
Scientific Annals of Computer Science vol. 28 (2), 2018, pp. 199–236

doi: 10.7561/SACS.2018.2.199

Simultaneous Petri Net Synthesis

Eike Best1

Raymond Devillers2

Uli Schlachter1

Harro Wimmel1

Abstract

Petri net synthesis deals with the problem whether, given a labelled
transition system TS , one can find a Petri net N with an initial mark-
ingM0 such that the reachability graph of (N,M0) is isomorphic to TS .
This may be preceded by a pre-synthesis phase that will quickly reject
ill-formed transition systems (and give structural reasons for the failure)
and otherwise build data structures needed by the proper synthesis. The
last phase proceeds by solving systems of linear inequalities, and may
still fail but for less transparent reasons. In this paper, we consider an
extended problem. A finite set of transition systems {TS 1, . . . ,TSm}
shall be called simultaneously Petri net solvable if there is a single Petri
netN with several initial markings {M01, . . . ,M0m}, such that for every
i = 1, . . . ,m, the reachability graph of (N,M0i) is isomorphic to TS i.
The focus will be on choice-free nets, that is, nets without structural
choices, and we explore how previously published efficient algorithms
for the pre-synthesis and proper synthesis of bounded and choice-free
Petri nets can be generalised for the simultaneous pre-synthesis and
synthesis of such multi-marked nets. At the same time, the choice-free
pre-synthesis of a single transition system shall be strengthened by
introducing new structural checks.
Keywords: Choice-Freeness, Labelled Transition Systems, Petri Nets,
Synthesis.

1 Department of Computing Science, Carl von Ossietzky Universität Oldenburg, Ger-
many, Email: firstname.lastname@informatik.uni-oldenburg.de

2 Département d’Informatique, Université Libre de Bruxelles, Belgium, Email:
rdevil@ulb.ac.be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201402777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

200 E. Best, R. Devillers, U. Schlachter, H. Wimmel

1 Introduction

Being able to execute a single piece of hardware (or software) from two or
more different initial states is not an uncommon phenomenon. For example,
the world’s favourite operating systems are usually startable either in nor-
mal mode or in various shades of safe mode, and the resulting behaviours
may be rather different. For instance, a device driver may malfunction
in normal mode, while a replacement driver may still be operational in
downgraded mode.

In this paper, a related question will be considered in the context of Petri
net synthesis [1] where the task is to construct a system realising a single
given behavioural specification. In simultaneous system synthesis, the more
general task is to realise several possible given behaviours through different
initial configurations of a system. We shall assume m behaviours to be
specified by m finite labelled transition systems. The task is to find a single
unmarked choice-free net N , together with m initial markings M01,M0m,
such that the i ’th behaviour is realised by N , together with M0i. Choice-free
nets are a non-trivial class of weighted Petri nets allowing fully distributed
implementations and presenting interesting behavioural characteristics. The
existence of choice-free realisations is of importance in several fields of
application [12, 16].

The structure of this paper is as follows. The next section contains
basic definitions about transition systems and Petri nets. After introducing
central concepts about choice-free synthesis (Section 3), the pre-synthesis
previously developed for individual solvability [3] is extended and adapted to
the simultaneous case (Section 4). Two new checks are added with respect
to the ones detailed in previous papers, and the resulting algorithms are
specified in full, and analysed, in Section 5. In Section 6, techniques that
have been developed for individual choice-free synthesis [4, 17] are extended
to simultaneous choice-free synthesis. In Section 7, some concluding remarks
and future plans are evoked.

2 Labelled Transition Systems and Petri Nets

A labelled transition system with initial state, lts for short, is a quadruple
TS = (S, T,→, ı) describing an edge-labelled directed graph. The nodes of
this graph represent states s ∈ S; the arcs are triples → ⊆ (S × T × S),

Simultaneous Petri Net Synthesis 201

where (s, t, s′) ∈ → denotes an edge with label t ∈ T leading from state s to
state s′; and ı is the initial state. TS is finite if S and T (hence also →) are
finite sets.

A label t is enabled at a state s if a t-labelled edge leads out of s.
A state s′ is reachable from s by an occurrence of t, denoted by s[t〉s′, if
(s, t, s′) ∈ →. More generally, a state s′ is reachable from s by a sequence
σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path with label sequence σ
leading from s to s′. The set of states reachable from s is denoted by [s〉.
A sequence s[σ〉s′ is called a cycle, or more precisely a cycle at (or around)
state s, if s = s′.

For instance, the state set of TS 1 in Figure 1 is {ı1, r, s}, the label set
is {a, b, c, d}, the edge set is {(ı1, a, r), (r, b, r), (r, d, s), (s, b, s), (s, c, s)}, and
the initial state is ı1. State s is reachable from ı1 by the sequence ad (that
is, ı1[ad〉s), but also by ı1[abbdbcb〉s. Also, [r〉 = {r, s}.

TS 1:
ı1

r
sa d

b b

c

TS 2:
ı2 s′

d d

c

c

a
d c

b

p1

p2

p4p3

PNS 1:

a
d c

b

p1

p2

p4p3

PNS 2:

Figure 1: Two finite transition systems TS 1 and TS 2. PNS 1 and PNS 2

simultaneously solve TS 1 and TS 2 choice-freely, since the reachability graph
of PNS i is isomorphic to TS i (i = 1, 2) and the underlying Petri net is
choice-free (and the same in both systems).

A T -vector is a function Φ: T→N, and its support is supp(Φ) = {t ∈ T |
Φ(t) > 0}. It is prime if the greatest common divisor of its function values
is 1. Two T -vectors Φ1,Φ2 : T → N are label-disjoint (or simply disjoint
when there is no ambiguity) if their supports are disjoint.

These notions can be transferred to sequences σ ∈ T ∗ through their
Parikh vectors: the Parikh vector of a sequence σ ∈ T ∗, denoted P(σ), is
the T -vector counting, for each label t ∈ T , the number of occurrences of t
in σ. We extend the notation s[· · · 〉s′ to T -vectors and write s[Φ〉s′ if s[τ〉s′

202 E. Best, R. Devillers, U. Schlachter, H. Wimmel

for some τ ∈ T ∗ with P(τ) = Φ. The support of a sequence σ is the support
of P(σ), and two sequences σ1, σ2 ∈ T ∗ are label-disjoint if P(σ1) and P(σ2)
are label-disjoint, and Parikh-equivalent if they have the same Parikh vector,
i.e. if P(σ1) = P(σ2).

We use alphabetical ordering for T -vectors, hence also for Parikh vec-
tors. For example, in TS 1, the sequence ı1[abbdbcb〉s has the Parikh vector
P(abbdbcb) = (1, 4, 1, 1). The cycles r[bb〉r and s[bb〉s are Parikh-equivalent,
while r[bb〉r and s[bcb〉s are not.

T - vectors can be compared componentwise. Thus, for instance, with �
meaning “less than or equal in each component, but not entirely equal”, we
have (0, 0, 0, 0) � (0, 1, 0, 0) � (0, 2, 0, 0). And with 6≤ meaning “not less than
or equal”, (1, 2, 3, 4) 6≤ (4, 4, 4, 3). We define 	 and 6≥ analogously.

A cycle s[σ〉s is called empty if P(σ) is the null vector, i.e. σ = ε. A
non-empty cycle is called small if there is no non-empty cycle s′[σ′〉s′ with
P(σ′) � P(σ). For example, in TS 1, there are exactly three small cycles,
r[b〉r, s[b〉s, and s[c〉s (but infinitely many cycles). Note that they happen
to be either Parikh-equivalent or label-disjoint.

Two lts with the same label set TS =(S, T,→, ı) and TS ′=(S′, T,→′, ı′)
are isomorphic if there is a bijection ζ : S → S′ with ζ(ı) = ı′ and (s, t, s′) ∈ →
⇔ (ζ(s), t, ζ(s′)) ∈ →′, for all s, s′ ∈ S and t ∈ T .

A finite, unmarked Petri net will be denoted as N = (P, T, F) where P
is a finite set of places, T is a finite set of transitions, with P ∩ T = ∅,
and F is a flow function F : ((P × T) ∪ (T × P)) → N. A net N is choice-
free [5, 16] (not to be confused with free-choice [6]) if ∀p ∈ P : |p•| ≤ 1, where
p• = {t ∈ T | F (p, t)>0} is the set of output transitions of p.

