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Abstract. This paper studies the effect of the tower dynamics upon the wind turbine model by using mixed sets
of rigid and/or nodal and/or modal coordinates within multibody system dynamics approach. The nodal model
exhibits excellent numerical properties, especially in the case where the rotation of the rotor-blade is extremely
high, and therefore, the geometric stiffness effect can not be ignored. However, the use of nodal models to
describe the flexibility of large multibody systems produces huge size of coordinates and may consume massive
computational time in simulation. On the other side, the dynamics of the tower as well as other components
of wind turbine remain exhibit small deformations and can be modeled using Cartesian and/or reduced set of
modal coordinates. The paper examines a method of using mixed sets of different coordinates in the same model,
although there are differences in the scale and the physical interpretation. The equations of motion of the wind-
turbine model is presented based on the floating frame of reference formulation. The mixed coordinates vector
consists of three sets: Cartesian coordinates set to present the rigid body motion (nacelle and rotor bodies), elastic
nodal coordinates for rotating blades, and reduced-order modal coordinates for low speed components and those
that deflect by simple motion shapes (circular Tower). Experimental validation has been carried out successfully,
and consequently, the proposed model can be utilized for design process, identification and health monitoring
aspects.

1 Introduction

Computational modeling of wind turbines is an important
tool in design and control of these dynamic systems. The
presence of wind turbines in highly dynamic environment re-
duces the assumptions that may facilitate the dynamic model,
and therefore, the use of multibody system dynamic ap-
proach is inevitable. Multibody systems are characterized
by two distinguishing features: the system components un-
dergo finite relative rotations, and these components are con-
nected by mechanical joints that impose restrictions on their
relative motion (Shabana, 2013). It is therefore can be con-
sidered that wind turbines are the real and most important
application of flexible multibody dynamics, see Fig. 1. Un-
der the umbrella of the multibody systems, three main ap-
proaches can be used to describe the dynamics of a mov-
ing body. First, the Newton-Euler formulation that uses a
set of Cartesian coordinates to describe the rigid motion of

the body and, in addition, the orientational parameters of its
local frame that may be assigned at its center of mass, in-
troduced in Shabana (2010). Second, the Floating Frame of
Reference (FFR) formulation, which uses a set of Cartesian,
orientational and elastic coordinates, in which the deforma-
tion of the body with respect to its local frame is described
using finite deformations and rotations, more details are pre-
sented in Nikravesh and Lin (2005), Nada et al. (2009, 2010)
and Wu and Tiso (2014). Finally, the Absolute Nodal Coor-
dinates Formulation (ANCF), that uses a set of global posi-
tions and gradients, presented in Gerstmayr (2003), Dibold
et al. (2009), Bayoumy et al. (2012a, b) and Nada (2013), to
describe the rigid body motion as well as the elastic deforma-
tion. The three methods have properties differing in terms of
accuracy, complexity and computation efficiency, discussed
in Shabana (2008). Naturally, these methods depend strongly

Published by Copernicus Publications.



36 A. Nada and A. Al-Shahrani: Mixed coordinates in modeling WTs

on the expected rigid displacement and deformation of the
body.

Hansen et al. (2006) have shown a comprehensive review
of wind turbine aeroelasticity. Different approaches to struc-
tural modeling of wind turbines are addressed in terms of
possible instabilities. Nada and Al-Shahrani (2017) have tes-
tified that the FFR is best suited for modeling the dynamics
of small-size wind turbine, theoretical and experimental val-
idation of using FFR are carried out successfully. Each blade
is considered as deformable body (3-D beam element) in the
system, the local frame is assigned at the start of the blade.
The large reference displacement of the blade is described us-
ing a set of absolute Cartesian and orientational parameters
(Euler parameters) while the elastic deformation of the blade
is described using finite deformations and rotations (elastic
coordinates) with respect to the local frame. These elastic
coordinates are assumed small, and as a consequence, the
stiffness matrix is constant. The mass matrix, on the other
hand, is non-linear and exhibits a strong coupling between
the reference displacements and the elastic deformations of
the body.

