 3

2

* 1
21

2

K
x t ,

T̂ t

K
x t K

T̂ t

 

where 

( ( ) )

( )

1 1 1

2 2

1

2
2 1

X
K ,

ˆ ˆ2 T T T

ˆK 2K T T .

 

Proof: see Kalife and Mouti (2017) 

We remind that the mean cost optimal strategy for 

the equity case is characterized by having  

a  constant  trading  rate *

t

X
x ,

T
, as  shown in 

Bertsimas and Lo (1998) in a discrete-time 

setting. In contrast, in the option framework 

under the impact function we select, the  

trading speed is an increasing convex function of 

time. 
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The mean cost under the Black and Scholes 

framework is the only case where a closed 

solution can be found, is illustrated below for t=1, 

T=0.5, X=-1:  

 

Fig. 6. The mean cost optimal strategy under the Black and Scholes model

In summary, the optimal execution strategy to 

maximize mean profit/loss provides a rather stable 

pace of trading as illustrated in the figure below, 

depending only mildly on the stock price path: the 

pace is rather constant at the beginning and then 

gradually increases as it gets close to maturity, 

which is intuitive given the fixed quantity to buy 

within a fixed time period, implying the insurer 

must acquire at a faster rate as time passes.  

In the following sections, we develop the optimal 
execution framework under a risk/reward criterion, 
where the optimal strategy turns out to be more 
sensitive to the underlying price evolution, urging 
the agent to trade faster at the beginning of the 
strategy. 

2.1.3. The optimal execution strategy significantly 

depends on the risk appetite: the mean-variance 

framework. The mean cost is usually used for an 

agent who does not monitor the risk of his strategy. 

Investors, however, usually takes into account their 

risk   aversion,  through   utility  functions   or  using  

risk/reward criterion such as the mean-variance. The 

literature on these problems is rich for optimal 

execution of a book of equity shares. For example 

Almgren and Chriss (2000) and Forsyth (2010) 

studied the mean-variance optimal execution 

problem. Gatheral and Schied (2011) took the time-

average value-at-risk associated with the P&L of the 

position, while Forsyth et al. (2011) used a quadratic 

variance as a risk criterion. In this paper, we focus 

on the mean-variance criterion in light of Almgren 

(2012) and Almgren and Chriss (2000). The mean-

variance of the cost of trading is defined by: 

( ) ( )E C x Var C x , 

where > 0 is the variance penalty. The choice of 

this coefficient cannot be explained in terms of 

fundamental investment preferences. The value is 

chosen in order to obtain solutions that bring out a 

certain meaning to the optimization problem. 

The variance of the cost function term can be 

written as follows:  

( )

( ) ( ) ( )

( )
t t

2
T T

t t t t
0 0

2
T T

2 2 2

t t t ss t t t s t t
0 0

T
2 2 2 2

s t
0

Var C x E P x dt E Px dt

1
E x S P t ,S dt x S P t ,S dW

2

E x

terms arising  from uncertainty in the dr

S P t ,S

f

t

i

d

t  part .

 



Insurance Markets and Companies, Volume 8, Issue 1, 2017 

67 

The exact expression of the variance is 

complicated since all terms are random. A 

reasonable assumption is that the largest source of 

uncertainty arises from the stochastic integral 

part. Lozenz and Almgren (2011) and Tse et al. 

(2013) argued  that the terms  in the  drift part  are  

small compared with market dynamics, which we 
verified numerically in our case. 

In this section, we are interested in the price impact 
formulation with temporary impact only. That is, we 
can easily deduce that the mean-variance objective 
function can be approximated as the following:

( ) ( ) ( ) ( ) ( )
t t

3
T T

2 2 2 2 2 22
t t t t

0 0

1 ˆE C x Var C x E x S T t t,S dt x S t,S dt
2

. 

We then set up the dynamic programming problem. 

To do so, we parameterize strategies x  by their 

speed of trading and define  the control as tx .  

We introduce A(T;X) the class of all progressively 

measurable processes t ,  0 t T  for which 

the parameterized strategy defined by  

t

t s
0

x : X ds, 0 t T  

verifies necessary conditions of integrability.  

We define the value function  

( )

( )

( ) ( ) ( ) ( )
u

3
T

2 2 2 2 2 22
t u u u u u

0A T ,X

U t,S ,x

ˆinf E S T u u,S x S u,S du
. 

We restrict our framework to Markovian controls, i.e., 

the agent’s optimal trading speed at time t is completely 

determined by the current state. Using the standard 

procedure of deriving the HJB equation in stochastic 

control problems (see Yong & Zhou, 1999), the solution 

to the reduced optimization problem solves the PDE: 

( ) ( ) ( )
3

2 2 2 2 2 2 2 2
t ss x

a R

1 ˆU S U x S t,S S T t t ,S U 0inf
2

. 