A Petri net system PNS = (N,M0) is a Petri net N provided with an
initial marking M0, where a marking is a mapping M : P → N, indicating
the number of tokens in each place. A transition t ∈ T is enabled by a
marking M , denoted by M [t〉, if for all places p ∈ P , M(p) ≥ F (p, t). If t is
enabled at M , then t can occur (or fire) in M , leading to the marking M ′

defined by M ′(p) = M(p) − F (p, t) + F (t, p) (denoted by M [t〉M ′). From
this, one can define reachability (of a marking from some marking) etc.,
analogously as above. In particular, the set [M0〉 of markings reachable
from M0 is well-defined, and if it is finite, then the system is called bounded.
The reachability graph of a Petri net system PNS = (N,M0) is the labelled

Simultaneous Petri Net Synthesis 203

transition system with the set of vertices [M0〉, initial state M0 and arcs
{(M, t,M ′) |M,M ′ ∈ [M0〉 ∧M [t〉M ′}.

The incidence matrix C of a net N = (P, T, F) is the integer place-
transition matrix with components C(p, t) = F (t, p)− F (p, t), where p is a
place and t is a transition. An elementary property of Petri nets is the state
equation [14] which expresses that, if M [σ〉M ′, then M ′ = M + C · P(σ).
A semiflow of a net N is a T -vector Φ such that Φ 	 0 and C · Φ = 0. A
semiflow is minimal if there is no smaller one. From the state equation, it
follows immediately that if M [σ〉M ′ and P(σ) is a semiflow, then M = M ′.

For example, the net N shown in the middle of Figure 2 contains two
different semiflows, (1, 1, 0) and (1, 0, 1), with supports {a, b} and {a, c},
respectively (again considering transitions in alphabetical order).

TS 3: ı1 s
a

b

TS 4: ı2 q
a

c

PNS 3 = (N,M01):
a

b

c

p1 p2

pb

pc

PNS 4 = (N,M02):
a

b

c

p1 p2

pb

pc

PNS ′3:
a

b

PNS ′4:
a

c

Figure 2: Two finite transition systems TS 3 and TS 4 with initial states
ι1, ι2. The reachability graph of PNS i is isomorphic to TS i, thus PNS i
solves the corresponding TS i (i = 3, 4). As PNS 3 and PNS 4 differ only
in their initial markings and have the same underlying Petri net N , this
is also a simultaneous solution. Observe that the net N is not choice-free,
since place p2 has two different output transitions. TS 3 and TS 4 also have
individual choice-free solutions, depicted as PNS ′3 and PNS ′4. But they have
no simultaneous choice-free solution. We will prove this later.

Two Petri net systems N1 = (P1, T, F1,M
1
0) and N2 = (P2, T, F2,M

2
0)

with the same transition set T are isomorphic if there is a bijection ζ : P1 → P2

such that, ∀p1 ∈ P1, t ∈ T : M1
0 (p1) = M2

0 (ζ(p1)), F1(p1, t) = F2(ζ(p1), t)

204 E. Best, R. Devillers, U. Schlachter, H. Wimmel

and F1(t, p1) = F2(t, ζ(p1)). It is obvious that isomorphic Petri net systems
have isomorphic reachability graphs, so that if we have a Petri net solution
for some labelled transition system, any isomorphic Petri net system is also
a solution.

3 Necessary Conditions for Choice-Free Synthesis

Individual Petri net synthesis has first been considered in [10] and is described
in [1]. Its extension to simultaneous synthesis may be formalised as follows.

Definition 1 (Simultaneous) solvability of lts by PNS
Let TS 1, . . . ,TSm be m labelled transition systems with disjoint state sets
(but possibly overlapping label sets). They are called simultaneously Petri
net synthesisable (or solvable, for short) if there are a Petri net N and m
markings M01, . . . ,M0m such that, for 1 ≤ i ≤ m, the reachability graph of
the Petri net system (N,M0i) is isomorphic to TS i. If the same is true with a
choice-free net N , then TS 1, . . . ,TSm are called simultaneously choice-freely
solvable (cf-solvable, for short). 2

Thus, given TS 1, . . . ,TSm as an input, the choice-free synthesis problem
asks whether there are a choice-free Petri net N and m initial markings
M01, . . . ,M0m such that (N,M0i) cf-solves TS i for all 1 ≤ i ≤ m, and if so,
to construct them. If this is not possible, an interesting addition would be
to produce reasons for that failure, as simple and intuitive as possible.

For example, consider the two cyclic behaviours specified by means of
labelled transition systems TS 3 and TS 4 on the top row of Figure 2. They
can individually (and choice-freely) be solved by the Petri net systems PNS ′3
and PNS ′4 shown on the bottom of the figure, and simultaneously (but not
choice-freely) by the net systems PNS 3 and PNS 4 shown in the middle.

In solving a simultaneous choice-free synthesis problem, a two-phase
strategy will be adopted. An initial pre-synthesis check eliminates inputs
that cannot be synthesised for some structural reasons. If such an input
is detected, a reason (or a small set of reasons) for the failure can usually
be delineated, and the transition system designer may focus on mending
those deficiencies. After this step (pre-synthesis), a second step (synthesis) is
executed, but on a reduced set of inputs. This step may still detect some non-
synthesisable transition systems. However, the reasons for the unsuitability

Simultaneous Petri Net Synthesis 205

may now be more obscure. If no failure is detected in either stage, the input
is synthesisable, and one of the possible solutions – a net N together with m
initial markings – is returned by the synthesis step.

In the remainder of this paper, we shall describe, and analyse, an algo-
rithm solving the simultaneous choice-free synthesis problem. The following
theorem, whose proof can be found in [3, 4, 17], specifies a number of prop-
erties a single transition system must necessarily enjoy in order to have a
choice-free solution. It forms the basis of pre-synthesis.

Theorem 1 Necessary conditions for individual cf-solvability
The reachability graph of a bounded, choice-free Petri net system is finite,
totally reachable, forward and backward deterministic, and persistent. It
also satisfies the prime cycle property and the disjoint small cycles property.
Distances between states are well-defined, and the distance path property is
satisfied. 2

We shall now explain these properties (more details, examples and
counter-examples may be found in [3, 4]).

A labelled transition system TS = (S, T,→, ı) is totally reachable if
[ı〉 = S (i.e. every state is reachable from ı); (forward) deterministic if, for
all states s, s′, s′′ ∈ S and for all transitions t ∈ T , (s[t〉s′ ∧ s[t〉s′′) entails
s′ = s′′ (i.e. immediate successor states are uniquely determined by the
labels); backward deterministic if, for all states s, s′, s′′ ∈ S and transitions
t ∈ T , (s′[t〉s ∧ s′′[t〉s) entails s′ = s′′; and persistent [13] if for all states
s, s′, s′′ ∈ S, and labels t 6= u, if s[t〉s′ and s[u〉s′′, then there is some state
r ∈ S such that both s′[u〉r and s′′[t〉r (i.e. once two different labels are both
enabled, none can disable the other).

Total reachability and both versions of determinism are always satisfied
by Petri net reachability graphs. Persistence is always satisfied by choice-
free nets.

TS has the prime cycle property if every small cycle has a prime Parikh
vector, and the disjoint small cycles property if there exist an integer n ≤ |T |
and a finite set of mutually label-disjoint T -vectors Υ1, . . . ,Υn : T → N
such that

{P(β) | TS contains a state s and a small cycle s[β〉s } = {Υ1, . . . ,Υn }

The latter implies that the Parikh vectors of small cycles are either equal or
label-disjoint.

206 E. Best, R. Devillers, U. Schlachter, H. Wimmel

Assume that the disjoint small cycles property is satisfied with T -vectors
Υ1, . . . ,Υn. For a T -vector Φ: T → N, its modulo vector Φ mod {Υ1, . . . ,Υn}
is the smallest, non-negative vector Φ−

∑
i∈{1,...,n} ki ·Υi for k1, . . . , kn ∈ N.3

For Parikh vectors of paths between two given states, the modulo vector is an
invariant in any transition system that is finite, totally reachable, determin-
istic, persistent, and has the disjoint small cycles property [3]. This justifies
the following definition. Let r, s ∈ S, and let r[α〉s be a path of TS . Then
∆r,s = P(α) mod {Υ1, . . . ,Υn} is called the distance from r to s. For the
sake of brevity, let ∆s denote ∆ı,s. TS satisfies the distance path property
if, between any pair of states r, s ∈ S with s ∈ [r〉, there is a distance path,
i.e. a path r[σ〉s satisfying P(σ) = ∆r,s. For instance, in TS 1 (Figure 1), we
have ∆s = ∆ı,s = (1, 0, 0, 1), with a distance path ι[ad〉s.

Figures 3 and 4 illustrate the necessity of some of the constraints in
Theorem 1.