It is certainly that the accuracy of the FFR depends on the
number of elements used to construct the model. Therefore,
a large number of elements must be used and thus huge size
of elastic coordinates. Consequently, the use of finite element
models to describe flexibility may consume large computa-
tional time. Despite the increasing computational capabili-
ties of digital processors, the need remains for using coordi-
nate reduction methods, especially in the case of large multi-
body systems. A truly straightforward and computationally
efficient way of describing deformations is the use of linear
deformation modes of the body (Nowakowski et al., 2012;
Holzwarth and Eberhard, 2015). These modes can be formu-
lated using a finite element model of the body, and most of-
ten, they are eigenmodes of structural vibrations. A set of
modal coordinates can describe the elastic deformation of
the body instead of using the hug set of elastic nodal coor-
dinates. In this context, Component Mode Synthesis (CMS)
is one of the most efficient methods developed to reduce the
number of elastic coordinates, in which the model reduction
can be achieved by ignoring high deformation modes (Holm-
Jørgensen and Nielsen, 2009a, b; Ziegler et al., 2016).

Unfortunately, in the case of high-speed rotary machines,
such as small-size wind turbines, the use of the reduced-
model and the associated modal coordinates face with nu-
merical difficulty (Nada and Al-Shahrani, 2017). In wind tur-
bine application, once the rotor speed reaches the first natu-
ral frequency of blade structure, the use of linear form gives
wrong solution, and the nonlinear term (geometric stiffness
term) should be included in the FFR model. In this case, the
elastic coordinates must be utilized in the model construction
(Nada et al., 2010).

On the other hand, the tower of the turbine, remains ex-
hibit small deformations and there is no rotations of its lo-
cal frame; and therefore the modal coordinates can be easily

Figure 1. Small-size wind turbine as a multibody system.

used. The use of modal transformation reduce the number of
degrees of freedom and consequently decrease the computa-
tional time. But the issue remains how to combine different
coordinates in the same model, although there are differences
in the scale and the physical interpretation, and their effect on
the numerical integration of the mathematical model.

An additional aspect of this study is dealing with the na-
ture of the tower body – most of which are circular shapes –
whether solid or hollow. Several publications have presented
the finite-element model of rod, which is mostly subjected to
high speed rotations and torque applications (Simo and Vu-
Quoc, 1991; Weiss, 2002; Koutsovasilis and Beitelschmidt,
2008; Lang et al., 2011). While the application here differs
in the exposure of the tower to bending stress more than shear
and Euler-Bernoulli beam model can be accurately utilized.
Therefore, this paper examines how to calculate the deforma-
tion gradient and the resulting strain on the body of the tower
in cylindrical coordinates, and then selecting the minimum
number of modal coordinates that can be used in the tower
model.

This investigation proposes FFR model of wind turbines
using three sets of coordinates: Cartesian coordinates plus
the Euler parameters to present the rigid body motion (Na-
celle and rotor bodies). Elastic nodal coordinates for rotat-
ing blades, and modal coordinates for non-rotating bodies
(Tower). The paper examines the effectiveness of the pro-
posed FFR formulation in modeling small-size wind turbines
as well as the effect of the tower dynamics on the rotor speed.

2 Dynamics of multibody system

The general dynamic equations of the flexible multibody sys-
tems that consist of rigid and flexible can be written as[

M CT
q

Cq 0

][
q̈

λ

]
=

[
Q

Qd

]
(1)
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Figure 2. Beam element of circular cross section within FFR for-
mulation.

The dynamic coupling between the generalized coordinates,
q, is defined using the joint connectivity conditions, C(q)=
0, see Sugiyama et al. (2003); Korkealaakso et al. (2009). In
Eq. (1), M is the mass matrix, Cq = ∂C

∂q
is the Jacobian of the

constraints function, λ is the vector of Lagrange multipliers,
and q̈ is the generalized acceleration vector. In the case of
using the FFR formulation, the vector

q =
[
qiTr qiTf

]T
=
[

RiT θ iT qiTf

]T
is the generalized coordinates vector. The vector Q, which
includes the generalized forces associated with generalized
coordinates which is defined as

Q=Qv+Qk+Qe (2)

where Qv is the vector of centrifugal and Coriolis forces
which are quadratic in the velocities, Qk is the vector of
elastic forces, and Qe is the vector of the external and aero-
dynamical forces. The vector Qd absorbs the quadratic ve-
locity terms resulting from the differentiation of the kine-
matics constraints twice with respect to time, Qd = Cq q̈ =
−
(
Cq q̇

)
q
q̇ − 2Cqt q̇ −Ct t . The reader can review Nada and

Al-Shahrani (2017) for full details of each term in Eq. (1).