 

The so-called finite-fuel constraint required from 

strategies (i.e., T

t
0

d t X  ) suggests the value 

function U should satisfy a singular terminal 

condition of the form 

t T

0 if x 0
limU(t,S,x )

if x 0
. 

To solve the problem numerically and justify the 

existence and uniqueness of the solution, we set the 

following the parameterized problem with a finite 

terminal condition 

( ) ( ) ( ) ( ) ( ) ( )
3

T
2 2 2 2 2 22

t u u u u u u
0x)

1ˆU t,S,x inf E x S T u u,S x S u,S du x T  

( ) ( )
0 if x 01

U T,S,x x
1 if x 0.

 

Substituting the infinite limit by the large penalty as above on the value function as t T  not only forbids 

to trade a large quantity at the end time, but also allows to have a regular control variable which can be 

solved numerically. 

Then we reparameterize the controlled state variable 
k

tx  by its rate of trading k such that: 



Insurance Markets and Companies, Volume 8, Issue 1, 2017 

68 

k k

t t tdx k x dt  

Using such parameterization, we reduce the value function: 

( ) ( )2U t,s,x : x u t ,s , 

where 

( ) ( ) ( ) ( )

u T

s s
t t

3
T 2k ds k ds

2 2 2 2 22
t u u u u u

tk K

1ˆu t,S inf E e k T u S u,S S u,S du e  

( )

( ) ( )

( )

* 2 2 * 2 2 2 2

t SS 3

22

*

1 1
u S u S t ,S u 0

2
T̂ t S t ,S

1
u T ,s .

 

Theorem 2. The optimal trading rate is: 

( )
( )

( ) ( )

*

3

22

u t ,S
k t ,S

T̂ t S t ,S

 

Proof: Kalife and Mouti (2017) 

Although this minimization problem does not admit a closed-form solution, the above quasi-linear PDE can 

be linearized by decomposing the quadratic term into the product of an explicit and implicit term. Thus, the 

general family of the two-level implicit schemes for this problem is: 

( ) ( ) ( )

( )

n 1 n

j j n 1 n n n 1 2 2 n 2

h j h j j j j j3

2 n2
n j j

u u 1
L u 1 L u u u S

T̂ t S
 

Then we can solve the problem numerically using finite differences methods as in Kalife and Mouti (2017) 

In our numerical experiment, we present results for a long position on ATM put options with the parameters 

as follows:  

Table 3. Simulations inputs parameters  

Parameter Value

30%

T (the strategy horizon) 1/12(years) 

T̂ (the option maturity) 1(years) 

0

r 0

S0 0

K S0

Action Buy

x0 -1

0.05

Trading frequency 4 trades per day 

0,1,10,100 
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Fig. 7. The rate of trading as a function of the underlying price S and time t for different values of  : mean objective (   = 0 

top left) or mean-variance ( =1 top right, 10 bottom left, 100 bottom right) 

This chart illustrates the optimal execution strategy 
through the rate of trading as a function of the 
underlying price S and time t. The strategy does not 
depend on the trader inventory position. However, as 
time increases the trading rate increases (convex in 
time): as the maturity approaches the agent must acquire 
faster as time passes. This increase has a shape of an 
inverse function of time. This is consistent with the 
equity case where the dynamic strategy is proportional 
to 1/ (T-t). The rate increases as the asset price decreases 
(even though this seems slight in the graphics). 

The mean case ( =0) is the least affected by the spot 

variation. In contrast, this representation allows to 

see that the mean-variance (i.e.,   0) with a high-

risk aversion is most sensitive to price 

movements: the agent tends to liquidate her 

position at the beginning in order to reduce the 

P&L variance that plays a non-negligible role in 

her choice. To gain additional insight, we plot 

below four paths of the underlying price together 

with the rate of trading, the inventory and 

quantity to be traded, where adding the variance 

pushes the agent to adapt the strategy to the 

underlying level: when as the risk aversion 

parameter increases, the traded quantity tends to 

be larger at the beginning. 
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Fig. 8. Sample paths of the evolution of the fundamental price, trading rate, inventory and traded quantity throughout the 

execution for = 100 

In contrast, if the dispersion of the profit/loss 

becomes an additional driver of the risk appetite, 

then the optimal execution strategy significantly 

depends on the stock path, with a faster pace when 

the stock level is low compared to when the stock 

level is high: indeed, as the stock decreases, the cost 

of the put option increases.  

The mean-variance profit/loss framework prevents 

the insurance company from waiting until maturity 

to trade a large quantity and instead favors a 

decreasing trading pace as time passes.  