TS 5:

ı s
a
b

b
a

TS 6:

ı

b

b
cc

a

a

PNS 6:

c a

b

2 2

2

2 2

2

Figure 3: The transition system shown on the left-hand side is deterministic
and persistent but does not satisfy the prime cycle property, nor the disjoint
small cycles property. It has no Petri net realisation. The transition system
shown in the middle satisfies the disjoint small cycles property but not
the prime cycle property. It has a Petri net realisation, PNS 6, but not a
choice-free one.

The pre-synthesis algorithms described in [4, 17] check the properties
listed in Theorem 1 in some clever and efficient way – more precisely, in
time O(|S| · |T |2) – and create, individually for every TSi, data structures
containing all distances from the initial state as well as the Parikh vectors
of all small cycles. Hence we can assume from now on that all transition

3The idea is to subtract from Φ the vectors Υi as often as possible, without getting
negative entries.

Simultaneous Petri Net Synthesis 207

TS 7:

ı

s1

s2

s3

s4

s5

s6

s
b

d

d

b

a

a

a

d
e

d
e

b

c

b

c
a

c b

e d

Figure 4: TS 7 is not choice-freely Petri net solvable while it is deterministic,
persistent, and satisfies both the prime cycle and the disjoint small cycles
properties. There are two Parikh vectors of small cycles, P(bc) = (0, 1, 1, 0, 0)
and P(de) = (0, 0, 0, 1, 1). For instance, ∆ι,s = (1, 0, 0, 0, 0) (as can be
evaluated either by subtracting the cyclic T -vector P(bc) from the Parikh
vector P(bac) = (1, 1, 1, 0, 0) of the path ι[bac〉s, or by subtracting the
cyclic T -vector P(de) from the Parikh vector P(dae) = (1, 0, 0, 1, 1) of the
path ι[dae〉s). The distance path property is not satisfied, since there is
no path from ι to s having Parikh vector (1, 0, 0, 0, 0). Right-hand side:
A non-choice-free solution of TS 7.

systems satisfy these basic properties, and that such data structures are
available.

In the analysis of deterministic and persistent transition systems, a
precious tool is the notion of a residue and the associated theorem by Keller
that we shall detail now. Let τ, σ ∈ T ∗ be two sequences over T . The (left)
residue of τ with respect to σ, denoted by τ −• σ, arises from cancelling
successively in τ the leftmost occurrences of all symbols from σ, read from
left to right. Inductively: τ −• ε = τ ; τ −• t = τ if t /∈ supp(τ); τ −• t is
the sequence obtained by erasing the leftmost t in τ if t ∈ supp(τ); and
τ−• (tσ) = (τ−• t)−• σ. Said differently, τ−• σ is τ with, for each t ∈ T , the first
min(P(τ)(t),P(σ)(t)) occurrences of t dropped. This may be extended to
T -vectors as follows. Let σ ∈ T ∗ and Φ ∈ NT : σ−• Φ is the sequence obtained
from σ by cancelling the min(P(τ)(t),Φ(t)) leftmost occurrences of t for each
t ∈ T . Let Φ,Ψ ∈ NT : Ψ −• Φ is the T -vector such that, for each t ∈ T ,
(Ψ−• Φ)(t) = max(Ψ(t)− Φ(t), 0) = Ψ(t)−min(Ψ(t),Φ(t)). The consistency
between these various forms of residues arises from the observations that
τ−• σ = τ−• P(σ) and P(τ−• P(σ)) = P(τ)−• P(σ). Other interesting properties

208 E. Best, R. Devillers, U. Schlachter, H. Wimmel

about residues are that (σ−• σ1)−• σ2 = σ−• (P(σ1) +P(σ2)) = (σ−• σ2)−• σ1

and σσ′ −• σ = σ′.

Theorem 2 Keller [11]
Let (S, T,→, ı) be a deterministic and persistent lts. Let τ and σ be two
label sequences enabled at some state s. Then τ(σ −• τ) and σ(τ −• σ) are
also enabled at s. Furthermore, the state reached after τ(σ −• τ) and the
state reached after σ(τ −• σ) are the same. In terms of T -vectors, s[Θ〉 ∧ s[Φ〉
implies s[Θ + (Φ−• Θ)〉s′ as well as s[Φ + (Θ−• Φ)〉s′, for some s′ ∈ S.

Consider the sequences ı[bad〉s4 and ı[dae〉s of Fig. 4 as an example.
We get bad−• dae = b and dae−• bad = e, and the theorem guarantees that
ı[bad(dae−• bad)〉s5 and ı[dae(bad−• dae)〉s5 lead to the same state s5.

4 Individual and Simultaneous Pre-Synthesis

In this section, we augment the set of necessary individual conditions given
in Theorem 1 by ones that apply to individual cf-synthesis, but also to
simultaneous cf-synthesis. To start with, the next theorem establishes a new,
rather general property of choice-free net systems. This property generalises
Lemma 16 in [16], but we give an independent proof.

Theorem 3 Reduced sequences
In a choice-free net N , assume that M [σ〉 and that Φ is a semiflow. Then
M [σ −• Φ〉.

Proof: Let us proceed by induction on the length of σ.

If P(σ) ≤ Φ, σ −• Φ = ε and the property is trivial.

Otherwise, let σ = σ1tσ2 with P(σ1)(t) = Φ(t) and P(σ1)(t′) < Φ(t′)
for each t′ ∈ T \ {t}, i.e. t is the first “excessive” transition with respect to Φ,
hence also the first transition in σ −• Φ.

If M [σ1〉M ′ and C is the incidence matrix of the net N , from the
fundamental state equation we have M ′ = M + C · P(σ1), hence also M ′ =
M + C · (P(σ1)− Φ) since Φ is a semiflow. Since P(σ1)(t) = Φ(t), for any
place p with t ∈ p• we thus have M(p) = M ′(p) +

∑
u6=tC(p, u) · (Φ(u) −

P(σ1)(u)) ≥ M ′(p), since P(σ1) ≤ Φ and, by choice-freeness, t is the only

Simultaneous Petri Net Synthesis 209

transition able to decrease the marking of p. As a consequence, since M ′[t〉,
we also have M [t〉, i.e. the first “excessive” t may be pushed to the left. By
persistence (Keller’s theorem), we then have M [t(σ1tσ2 −• t)〉, which can be
rewritten into M [t((σ1t)−• t)σ2〉.

Let σ′1 = (σ1t) −• t. We thus have M [tσ′1σ2〉. Since σ′1σ2 is shorter
(by one transition) than σ, we may use the induction hypothesis (from
the marking reached after M [t〉): M [t((σ′1σ2) −• Φ)〉. Now, (σ′1σ2) −• Φ =
σ2 −• (Φ − P(σ′1)) = σ2 −• (Φ − P(σ1)) since P(σ′1) = P(σ1) ≤ Φ, and
σ−• Φ = (σ1tσ2)−• Φ = t(σ2 −• (Φ−P(σ1)) since Φ(t) = P(σ1)(t). The claim
results. 2

In the following we shall derive several interesting special cases of this
general property.

Φ may be derived from the examination of cycles in some reachability
graph(s) of N . Hence, in the context of an individual or simultaneous choice-
free synthesis, assuming there is a solution, it may be obtained from the
analysis of cycles in the given labelled transition system(s).

We shall first exploit Theorem 3 in order to establish a close corre-
spondence between small cycles and minimal semiflows. This is important,
since the former are behavioural objects, but the latter are of a structural
nature (i.e. independent of any initial markings and applying only to the
underlying net).

Corollary 1 Minimal semiflows
In the reachability graph of a choice-free net system, the Parikh vector of a
small cycle is a minimal semiflow.

Proof: The Parikh vector of any non-empty cycle M [σ〉M is a semiflow.
Hence, if it is a minimal semiflow, there is no small cycle with a lower Parikh
vector and we have a small cycle. Conversely, if it is not a minimal semiflow,
we have Φ � P(σ) for some semiflow Φ and, from Theorem 3 and Keller’s
theorem, M [σ −• Φ〉M ′[σ −• (σ −• Φ)〉M with P(σ −• (σ −• Φ)) = Φ, so that
M ′ = M and σ cannot be a small cycle. 2

The property that the Parikh vectors of small cycles are also minimal
semiflows depends intimately on choice-freeness. This is illustrated by Fig-
ures 3 and 5. In Figure 3, TS 6 shows that Corollary 1 is wrong if the premise
of choice-freeness is omitted, since (2, 2, 2) is not a minimal semiflow in PNS 6

210 E. Best, R. Devillers, U. Schlachter, H. Wimmel

TS 8:

ı s1

s2s3

a

b

c

d

d

a

b

cp1

p2

p3

p4

PNS 8:

Figure 5: A net system, PNS 8, with a small cycle abcd in its reachability
graph (l.h.s.) that does not represent a minimal semiflow. Minimal semiflows
are (1, 0, 1, 0) and (0, 1, 0, 1). The prime cycle property is satisfied.