2.1 FFR Based Nodal Coordinates

In the FFR formulation, element deformation can be de-
scribed with respect to a frame of reference, this frame is
used to describe the large displacements and rotations of
body motion. The global position of an arbitrary point P ij

located on the body i within element j , can be written as

Shabana (2013):

r ij = Ri +Aiuij (3)

where Ri defines the location of the origin of the body frame
xiyizi , i.e., floating frame, Ai(θ i) is the transformation ma-
trix that defines the orientation of the floating frame xiyizi

with respect to the inertial frame XYZ as a function of the
orientation parameters θ i . The vector uij that defines the lo-
cation of the point P ij with respect to the floating frame, see
Fig. 2, can be expressed in terms of the elastic coordinates
as:

uij = u
ij

0 +u
ij

f = u
ij

0 +Sij
(
~
ij

0

)
q
ij

f (4)

where uij0 is the position vector of point P in the unde-
formed configuration. The vector uijf represents the elas-
tic deformation of the element and defined as uijf = Sijqijf ,
where Sij (~ij0 ) is the shape function matrix which is space-
dependent function along and within the element, however,
q
ij

f is a temporal vector of elastic nodal coordinates of the el-
ement j . Thus, if the body is divided into ne elements, then,
the global position vector r ij can be represented as

r ij = Ri +Aiuij0 +AiSijBij1 Bi2q
i
f (5)

where Bij1 is the connectivity matrix and Bi2 is the linear-
transformation matrix that imposes the boundary conditions
of the element. In this case, qif represents the unconstrained
vector of nodal coordinates along the body i. Using the ma-
trix Bi2, one can exclude the constrained elastic degrees of
freedom from the numerical integration. For example, in the
case of rigid connection at particular node, the six elastic de-
grees of freedom associated with that node can be excluded
from the generalized coordinates vector.

Using the displacement field of Eq. (5), one can show that
the mass matrix of body i can be assembled as follow

Mi
f =

 Mi
RR Mi

Rθ Mi
Rf

Mi
θθ Mi

θ f
sym. Mi

ff

 (6)

where Mi
RR matrix represents the mass matrix associated

with the translational coordinates of the body reference. The
matrix Mi

Rθ represents the inertia coupling between the rigid
body translation and the rigid body rotation. The matrix Mi

θθ

is associated with the rotational coordinates of the body ref-
erence. The submatrices Mi

Rf and Mi
θ f represent the coupling

between the reference motion and elastic deformation. The
matrix Mi

ff is the summation elementary mass matrices Mij

ff .
For ne finite elements and can be written as:

Mi
ff = BiT2

[
ne∑
j=1

BijT1 Mij

ff Bij1

]
Bi2 (7)
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where Mij

ff =
∫
V ij
ρi
[
Sij
]T [Sij ]dV ij is the mass matrix of

element j . Similarly, the assembled stiffness matrix can be
written as:

Ki
ff = BiT2

[
ne∑
j=1

BijT1 Kij

ff Bij1

]
Bi2 (8)

The stiffness matrix of the element Kij

ff is constant matrix
that appear in the linear structural systems and can be found
in Shabana (2013). In the FFR formulation, which is linear
in the local frame of reference, high order terms related to
the deformation of a beam element are ignored. That is why
in the case of high rotational speeds or large deformations,
some axial and bending effects need to be taken into consid-
eration in addition to the linear beam model. This is called
the geometric stiffening, which is most important effect that
is neglected in the linear FFR formulation. In wind turbine
application, large rigid body motion are taken into account
while, however, large deformations can be neglected.