2.2. In case of significant delta hedging activity, 

the optimal execution strategy is determined by a 

no arbitrage framework (from the large trader’s 

perspective) which incorporates the so-called 

“hedging feedback effects”. We consider here the 

interaction of one “large trader” whose action 

affects prices and many price takers “small traders”, 

the usual no arbitrage condition (Delbaen and 

Schachermayer (1994)) doesn’t apply. We use a 

continuous time version of Jarrow (1994): “No 

Market Manipulation Strategies“, which requires 

additional but relevant required assumptions: 

The asset price is independent of the large 

trader’s past holdings. 

Real wealth (as if the holdings liquidated). 

Synchronous markets condition. 

Prices adjust instantaneously across underlying 

and derivatives. 

Absence of corners. 

2.2.1. Hedging feedback effects on option price. 

Large dealers are net writers of options thus need to 

neutralize the risk by replicating synthetically 

options. As a result, an additional process, the 

number of underlying assets held by the large trader, 

needs to be introduced, which gives rise to nonlinear 

feedback effects (Frey, 1998). 

Actually static hedging using options exists only for 

relatively short maturities. For very long dated 

options, dynamic replication is the only way for 

hedging the written options positions, by taking an 

offsetting position in the underlying asset. In order 

to manage the risk exposure, the large trader must 

adjust the “delta” hedge position after a price shock 

to allow for the change in the option’s price 

sensitivity. As the underlying asset’s price rises 

further, however, the option’s value becomes more 

sensitive to changes in the underlying asset’s 

price, which implies an increasing hedge 

position in the underlying asset, affecting in 
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return its price process as the hedge adjustment is 

to buy (sell) the underlying asset after its price 

rises (falls). 

The underlying asset price dynamics can be 

modeled as 

( )t t t t t t t tdS SW S Sd  

Where  is a continuous function called ’market 

liquidity profile’, used to retrieve a particular shape of 

the implied volatility smile, while  represents the 

intensity of the liquidity impact. If we now apply the 

Black-Scholes methodology to such modified 

dynamics, under a zero risk-free interest rate (for 

simplicity of notation), we obtain a modified Black-

Scholes PDE: 

( ) ( )
( ( ) ( )

( ) ( )

2

t 2 SS

SS

1 1ˆu t ,S , Su t ,S , 0
2 1 S Su t ,S ,

ˆu T ,S , nh S

Proof: see Frey (1998) 

This modified Black-Scholes equation is a fully 

nonlinear parabolic PDE, requiring specific 

numerical implementation ensuring accuracy, 

flexibility and stability, as proposed by Fahim and al 

(2005) and adapted by Kalife, Tan and Wong (2012). 

Actually, as the large trader sells European calls, she 

has to buy a large amount of the underlying asset  

in  order  to  hedge  synthetically,  which  makes the  

underlying asset price rise, thus the short delta 

decreases, implying a short gamma, so the 

’feedback’ volatility rises. Consequently the option 

unit price turns out to be higher than the usual price-

taker B&S price: selling a large amount of calls 

causes the price to rise! But it is actually a 

consequence of the positive feedback effect induced 

by the dynamic hedging of the large trader, 

stemming from the absence of sufficient natural 

counterparts to meet the demand for puts and calls.  

 

Fig. 9. European call price 

2.2.2. Hedging feedback effects impact on Greeks. 

The gap caused by the hedging feedback effect 

(tracking error) is always positive, so the B&S 

delta hedging strategy always implies a loss, 

directly linked to the difference of volatilities; 

growing with the gamma (i.e., the large trader 

hedging activity), while increasing with lower 

liquidity (higher ). 
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Fig. 10. European call price gap between B&S and Feedback effect price 

In terms of delta hedging we distinguish three effects: 

A positive moneyness effect: the large trader 
buys more underlying assets for in the money 
calls (more likely to be exercised). 

A negative volatility effect: for in the money 

calls  a   higher  volatility   implies   a   higher 

probability to leave out of the money, which 

reduces the delta. 

A negative time to maturity effect: as residual 

time to maturity decreases, the optimal 

quantity to hedge is more predictable, which 

reduces the delta. 

 
 

Fig. 11. The B&S gamma hedging strategy  Fig. 12. The B&S delta hedging strategy 

Conclusion 

Market impact risk refers to the degree to which 
large size transactions can be carried out in a 
timely fashion with a minimal impact on prices. 
As a result managing investment and liquidity 
risks for large players requires introducing an 
explicit market impact function, and applying to 
derivatives  significantly    depends  on   whether  

there is or not significant delta hedging activity: in 

case of no significant delta hedging activity, the 

risk appetite has significant influence on the 

optimal execution strategy; while in case of 

significant delta hedging activity the optimal 

trading involves feedback hedging effects 

translating into a modified Black-Scholes 

hedging strategy. 
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