(instead, (1, 1, 1) is). Figure 5 demonstrates that even if the prime cycle
property holds true, Corollary 1 is wrong unless choice-freeness is assumed.

If Φ = Φ1 + Φ2, where Φ1 and Φ2 are semiflows of N , we may observe
that σ −• Φ = (σ −• Φ1)−• Φ2. Hence, in the applications of Theorem 3, we
may restrict our attention to minimal semiflows, hence to small cycles from
Corollary 1.

The property expressed in Theorem 3 yields a necessary condition
of cf-solvability: if we may find a configuration s[σ〉 while ¬s[σ −• Φ〉 for
some state s, sequence σ and wanted semiflow Φ in a given transition
system, we may deduce that the (simultaneous) choice-free synthesis is
impossible. It may thus be useful to check those properties as a part of
the pre-synthesis phase. However, unless we consider an acyclic transition
system, this involves checking arbitrarily long sequences from all states s,
which is highly impractical. We now develop a range of more practical and
feasible checks which, taken together, will eventually imply it (see Theorem 4;
note also that the remark on minimal semiflows and Corollary 1 already
reduce the set of semiflows to consider).

First, we show that it is not necessary to consider every state s; the
initial one suffices.

Proposition 1 Reduced sequences from the initial state
In a finite, deterministic and persistent transition systemTS =(S, T,→, ı),
if, for some sequence τ ∈ T ∗, ∀σ ∈ T ∗ : ı[σ〉 ⇒ ı[σ −• τ〉, then also for each
reachable state s we have ∀σ ∈ T ∗ : s[σ〉 ⇒ s[σ −• τ〉.

Simultaneous Petri Net Synthesis 211

Proof: Let us assume that σ = σ1σ2, with ı[σ1〉s[σ2〉. From the hypothesis,
ı[σ1σ2 −• τ〉. Then, from Keller’s theorem, ı[σ1〉s[(σ1σ2 −• τ) −• σ1〉. But
from the properties mentioned for residues in Section 2, (σ1σ2 −• τ)−• σ1 =
(σ1σ2) −• (P(τ) + P(σ1)) = (σ1σ2 −• σ1) −• τ = σ2 −• τ . Hence s[σ2 −• τ〉 for
any sequence σ2 enabled at s, as claimed. 2

Since we intend to check semiflows, we shall thus introduce the following
definition:

Definition 2 Reduced sequences with respect to a T -vector
Let TS = (S, T,→, ı) be any lts and Φ be any T -vector. We shall say
that TS satisfies the property of reduced sequences with respect to Φ if
∀σ ∈ T ∗ : ı[σ〉 ⇒ ı[σ −• Φ〉. 2

Thus, if an lts is cf-solvable, it must satisfy the reduced sequences prop-
erty with respect to any semiflow of the underlying net, and in particular,
with respect to any semiflow derived from any small cycle anywhere in the
set of given transition systems if the considered lts is part of a simultane-
ous synthesis problem. However, all enabled sequences from ı need to be
considered, and this is still impractical. We turn to distance paths.

From the definition of distances, we know that, in the reachability graph
of a bounded choice-free system, for any reachable marking M and any
Parikh vector Υ of a small cycle we have ∆M 6≥ Υ; moreover, from the
distance path property, there is a path M0[σ〉M such that P(σ) = ∆M . The
following result allows to simplify the corresponding checks, by avoiding the
explicit computation of the modulo operations and by only considering a
single short path to each state (i.e., a path from the initial state to another
state such that there is no shorter one to that state) of the kind produced by
the computation of a breadth-first spanning tree.

Lemma 1 Short paths and distance paths
Let TS = (S, T,→, ı) be a finite, totally reachable, deterministic and persistent
lts satisfying the disjoint small cycle property for the set {Υ1, . . . ,Υn}. If, for
some state s ∈ S, there is a path ı[σ〉s such that, ∀i ∈ {1, . . . , n}, P(σ) 6≥ Υi,
then ı[σ〉s is a short path, all the short paths to s have the same Parikh vector
and are distance paths. It also results that distance paths are short paths.

212 E. Best, R. Devillers, U. Schlachter, H. Wimmel

Proof: We know that ∆s = P(σ) mod {Υ1, . . . ,Υn}, so that if P(σ) 6≥ Υi

for all i’s, then P(σ) = ∆s and ı[σ〉s is a distance path. It is also a short path
since for any path ı[σ′〉s, we know that P(σ) = ∆s = P(σ′) mod {Υ1, . . . ,Υn}
≤ P(σ′). This also implies that if ı[σ′〉s is a short path, P(σ) = P(σ′). 2

Distance paths are thus characterised by the property that their Parikh
vectors are not greater or equal to the Parikh vectors of the small cycles, but
their shortness also respects any other (minimal) semiflow:

Corollary 2 Constraint on distances
If Φ is a semiflow of a bounded choice-free net system, in its reachability
graph we have that ∀M ∈ [M0〉: ∆M 6≥ Φ.

Proof: LetM0[σ〉M be a distance path. Theorem 3 shows thatM0[σ−• Φ〉M ′
for some M ′, and from Keller’s theorem, if ∆M = P(σ) ≥ Φ, we have
M0[σ −• Φ〉M ′[σ′〉M with P(σ′) = Φ. Since Φ is a semiflow, M ′ = M , and
since σ −• Φ is smaller than σ, M0[σ −• Φ〉M is also a distance path to M ,
smaller than σ, a contradiction. 2

We shall introduce a corresponding property to be checked during pre-
synthesis:

Definition 3 Short distances with respect to a T -vector
Let TS = (S, T,→, ı) be an lts with a distance notion ∆ and let Φ be a
T -vector. TS will be said to satisfy the short distance property with respect
to Φ if ∀s ∈ S : ∆s 6≥ Φ. 2

Corollary 3 Reduced distances
For each reachable marking M and each semiflow Φ of a choice-free net
system, there is a reachable marking M ′ such that ∆M ′ = ∆M −• Φ.

Proof: This arises from the fact that, from the distance path property,
for each reachable marking M there is a path σ such that M0[σ〉M and
P(σ) = ∆M . Then, from Theorem 3, there is a marking M ′ such that
M0[σ −• Φ〉M ′. Moreover, distance paths are characterised by the fact that
for any small cycle M̃ [τ〉M̃ the Parikh vector of the path is not greater or
equal to P(τ). Hence, since P(σ −• Φ) ≤ P(σ), σ −• Φ is also a distance path
and ∆M −• Φ = P(σ −• Φ) = ∆M ′ . 2

Simultaneous Petri Net Synthesis 213

Corollary 3 is illustrated by Figure 6. In TS 9, we have ı[abb〉 and a small
cycle s[abc〉s (with P(abc) being a semiflow if this lts is solvable), but not ı[b〉
(which is what ı[abb−• abc〉 evaluates to). Hence Corollary 3 (or, a fortiori,
Theorem 3) prohibits any choice-free synthesis of TS 9. By contrast, TS 10

allows the choice-free solution PNS 10.

TS 9:

ı
s

a b b a
b

c

TS 10:

ı
a

b

b

a

b a
b

c

a

b

c
2

32PNS 10:

Figure 6: Illustration of the reduced distance property. TS 9 does not satisfy
the reduced distance property with respect to P(abc), but TS 10 does.

Definition 4 Reduced distances with respect to a T -vector
Let TS = (S, T,→, ı) be any finite, deterministic, persistent lts with disjoint
small cycles (so that distances are well defined) and Φ be any T -vector. We
shall say that TS satisfies the property of reduced distances with respect to Φ
if ∀s ∈ S, ∃s′ ∈ S : ∆s′ = ∆s −• Φ. 2

Thus, from Corollary 3, if a finite lts is cf-solvable, it must satisfy the
reduced distances property with respect to any semiflow. By only considering
Parikh vectors of distance paths, we get a finite number of checks to be
performed on the given finite lts during a cf-pre-synthesis. This does not
deliver the full power of Theorem 3 however, but the next property will fill
the gap.

In a deterministic and persistent lts, cycles may be pushed forward
Parikh-equivalently [2]: if s[τ〉s[σ〉s′, then s′[τ ′〉s′ for some τ ′ with P(τ ′) =
P(τ). We shall now see that, if it is solvable by a cf-system, they may also
be pushed backward, up to some extent.

214 E. Best, R. Devillers, U. Schlachter, H. Wimmel

Proposition 2 Backward pushing of cycles
In a choice-free net system, if M0[σ〉M [τ〉M and Φ is a semiflow disjoint
from τ , then there is some M ′ such that M0[σ −• Φ〉M ′[τ〉M ′.