2.2 3-D Beam Element with Circular Cross Section

For the two-nodes 3D-beam element used in this investiga-
tion, the nodal coordinates qijf of body i, element j is given
by:

q
ij

f
12×1
=

{
u
j,1
0 v

j,1
0 w

j,1
0 · · ·

θ
j,1
x θ

j,1
y θ

j,1
z · · ·

u
j,2
0 v

j,2
0 w

j,2
0 · · ·

θ
j,2
x θ

j,2
y θ

j,2
z

}T

(9)

The subscript 0, refers to the centroidal axis, the complete set
of nodal coordinates can be assembled as

qif
nf×1
=

[
q
i,1T
f q

i,2T
f · · · q

i,(ne+1)T
f

]T
(10)

such that qijf = Bij1 Bi2q
i
f , the dimension of the qif vector is

nf×1, where nf = (ne+ 1)×6 are the total number of elastic
degrees of freedom of the flexible body. The 3-D beam ele-
ment of rectangular cross section is used in modeling wind
turbine blades in Nada and Al-Shahrani (2017). However,
when the tower is included into the turbine model, the beam
element with circular cross section should be used instead.
In this case, the coordinates of the material point in the un-
deformed configuration with respect to the floating frame
are described interms of (x,r,θ ). Thus, the shape function,
which defined for beams of rectangular cross section should
be mapped into cylindrical coordinates so that the elements
match the circular geometry of the cross section.

The Cartesian coordinates are related to the cylindrical co-
ordinates, see Fig. 2, by

x = x

y = r cos(θ )
z= r sin(θ )

 (11)

Thus, the deformation gradient described in cylindrical coor-
dinates % : (x,r,θ ) can be written as Huang et al. (2013):

D=
∂ufp

∂%
=


∂u
∂x

∂u
∂r

∂u
∂θ

∂%
∂x

∂%
∂r

∂%
∂θ

∂ϑ
∂x

∂ϑ
∂r

∂ϑ
∂θ

 (12)

Based on the deformation gradient in Eq. (12), one can con-
clude that the terms of shearing strains of beam element with
circular cross area can be formulated as

εxy = cosθ
(
D(1,2)+D(2,1)

)
− sinθ

(
D(1,3)

r
+D(3,1)

)
εxz = cosθ

(
D(3,1)+

D(1,3)

r

)
− sinθ

(
D(1,2)+D(2,1)

)
The axial component εxx remains the same as for rectangular
cross section, presented in Nada and Al-Shahrani (2017). In
order to match the cylindrical coordinates of the 3-D beam
with circular cross section, the non-dimensional parameters
ξ,η,ζ of the shape function should be altered to

ξ =
x

`
,η =

r cosθ
`

, ζ =
r sinθ
`

. (13)

The variables of volume integration are the parameters
(x,r,θ ) and volume integration boundaries are altered to

V ij =
∫̀
0
· · ·

+π∫
−π

· · ·

R∫
0
· · ·rdrdθdx. Using the mapped forms de-

scribed above, the dynamic terms can be updated for circular
cross section 3-D beams.

2.3 FFR Based Modal Coordinates

Using the modal analysis techniques; a reduced set of eigen-
vectors of the free vibration discrete equations of motion
as flexible modal coordinates. The reduction is achieved by
eliminating the high frequency modes, which carry little en-
ergy. Modal reduction offers an efficient way to reduce the
number of elastic degrees of freedom, i.e, nf, with the mini-
mum deterioration in accuracy. The vector qif can be written
in terms of the reduced vector of modal coordinates pif as:

qif
nf×1
= Bimf
nf×nm

pif
nm×1

(14)

where Bmf is a non-square modal transformation matrix,
whose columns define the modes of deformation, where nf
is the number of elastic degrees of freedom, nm is the num-
ber of modal coordinates. Using the preceding equations, a
significant reduction in the problem dimensionality can be
achieved. In this case, the following transformation must be
carried out:

Mi
pp = BiTmf Mi

ff Bimf

Mi
Rp =Mi

Rf Bimf

Mi
θp =Mi

θ fB
i
mf

 (15)
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Figure 3. Interconnected bodies of wind turbine.

also,

Ki
pp = BiTmf Ki

ff Bimf

Q
p
v = BiTmf Q

f
v

Q
p
ex = BiTmf Q

f
ex

 (16)

The constraint Jacobian matrix with respect to the new set of
coordinates can be expressed by using the following relation:

Cip =
∂Ci

∂pi
= Ciq Bim (17)

where pi =
[
qiTr piTf

]T
=
[

RiT θ iT piTf

]T is the re-
duced generalized coordinates vector interms of the modal
coordinates pif , The transformation matrix Bim can be written
as:

Bim =
[

I 0
0 Bimf

]
(18)

The modal transformation matrix Bimf can be normalized
with respect to the mass matrix or with respect to the stiffness
matrix (Nada et al., 2010). In this paper, the modal transfor-
mation is normalized with respect to the mass matrix such
that:

Mi
pp

nm×nm

= I

Ki
pp

nm×nm

=


ω2

1 0 · · · 0
0 ω2

2 0
...

. . .
...

0 0 ω2
nm




(19)

By using the coordinates reduction, the equations of motion,
Eq. (1) can be modified into the following form[

Mp CpT

Cp 0

][
p̈
λ

]
=

[
Q
p
v +Q

p

k +Q
p
e

Q
p

d

]
(20)

The next section presents the multibody model of wind
turbine with tower dynamics. Once the modal transforma-
tion matrix of the tower is obtained, the body model can be
integrated to the rotor-blade system constructed in Nada and
Al-Shahrani (2017). The Nacelle is rigidly attached at the top
of the tower, which can be approximated as 3-D beam with
circular cross section, and the kinematic constraints function
is expressed as shown in Korkealaakso et al. (2009).

3 Multibody mixed coordinates model

The complete model of wind turbine consist of flexible
tower (1), rigid nacelle (2), rigid rotor (3), and a number
of flexible blades (b1→ bn), see Fig. 3. The flexibility of
the tower (with circular cross section) can be considered
small, and therefore, linear terms of strain can be utilized,
and consequently, modal coordinates is recommended for
implementation. The nacelle and the rotor can be consid-
ered rigid enough such that the selected modes are nil, i.e.,
pif = [ ], i = 2,3. The nacelle can be considered as 3-D beam
with rectangular cross section while the rotor can be consid-
ered as 3-D beam with circular cross section. The rotating
blades can be modeled as a number of 3-D beams utilizing
the corresponding number of elastic coordinates. It should be
mentioned that, the term of geometric stiffness is included
into the blade’s models to avoid wrong simulation results,
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Figure 4. Frequency response function of the tower.

if the rotational speed is approached from the first natural
frequency of the blade (Nada and Al-Shahrani, 2017). The
use of nodal models facilitates mathematical integration and
helps solve numerical stiffness problems results from modal
transformation. Therefore, the elastic nodal coordinates are
used for describing the dynamics of the rotating blades. Thus,
the generalized coordinates vector, in this case, consists of a
mixed set of coordinates, i.e.,

ψ =

[
p(1)T

(7+nm)×1
q

(2)T
r

(7)×1
q

(3)T
r

(7)×1
q(b1)T

(7+nf)×1
· · · q(bn)T

(7+nf)×1

]T

,

such that pi =
[

RiT θ iT piTf

]T, qir =
[

RiT θ iT
]T, and

qi =
[

RiT θ iT qiTf

]T, where θ is the Euler parameters of
the body, pf is the modal coordinates, and qf is the elastic
nodal coordinates. Note that nm is the number of selected
modes, nf is the number of elastic coordinates for each blade,
and bn is the number of rotating blades.

As shown in Fig. 3, the tower is fixed to the ground via
rigid joint, the body frame is transformed from the global
frame such that the x-axis orients to the axial direction. The
free end of the tower is connected to the nacelle through rigid
joint, which is connected in the rotor via revolute joint. In the
case of three rotating blades, other three rigid joints are im-
plemented to connect these blades with the rotor body. These
joints introduce the constraints function C (ψ) that relates the
relative motion between the interconnected bodies. The Jaco-
bian of the constraints Cψ = ∂C(ψ)

∂ψ
can be assemblies diago-

nally, and the force vectors can be staked vertically for each
body respectively. The equations of motion of the complete
small-size wind turbine model can be assembled as expressed
in Eq. (21), where nrm = 7+ nm, nrf = 7+ nf.