Proof: By Theorem 3, M0[(στ) −• Φ〉M ′, but since τ is disjoint from Φ,
(στ) −• Φ = (σ −• Φ)τ . As a consequence, since P(τ) is a semiflow,
M0[σ −• Φ〉M ′[τ〉M ′. 2

This leads to another property to be checked during pre-synthesis:

Definition 5 Earliest cycles with respect to a T -vector
Let TS = (S, T,→, ı) be any finite, deterministic, persistent lts with disjoint
small cycles (so that distances are well defined) and Φ be any T -vector. We
shall say that TS satisfies the property of earliest cycles with respect to Φ
if ∀s ∈ S with s[τ〉s for some τ disjoint from Φ, ∃s′ ∈ S with ∆s′ = ∆s −• Φ
and s′[τ〉s′. 2

In particular, Φ may be the Parikh vector of a small cycle. This is
illustrated by Figure 7.

TS 11:

ı
s1 s2 s3

c a a

b

d d TS 12:

ı
c a a

b

d dd

c a

d b

2

2
PNS 12

Figure 7: Illustration of the earliest cycle property. TS 11 satisfies the distance
path and the reduced distance properties, but not the earliest cycles property
since there is a cycle ba at s3, a cycle d at s2 and ∆s2 = (1, 0, 1, 0), so that
there should be a cycle d at distance ∆s2 −• P(ba) = (0, 0, 1, 0), i.e. at s1.
Hence TS 11 has no choice-free solution. This is corrected in TS 12, which has
the choice-free solution PNS 12.

We also consider a slightly weaker version of the early cycle property:

Simultaneous Petri Net Synthesis 215

Definition 6 Earliest Parikh cycles with respect to a T -vector
Let TS = (S, T,→, ı) be any finite, deterministic, persistent lts with disjoint
small cycles (so that distances are well defined) and Φ be any T -vector. We
shall say that TS satisfies the property of earliest Parikh cycles with respect
to Φ if ∀s ∈ S with s[τ〉s for some τ disjoint from Φ, ∃s′ ∈ S with ∆s′ =
∆s −• Φ and s′[τ ′〉s′ with P(τ ′) = P(τ). 2

TS 13:
ı1 s

s′

c

c

a b a b

ba

TS 14:

ı2
c d

TS 15:
ı3 s

s′

c

c

c

a b a b

baba

a

b

c

d

Figure 8: Illustration of the difference between the earliest cycles property
and the earliest Parikh cycles property.

The difference between the earliest cycles and earliest Parikh cycles
constraints is illustrated in Figure 8. The earliest cycles property is not
satisfied by the pair TS 13 and TS 14. Indeed, the cycle ba is missing at ı1 since
there is the cycle s[ba〉s at s and subtracting the cyclic Parikh vector P(cd)
arising at ı2 from the path ι1[c〉s we should have the cycle ı1[ba〉ı1. Hence the
simultaneous cf-synthesis of TS 13 and TS 14 necessarily fails. By contrast, the
earliest Parikh cycles property is satisfied by that pair since we have cycles
with Parikh vector P(ab) at each state of TS 13. However, we may also derive
the non-simultaneous cf-synthesisability of TS 13 and TS 14 from the reduced
distance property for the Parikh vector P(cd), since, in TS 13, ∆s′ = P(cb)
implies the existence of a state s′′ such that ∆s′′ = P(cb) −• P(cd) = P(b),
but this is not the case. This is not an accident, as will be showed by
Theorem 4 next: when combined with other properties, the earliest Parikh
cycles property implies the reduced sequence property, hence in turn the
earliest cycles property, so that the earliest Parikh cycles property is equivalent
to the earliest cycles property in presence of these other properties. The

216 E. Best, R. Devillers, U. Schlachter, H. Wimmel

missing cycle is added in TS 15 whose simultaneous cf-synthesis with TS 14

yields the solution depicted on the bottom of the figure: the black tokens
correspond to TS 15, the hollow ones to TS 14.

All checks derived so far can be joined together in the next theorem,4

forming the blueprint for a practical algorithm as described in Section 5.

Theorem 4 Everything can be checked with finitely many checks
Let TS = (S, T,→, ı) be a finite, deterministic and persistent labelled transi-
tion system with prime disjoint small cycles (hence with a distance notion; we
shall denote by G the set of their Parikh vectors) and satisfying the distance
path property. Also, let Φ be a prime T -vector satisfying

1. ∀Υ ∈ G : either Φ = Υ or Φ is disjoint from Υ (disjointness property);

2. for any state s, ∆s 6≥ Φ (short distance property);

3. for any state s, we have ı[∆s −• Φ〉 (reduced distance property);

4. for any state s and Parikh cycle Υ ∈ G disjoint from Φ, we have
s[Υ〉 ⇒ ı[∆s −• Φ〉s̃[Υ〉s̃ for some state s̃ ∈ S (earliest Parikh cycles
property).

Then, for any firing sequence ı[σ〉, also ı[σ −• Φ〉 (reduced sequence property;
more precisely, Proposition 1).

Proof: Let us proceed by induction on the length of the path ı[σ〉s (the
base case σ = ε is trivial since then σ −• Φ = ε and the empty sequence can
be realised everywhere). Hence we assume σ = σ′a, ı[σ′〉s′ and ı[σ′ −• Φ〉: we
want to show that ı[σ −• Φ〉.

If σ −• Φ = σ′ −• Φ, i.e. if P(σ′)(a) < Φ(a), we trivially have ı[σ −• Φ〉 as
requested.

Otherwise, P(σ′)(a) ≥ Φ(a) and σ−• Φ = (σ′−• Φ)a. If we can show that
ı[P(σ−• Φ)〉, by Keller’s theorem we also have ı[σ′−• Φ〉[(σ−• Φ)−• (σ′−• Φ)〉 =
ı[σ′ −• Φ〉[P(a)〉 = ı[σ′ −• Φ〉[a〉 = ı[σ −• Φ〉 and we are done.

In general, since the small cycles are disjoint and we have the distance
path property by assumption, we have P(σ) = ∆s +

∑
Υ∈G kΥ ·Υ, for some

integer coefficients kΥ ∈ N, ı[∆s〉s and, with G′ = {Υ ∈ G | kΥ > 0}, for each
4Whose premises can be assumed after successful pre-synthesis according to Theorem 1.

Simultaneous Petri Net Synthesis 217

Υ ∈ G′, s[Υ〉s (see Theorem 22 in [3]). We shall now consider two subcases
based on the fact that, from the disjointness property hypothesis (point 1
above), either Φ = Υ for some Υ ∈ G′ or Φ is disjoint from each Υ ∈ G′.

If Φ = Υ for some Υ ∈ G′, P(σ−• Φ) = ∆s+(kΦ−1)·Φ+
∑

Υ∈G′\{Φ} kΥ ·Υ.
Since ı[∆s〉s[Φ(kΦ−1)〉s . . . s[ΥkΥ〉s . . ., we may apply the argument above to
deduce ı[σ −• Φ〉.

If Φ is disjoint from each Υ ∈ G′, P(σ −• Φ) = (∆s −• Φ) +
∑

Υ∈G′ kΥ ·Υ.
From point 3 above we have ı[∆s −• Φ〉s̃ for some s̃ ∈ S, and from point 4 we
have s̃[Υ〉s̃ for each Υ ∈ G′. Hence ı[σ −• Φ〉, as requested. 2

In Theorem 4, we assume that Φ is either one of the members of G or
disjoint from them. Hence it may be any member of G. Our next aim is
to show that this extends to any small cycle in a set of transition systems,
provided they are simultaneously cf-solvable.

Lemma 2 Increasing residues
In a choice-free net with incidence matrix C, if Φ1 and Φ2 are two different
minimal semiflows with a non-empty intersection, then C · (Φ1 −• Φ2) 	 0
(and, similarly, C · (Φ2 −• Φ1) 	 0).