Equation (21) can be solved for the mixed generalized co-
ordinates vector ψ̈ as well as the vector of Lagrange multi-
pliers λ. The direct integration of ψ̈ can be carried out given
proper initial conditions. The gyroscopic motion of the ro-
tor, i.e., body (3), can be examined by estimating the rotation
about the local axis Y3 and/or Z3. The angular velocities ω(3)

with respect to the local frame (XYZ)3 can be obtained using
the time rate of Euler parameters as ω(3)

=G(3)
θ̇ (3), where

Table 1. Eigen-Frequencies of tower body.

ne 1 2 3 4 Exp.

ω1 3.047∗ 3.034∗ 3.033∗ 3.033∗ 3.167
ω2 30.02∗ 19.16∗ 19.07∗ 19.03∗ 18.726
ω3 996.14 64.83∗ 53.883∗ 53.632∗ 54.261
ω4 1408.8 188.12∗ 121.3∗ 105.8∗

ω5 926.76 228.3∗ 196.7∗

ω6 1310.6 454.9∗ 315.9∗

ω7 3237.5 913.7 500.7∗

ω8 4578.6 1292.2 820.9∗

ω9 2988.4 909.2
ω10 4226.3 1285.8

...
...

∗ Duplication of some frequencies.

G(3)
is the transformation matrix depends on θ (3) (Shabana,

2013). Furthermore, the equations of motion can be used to
examine the sensitivity of rotor speed against slight gyro-
scopic torques. The generalized forces can be then estimated
as Q(3)

θ =G(3)T
T

(3)
, where T

(3)
is the torque vector defined

in the rotor’s frame.

4 Numerical and experimental study

The wind turbine prototype is constructed using copper rod
of 6 mm diameter, as a flexible tower of 500 mm long. The
rotor diameter is 300 mm, i.e., the blade length is 150 mm
long, with 27 mm width and 2 mm thickness. Three blades of
aluminum are utilized in the prototype of this study. In order
to select the proper number of modes, the frequency iden-
tification test, based on the Frequency Response Function
(FRF), has been carried out. The obtained results are com-
pared with the estimated frequencies based on the mass and
stiffness matrices of circular 3-D beam element. As shown
in Fig. 4 and Table 1, it can be concluded that the selection
of three elements for modeling the tower is sufficient to ob-
tain results that are close to the experimental values. Thus,
tower is modeled using three beam elements of circular cross
section. Note that the first node is constrained, i.e., fixed-free
boundary condition, and therefore n(1)

f = 18. The lowest nat-
ural frequencies of the tower are 3.03, 19.07 and 53.88 Hz,
the first three mode shapes are shown in Fig. 5. In Table 1, the
asterisk indicates the duplication of some frequencies. This
is due to the similarity nature of the beam geometry in (y−z)
and (x− z) plans. Consequently, the mode shape matrix B(1)

mf
of the tower can be estimated to reflect only the transverse
motion in the (Y0−Z0) plan, see Table 1.

The wind turbine prototype is fixed in the front of the wind
generator as shown in Fig. 6, and connected to tachogener-
ator to measure the output angular velocity. Data Acquisi-
tion NI PCI-6259 (16-Bit, 1 MS s−1) is used for collecting
the measured data. High sensitivity multi-axis accelerometer

Mech. Sci., 10, 35–46, 2019 www.mech-sci.net/10/35/2019/
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Figure 5. First three modes of tower in Y −Z plan.

www.mech-sci.net/10/35/2019/ Mech. Sci., 10, 35–46, 2019



42 A. Nada and A. Al-Shahrani: Mixed coordinates in modeling WTs

Figure 6. Test-rig: (1) wind turbine, (2) wind generator, (3) Pitot tube, (4) Data acquisition, (5) wind speed controller, (6) datalogging
display.

Figure 7. Transverse displacement of the Nacelle at β = 25◦.

is attached with the Nacelle, to measure the induced acceler-
ation, which can be integrated twice to obtain the displace-
ment, see Yin et al. (2012).

B(1)
mf

18×3
=



0 0 0
−0.6557 2.3582 2.968
−0.0542 0.0182 −0.1167

0 0 0
0.2961 −0.0546 −0.2606
−3.5826 7.0506 −6.6290

0 0 0
−2.1663 1.6930 −2.6173
−0.1790 0.0131 0.1029

0 0 0
0.4285 0.0916 −0.1990
−5.1845 −11.83 −5.0624

0 0 0
−3.9608 −3.997 3.9891
−0.3274 −0.0309 −0.1568

0 0 0
0.4506 0.148 1.2467
−5.4521 −19.129 31.7107



(22)

Figure 8. Comparison of rotor velocity at β = 25◦.

Figure 9. Comparison of rotor velocity at β = 15◦.

Figure 7 shows the comparison between the simulation of
transverse displacement R(2)

y of the nacelle and the exper-
imental data. The working parameters are as follow: twist
angle β = 25◦, wind speed v2 = 8 m s−1, three modes to de-
scribe the movement of the tower, and six 3-D beam element
to construct each blade model. The convergence between the
two curves indicates the validity of the selected modal coor-
dinates of the tower and the overall mathematical model of
the wind turbine system.
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Moreover, the comparisons between the output rotor ve-
locity of the FFR model and the experimental benchmark are
shown in Figs. 8 and 9. In these figures, one more curve is
added to the work resented in Nada and Al-Shahrani (2017),
in which the Nacelle is attached to the tower and the dynamic
of both of these two bodies are not included in the model ,i.e.
assumed fixed. Figures 8 and 9 show that the experimental
and computational results of the model including the tower
and Nacelle, coincide with each others to a large extent. It
is clear that the source of error mentioned in Nada and Al-
Shahrani (2017) was due to the effect of tilting angle of the
rotor. Ignoring the effect of this angle results in wrong esti-
mate of the angle of twist of blade as well as the drag force
along the rotor blades.

It is concluded that the comparison show a very good
agreement which encourage to utilize the wind-turbine
model based on the FFR formulation and by using the sug-
gested mixed coordinates model.

5 Conclusions

In this paper, an efficient procedure is developed based on
Floating Frame of Reference formulation (FFR) for model-
ing a complete system components of wind turbine. The dy-
namic of the tower, nacelle, rotor and blades are included
with different sets of coordinates. Modal coordinates are as-
signed for the tower body, Cartesian coordinates set are as-
signed for the nacelle and the rotor, and elastic nodal coordi-
nates sets are used for the rotating blades.

The paper describes an experimental test-rig of small size
wind turbine in front of wind velocity of 8 m s−1 and the
measured rotor velocities are collected and compared with
the FFR dynamic model. The experimental work show a very
good agreement of the mixed sets model. The results encour-
age to utilize the wind-turbine model based on the FFR for-
mulation and by using the suggested mixed coordinates for
design process, identification and health monitoring aspects.
Although the model has been drafted in general form, but it is
very important to verify each system under its operating con-
ditions. The authors look forward to applying the proposed
method in modeling other applications such as the vertical
and large-size wind turbines, helicopters and epicyclic gear-
boxes.

Data availability. No data sets were used in this article.
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Appendix A: Shape function matrix

A beam element of 12 degrees of freedom, assuming that the
element displacements in the x− y plan and x− z plan are
polynomials of third degree and all others are assumed to be
linear; the matrix [S]T can be expressed as:

1− ξ 0 0
6
(
ξ − ξ2)η 1− 3ξ2

+ 2ξ3 0
6
(
ξ − ξ2)ζ 0 1− 3ξ2

+ 2ξ3

0 − (1− ξ )`ζ (1− ξ )`η(
1− 4ξ + 3ξ2)`ζ 0

(
−ξ + 2ξ2

− ξ3)`(
−1+ 4ξ − 3ξ2)`η (

ξ − 2ξ2
+ ξ3)` 0

ξ 0 0
6
(
−ξ + ξ2)η 3ξ2

− 2ξ3 0
6
(
−ξ + ξ2)ζ 0 3ξ2

− 2ξ3

0 −`ξζ `ξη(
−2ξ + 3ξ2)`ζ 0

(
ξ2
− ξ3)`(

2ξ − 3ξ2)`η (
−ξ2
+ ξ3)` 0


such that the non-dimensional quantities, ξ,η,ζ are defined
as: ξ = x/L, η = y/L, ζ = z/L. where L is the length of the
element.
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