Proof: Let us choose an initial marking M0 high enough in order to have
M0[σ1〉M0 and M0[σ2〉M0 with P(σ1) = Φ1 and P(σ2) = Φ2. They are
small cycles around M0 (see Corollary 1) and σ1 6= σ1 −• σ2 6= ε as well
as σ2 6= σ2 −• σ1 6= ε (σ1 6= σ1 −• σ2 since they have a common transition
in their supports and σ1 −• σ2 6= ε otherwise σ1 is smaller than σ2 while
their Parikh vectors are different minimal semiflows of N ; and similarly for
σ2 −• σ1). Since the reachability graph is deterministic and persistent, by
Keller’s theorem there is a marking M1 such that M0[σ2〉M0[σ1−• σ2〉M1 and
M0[σ1〉M0[σ2 −• σ1〉M1. We may apply Keller again to get M1[(σ1 −• σ2)−•
(σ2 −• σ1)〉M2 and M1[(σ2 −• σ1)−• (σ1 −• σ2)〉M2 for some marking M2. Since
σ1 −• σ2 and σ2 −• σ1 have disjoint supports, the residue does not change the
sequence, e.g. (σ1 −• σ2)−• (σ2 −• σ1) = σ1 −• σ2. Thus, we may apply Keller
again and again, constructing a series of markings M2,M3, . . . ,Mn, . . . with
Mi[σ1 −• σ2〉Mi+1 and Mi[σ2 −• σ1〉Mi+1 for each i ∈ N. Since the difference
between two consecutive markings Mi+1−Mi = C · (Φ1−• Φ2) = C · (Φ2−• Φ1)
stays constant, either M0 = M1, or i 6= j ⇒ Mi 6= Mj . In the first case,
σ1 −• σ2 (as well as σ2 −• σ1) yields through its Parikh vector a smaller cycle
than σ1, a contradiction. In the second case, since Mi+1−Mi = C · (Φ1−• Φ2)

218 E. Best, R. Devillers, U. Schlachter, H. Wimmel

and Mi ≥ 0 for each i, C · (Φ1 −• Φ2) may not have a negative component,
and must have at least one strictly positive component. Hence the first claim.
The other one follows by symmetry. 2

Theorem 5 Small cycles in a simultaneous synthesis
Let (N,M1

0) and (N,M2
0) be two bounded systems arising from the same

choice-free net N . Let M1[σ1〉M1 be a small cycle in the reachability graph
of the former and M2[σ2〉M2 be a small cycle in the reachability graph of the
latter. Then σ1 and σ2 are either Parikh-equivalent or disjoint.

Proof: Let us assume this is not the case so that, from Corollary 1, P(σ1)
and P(σ2) are different minimal semiflows with a non-empty intersection.
From Theorem 3, we have M1[σ1 −• P(σ2)〉M ′1 for some marking M ′1 and,
since P(σ1 −• P(σ2)) = P(σ1) −• P(σ2), from Lemma 2 we have M ′1 =
M1 + C · (P(σ1) −• P(σ2)) 	 M1, which implies the non-boundedness of
(N,M1

0), a contradiction. 2

Theorem 5 implies that there is no simultaneous choice-free solution of
the two transition systems TS 3 and TS 4 shown in Figure 2, since the two
small cycles (one in TS 3, the other one in TS 4) are neither Parikh-equivalent
nor label-disjoint. This is true despite the fact that TS 3 and TS 4 have
individual choice-free solutions.

Let us now assume that for a specific input {TS 1, . . . ,TSm}, the prop-
erties mentioned in Theorem 1 have been checked on all TS i. In case any
of these tests fail, there can be no successful individual (and by implication,
no successful simultaneous) cf-synthesis. If all of them succeed, we shall
also get, for each i ∈ {1, . . . ,m}, the set Gi = {Υi

1, . . . ,Υ
i
ni
} of the different

Parikh vectors of the small cycles in TS i, as well as the distances ∆s between
the i ’th initial state ıi and state s ∈ Si (recall that we assumed the various
state spaces Si disjoint).

Let G =
⋃m
i=1 Gi. From Corollary 1, each member of G must be a

minimal semiflow of any simultaneous cf-solution. Theorem 5 implies that all
the different members of G must have disjoint supports; if this is not the case,
this is a new reason for the simultaneous synthesis failure (as exemplified in
Figure 2).

The pre-synthesis in [4, 17] already checks that, in each TS i, for each
state s ∈ Si and each Υ ∈ Gi, we have ∆s 6≥ Υ, where ∆s denotes both the
distance in TS i and the unique Parikh vector of all the short paths from ıi

Simultaneous Petri Net Synthesis 219

to s. Following Corollary 2, we may now check that the constraint ∆s 6≥ Υ
remains true for each Υ ∈ G \ Gi, satisfying Definition 3. Again, if this is not
true, we have a new reason of failure. This is exemplified in Figure 9.

From Corollary 3, we may improve the individual pre-synthesis procedure
in [4] and [17] by checking that, in each TS i, for each state s ∈ Si and each
Υ ∈ Gi, for some s′ ∈ Si, we have ∆s′ = ∆s −• Υ. For the simultaneous
pre-synthesis, we may do the same with each Υ ∈ G. Again, if this is not
true, we have another reason of failure (of an individual or simultaneous
synthesis, respectively). This is also exemplified in Figure 9.

TS 16:

ı
a

b

TS 17:

ı qa b
TS 18:

ı s
a c b

PNS 16: a

b

c

PNS 18: a

b

c

Figure 9: Two transition systems TS 16 and TS 17 which are individually,
but not simultaneously, solvable by a choice-free net. In TS 16, there is a
small cycle ı[ab〉ı, while in TS 17, ∆q = P(ab) for a state q 6= ı, so that
¬(∆q 6≥ P(ab)). This contravenes Corollary 2 (in fact, TS 16 and TS 17

are not simultaneously solvable by any Petri net, since P(ab) should be a
semiflow of the solution, so that q should coincide with the initial state
of TS 17). TS 16 and TS 18 are individually and simultaneously solvable
(see PNS 16 and PNS 18), but not choice-freely. In TS 18, there is no state s′

with ∆s′ = P(c) = ∆s−•P(ab), contravening Corollary 3. The net underlying
the simultaneous non-choice-free solution given here contains three choice
places, and the developments above prove that at least one such place must
be present in any simultaneous solution.

220 E. Best, R. Devillers, U. Schlachter, H. Wimmel

Similarly, it is possible to use Proposition 2, i.e. the earliest cycles
property in Definition 4, to strengthen the individual as well as the simulta-
neous pre-synthesis procedure. Here, however, it is necessary to complete the
structures built during the first part of the individual pre-syntheses. Besides
constructing the distances ∆s for each s ∈ Si and the Parikh vectors of
small cycles, we need to determine for each s ∈ Si the set Cs of small cycles
around s. Then, for the individual pre-synthesis, we may check that, for
each s ∈ Si, τ ∈ Cs and Υ ∈ (Gi \ {P(τ)}), there is a state s′ ∈ Si such that
τ ∈ Cs′ while ∆s′ = ∆s −• Υ. For the simultaneous pre-synthesis, for each
i ∈ {1, . . . ,m}, we add that, for each Υ′ ∈ G \ Gi, there is a state s′ ∈ Si
such that τ ∈ Cs′ while ∆s′ = ∆s −• Υ′. This is illustrated by Figure 10.

TS 16: ı
a

b
TS 19: ı

a

c

TS 20: ı
a

cc

PNS 16: a

b

c

PNS 20: a

b

c

Figure 10: The two transition systems TS 19 and TS 20 are individually cf-
solvable. TS 19 is not simultaneously cf-solvable with TS 16, since there is
a loop c after a, but not initially while a−• ab = ε, contravening Proposi-
tion 2. By contrast, TS 20 is simultaneously cf-solvable with TS 16, as shown
by PNS 16 and PNS 20.

It is possible to alleviate the burden of computing and recording all the
small cycles by only recording the Parikh vectors of small cycles around states,
i.e. to use the earliest Parikh cycles property in Definition 6 instead of the
earliest cycles property. One advantage is that one records less information,
since it may happen that many cycles around s have the same Parikh vector.
Moreover, it is not even necessary to record the information for every state.
Indeed, since we know that cycles may be pushed forward Parikh-equivalently
(see [2]), one only has to record an information for s when this information
is not recorded for a state s′ with s ∈ [s′〉.

Simultaneous Petri Net Synthesis 221

Usually, during pre-synthesis, the state space is explored by means of a
breadth-first spanning tree (see Section 5). This tree can conveniently be
used, since one only has to record a minimal semiflow corresponding to a
small cycle around s if its direct predecessor in the spanning tree does not
present it (let us recall that, since cycles may be pushed forward Parikh
equivalently, if an indirect predecessor presents the information, so will do
all the intermediate states in the spanning tree). We shall thus define Ds as
the set of Parikh vectors of small cycles around s which do not occur in Ds′
where s′ is the direct predecessor of s in the considered spanning tree. For
the individual pre-synthesis of the various TS i’s, we then simply have to
check that ∀s ∈ Si,Φ ∈ Ds : ∆s is disjoint from each Υ ∈ Gi \ {Φ}. For
the simultaneous pre-synthesis, we have to add that ∀s ∈ Si,Φ ∈ Ds : ∆s is
disjoint from each Υ ∈ G \ Gi. When taken individually, those tests based
on D are weaker than the tests based on C (see Figure 8), since they only
check Parikh vectors instead of small cycles but, as already noticed above,
when considered in conjunction with the other checks above this is no longer
the case: point 4 of Theorem 4 only uses Parikh vectors of small cycles, not
the small cycles themselves, and this is enough to imply the reduced sequence
property of Theorem 3 through Proposition 1, hence also Proposition 2.

5 Algorithmic Complexity of the Pre-Synthesis

In this section we take a closer look at the algorithmic complexity of the
approach suggested by Theorem 4. In [4, 17] we have seen that finding the
Parikh vectors of all small cycles, testing their disjointness, and checking the
short distance and distance path properties can be done in O(|S| · |T |2) for a
finite, deterministic, and persistent lts (S, T,→, ı).

Algorithm 1 shows how to test the reduced distance property with
respect to the set of the Parikh vectors of the small cycles of a given lts.
Since these Parikh vectors will be semiflows in the synthesised net, Theorem 3
must be applicable. Consider now a breadth-first spanning tree E ⊆ → of
our lts, with |E| = |S| − 1, i.e. each state except ı has exactly one incoming
edge in E. Since E is constructed breadth-first, each distance ∆s (for s ∈ S)
is represented by a unique path ı[σ〉s in E. By Theorem 3, ı[σ −• Φ〉 must be
true for any small cycle with Parikh vector Φ. We conclude ı[∆s −• Φ〉, i.e. to
check the reduced distances it is sufficient to check ı[σ〉 ⇒ ı[σ −• Φ〉 for paths
ı[σ〉 in the spanning tree.

222 E. Best, R. Devillers, U. Schlachter, H. Wimmel

Algorithm 1 Test for the reduced distances with respect to small cycles
Input: a finite, deterministic, persistent lts (S, T,→, ı)

a breadth-first spanning tree E ⊆ → (with |E| = |S| − 1)
the set G of Parikh vectors of small cycles

check disjointness of G and the short distance property
for each Φ ∈ G:

if ¬reducedDistance(ı, ı,Φ) then return false endif
return true

procedure reducedDistance(s ∈ S, s′ ∈ S, Θ: T → N): boolean
for each (s, t, r) ∈ E:

if Θ(t) > 0 then
let Θ(t) := Θ(t)− 1
if ¬reducedDistance(r, s′,Θ) then return false endif
let Θ(t) := Θ(t) + 1

else if ∃(s′, t, r′) ∈ → then
if ¬reducedDistance(r, r′,Θ) then return false endif

else return false endif
return true

The algorithm uses two state variables s and s′ to represent the states
reached by ı[σ〉s and ı[σ −• Φ〉s′ for paths σ in the spanning tree. The
parameter Θ realises the part “−•Φ” by preventing advancement of s′ via a
t-edge as long as Θ(t) > 0, instead, Θ(t) is reduced by one. Overall, the
algorithm makes a depth-first run through the spanning tree E for each
Parikh vector Φ ∈ G of a small cycle, where |G| ≤ |T | by disjointness and
|E| < |S|. When we recursively follow an edge s[t〉r there are three cases:
not to advance s′ if Θ(t) > 0, otherwise to follow the edge s′[t〉r′ if it exists,
or to report a failure if such an edge is not found. This is realised by
the if-statement in the recursive procedure reducedDistance. A failure is
immediately propagated back by the “return false” statements, stopping the
whole recursion. If arguments are passed on by reference to reducedDistance
(or we implement the algorithm iteratively), no copying of Θ is required.
The checks for edges (s, t, r) ∈ E and (s′, t, r′) ∈ → can be done in constant
time with adequate data structures. As the algorithm makes a depth-first
run through the spanning tree (via the variable s) for each element of G, we
obtain a run time of O(|S| · |T |) for the outer loop. The initial checks for
disjointness and short distances take O(|S| · |T |2).

Checking the earliest Parikh cycle property is a bit more involved. As
discussed before Theorem 4, after ensuring the reduced distance property by

Simultaneous Petri Net Synthesis 223

Algorithm 1, we need to find the earliest states at which a small cycle with
Parikh vector Φ ∈ G occurs, in any permutation.

Using our spanning tree E, we can define the Parikh vector of an edge
e = (s, t, s′) ∈ → by PE(e) = ∆s + P(t) − ∆s′ . Clearly, for any edge
e ∈ E, PE(e) = 0 since the distances ∆s′ and ∆s + P(t) are realised by the
same path in the spanning tree. Also, for any cycle s0[t1〉s1 . . . sn−1[tn〉s0,
PE(s0[t1 . . . tn〉s0) =

∑
1≤i≤n PE(si−1[ti〉si mod n) = P(t1 . . . tn) since each

occurring −∆si is annihilated by a +∆si for the following edge, leaving only
the labels of the cycle to be added up.

In [17] it was shown that in the reachability graph of a choice-free net,
for every edge e either PE(e) = 0 or PE(e) ∈ G, no matter how we construct
the breadth-first spanning tree E. Since G is a set of disjoint and thus linearly
independent vectors, the Parikh vector P(σ) = Φ ∈ G of a small cycle s[σ〉s
must be composed from one edge e ∈ → \ E in σ with PE(e) = Φ while all
other edges used for σ contribute the Parikh vector 0. We thus find an edge
(in→\E) with Parikh vector Φ such that s is reachable from its target state.

To see that the reverse is also true, assume an edge e = (r, t, r′) ∈ →\E
with PE(e) = Φ. By construction of the spanning tree E, there are distance
paths ı[σ〉r and ı[σ′〉r′ in E. With Keller’s theorem we find ı[σt〉r′[σ′−• (σt)〉s
and ı[σ′〉r′[(σt)−• σ′〉s for some state s. As 0 ≤ PE(e) = ∆r + P(t)−∆r′ =
P(σt) − P(σ′), we conclude σ′ −• (σt) = ε and r′ = s. Thus, (σt) −• σ′ is a
(small) cycle with Parikh vector PE(e) = Φ at the target state r′ = s of
the edge e. Any successor state of s also allows a small cycle with Parikh
vector Φ. If s[t〉s′, Keller’s theorem yields s[t〉s′[Φ−• t〉s′′ and s[Φ〉s[t−• Φ〉s′′
with either t −• Φ = t, Φ −• t = Φ, and s′′ = s′, or t −• Φ = ε, s′′ = s, and
P(t) + Φ−• t = Φ.

In summary, s allowing a small cycle with Parikh vector Φ is equivalent
to s being reachable from the target state of an edge in →\ E with Parikh
vector Φ. So, we can find the earliest states allowing a small cycle with
Parikh vector Φ by running a depth-first search through our spanning tree,
checking if we encounter the target state s of such an edge e ∈ → \ E with
PE(e) = Φ, and backtracking if we find one. Before we backtrack, we check
if the state fulfills the simplified version D (see p. 221 top) of the earliest
Parikh cycle property, i.e. if the distance ∆s is disjoint with all other Parikh
vectors of small cycles, G \ {Φ}. If not, the lts can be dismissed immediately.
This is done in Algorithm 2.

224 E. Best, R. Devillers, U. Schlachter, H. Wimmel

Algorithm 2 Test for the earliest Parikh cycles with respect to G
Input: a finite, totally reachable, deterministic, persistent lts (S, T,→, ı)

compute a breadth-first spanning tree E ⊆ → (with |E| = |S| − 1)
compute the set G of Parikh vectors of small cycles
collect the sets target(Φ) of target states of edges e ∈ → \ E

with PE(e) = Φ for each Φ ∈ G
check the reduced distance property via Algorithm 1
for each Φ ∈ G:

if ¬checkCycles(ı, true,Φ) then return false endif
return true

procedure checkCycles(s ∈ S, psionly ∈ {true, false}, Φ: T → N): boolean
if s ∈ target(Φ) then return psionly
for each (s, t, r) ∈ E:

if psionly and ∃Θ ∈ G \ {Φ}: Θ(t) > 0 then
if ¬checkCycles(r, false,Φ) then return false endif

else if ¬checkCycles(r, psionly,Φ) then return false endif
endif

return true

Here, the state s is used for the depth-first search through our spanning
tree, Φ is the Parikh vector of one small cycle (and remains unchanged
during the whole recursion), and psionly (representing the current truth
value of property D) is true on some initial part of the spanning tree, until
we encounter a label from another small cycle. It will revert to false then
and remain so in the whole subtree we travel from there. If we collect
the target states of edges e ∈ → \ E with Parikh vector Φ during the
computation of G, the check s ∈ target(Φ) can be done in constant time.
The test ∃Θ ∈ G \ {Φ} : Θ(t) > 0 can also be done in constant time with
an appropriate pre-computation: At the time we compute G we provide a
boolean array for each Φ ∈ G where each label t with Φ(t) > 0 is marked
true. One further array is constructed, where all labels not occurring in small
cycles are marked true. Two O(1) checks, one on the latter array, one for Φ
will then tell us if a label occurs anywhere in G \ {Φ}. As in the previous
algorithm, we have two loops, one over G and one over E, which lead to
a run time of O(|S| · |T |) (starting at the outer for-each-loop, the initial
computation of G remains in O(|S| · |T |2)).

Outsourcing the pre-computations to earlier checks of other (necessary)
properties, we can argue that the additional computations for the reduced
distance and earliest Parikh cycle properties can be done in O(|S| · |T |)
(O(|S| · |T |2) including pre-computations). Since the pre-synthesis already

Simultaneous Petri Net Synthesis 225

needs O(|S| · |T |2) anyway, this is easily affordable. In terms of solving our
initial task (Definition 1), if m transition systems (Si, Ti,→i, ıi) (1 ≤ i ≤ m)
are given, this adds up to time O((

∑m
i=1 |Si|) · |

⋃m
i=1 Ti|2) for the entire

pre-synthesis, which compares favourably with synthesis where the size of
the state space typically enters in higher powers.

6 Simultaneous Synthesis Algorithm

We now describe a simultaneous choice-free synthesis algorithm. To start
with, we emphasise that this additional step is necessary, since simultaneous
cf-synthesis may still fail. For example, consider the systems TS 21 and TS 22

in Figure 11. They successfully pass all checks based on the disjoint minimal
semiflows, reduced distances and early Parikh cycles, and they have individual
cf-solutions as illustrated on the bottom row of Figure 11. However, the pair
TS 21,TS 22 is not simultaneously cf-solvable. To see why this is true, we give
an ad-hoc argument. There must be a place, say p, which prevents the firing
of a at state s. If µ denotes the marking of p at ı1 and a and b (temporarily)
denote the effect of the firings of a and b on place p, respectively, this means
that µ+ 2a+ 2b < 0, or −µ− 2a− 2b > 0. The semiflow (3, 2) demanded by
the second transition system enforces 3a+ 2b = 0 on every place including p.
Inserting this in the inequality −µ−2a−2b > 0 yields −µ+a > 0. Because p
enables the firing sequences a and abb, µ+ a ≥ 0 as well as µ+ a+ 2b ≥ 0,
hence µ − 2a ≥ 0 (using again the semiflow (3, 2)). Adding the first with
−µ + a > 0 yields 2a > 0, and adding the second with −µ + a > 0 yields
−a > 0, a contradiction.

In the remainder of this section, suppose that we have, as an input,
m labelled transition systems TS 1, . . . ,TSm which have passed the entire
pre-synthesis described in Sections 3 and 4. Also suppose that we have an
individual choice-free solution PNS i for every TS i. As before, let Gi be the
set of (Parikh vectors of) small cycles in TS i; let G =

⋃
1≤i≤m Gi; and let

MSF i be the set of minimal semiflows in PNS i.

6.1 Transition Synchronisation

We start with the simplest case, which is when all the Petri net systems
PNS i = (Pi, Ti, Fi,M

i
0) have the same set T of transitions and include the

226 E. Best, R. Devillers, U. Schlachter, H. Wimmel

TS 21: ı1 s
a b b TS 22: ı2

a

a b a b

PNS 21:
a

b

p1

p2

2
PNS 22:

a

b

p1

p2

2

2
3

3

Figure 11: Two transition systems TS 21,TS 22 with individual choice-free
solutions PNS 21,PNS 22.

set G (the set of Parikh vectors of small cycles in the various TS j ’s) in their
setsMSF i of minimal semiflows, i.e. when

∀i ∈ {1, . . . ,m} : Ti = T ∧ G ⊆MSF i (1)

In this case, the individual Petri nets can be synchronised at their equally-
labelled transitions: assuming the place sets Pi are disjoint (which is always
possible since isomorphic Petri net systems have isomorphic reachability
graphs), this amounts to build the net (P, T, F) such that P =

⋃
i Pi and

∀t ∈ T, p ∈ Pi : F (p, t) = Fi(p, t) ∧ F (t, p) = Fi(t, p). It is easy to see that
this preserves choice-freeness and that the set of minimal semiflows is the
intersection of theMSF i’s, hence include G. We now show that the resulting
Petri net has m initial markings which solve the m given transition systems.
For each i ∈ {1, . . . ,m}, we may use for the places p from Pi the initial
marking of PNS i: M0i(p) = M i

0(p). This allows to exclude the arcs not
enabled by TS i (hence to keep the system bounded), and to keep the arcs
enabled by TS i provided they are not excluded by the other places. It thus
remains to show that it is possible to put initially sufficiently many tokens
on the places not belonging to Pi such that the result does not prevent any
of the desired firings. The next proposition guarantees that this can be done.

Proposition 3 Choice of marking
Let PNS 1, . . . ,PNSm be solutions of TS 1, . . . ,TSm (respectively), all with
the same transition set T , while respecting all the semiflows in G; then in their

Simultaneous Petri Net Synthesis 227

synchronisation it is possible to choose a marking in order to generate TS i,
for all i ∈ {1, . . . ,m}.

Proof: In the remainder of the proof, we fix some index i ∈ {1, . . . ,m}
and let j never be the same index as i, i.e. j 6= i.

If we forget the places from all PNS j , by definition, the places from
PNS i with their initial marking M0i generate a solution to TS i. If we now
add the places of the PNS j with their connections to / from transitions in T ,
we have to determine their initial marking so that this does not restrict the
firing sequences enabled by TS i.

By induction on the length of the enabled firing sequences, we must
show that for each place pj ∈ Pj and for some initial marking M0i(pj)
of it, for each ıi[σ〉s enabled by TS i and s[t〉, the marking Ms(pj) of pj
after executing σ only relies on s and is at least Fj(pj , t). The property
results from the observation that P(σ) = ∆s +

∑
Υ∈Gi kΥ · Υ for some

natural integers kΥ. Hence, since Gi ⊆ G ⊆ MSF j , PNS j conforms to
the semiflows in Gi and Ms(pj) = M0i(pj) + Cj · (∆s +

∑
Υ∈G kΥ · Υ) =

M0i(pj) + Cj ·∆s, which leads to finitely many constraints: ∀s ∈ Si, s[t〉 :
M0i(pj) + Cj ·∆s ≥ Fj(pj , t), and it is always possible to find an adequate
M0i(pj). With the convention that max∅ = 0, we thus simply have the
constraint M0i(pj) ≥ maxs∈Si(maxs[t〉 Fj(pj , t) − Cj · ∆s) (note that, for
s = ıi, we get maxs[t〉 Fj(pj , t) ≥ 0, so that this formula always yields a
non-negative value, as requested for a marking). 2

6.2 Homogenisation of Transition Sets and Semiflows

In general, we may not have Property (1) in our individual solutions. The
transition sets may be different, and even if they coincide, it may happen
that some T -vectors in G are not semiflows of the considered solution of
some TS i.

As an example, consider the two transition systems TS 23 and TS 24

shown in Figure 12 which have individual solutions (thick portions of PNS 23

and PNS 24, respectively) not satisfying (1). We may enforce the equality
of the transition sets by adding non-executable transitions where they are
missing, thus establishing the first conjunct of (1). This happened in Figure 12
where a b transition with a token-empty input place pb was added to PNS 23.
The part of PNS 23 drawn with solid lines is again a choice-free solution

228 E. Best, R. Devillers, U. Schlachter, H. Wimmel

of TS 23. However, PNS 24 has a minimal semiflow, viz. (1, 1), which is
missing in PNS 23 (with only the solid lines). The synthesis algorithm
specified next will add such a semiflow if at all possible.

TS 23: ı1 s
a

TS 24: ı2 q
a

b

PNS 23: a

b

p1 p2

pb

PNS 24:
a

b

p′1 p′2

Figure 12: Two transition systems TS 23 and TS 24. Two individual solutions
of them are given by the thick parts of PNS 23 and PNS 24. In TS 23, pb and b
are added by the homogenisation of transition sets, and the dashed arrows
by an invocation of one of the existing synthesis procedures which creates a
semiflow (in TS 23) that corresponds to the cycle ab (in TS 24).

To this end, we may exploit one of the synthesis procedures described
in [4, 17] for bounded choice-free net systems. With a view to Theorem 5, all
small cycles of TS i should correspond not just to minimal semiflows of PNS i,
but also to minimal semiflows of PNS j with j 6= i. The algorithms in [4, 17]
have as a parameter a set of semiflows that can be enforced on the solution.
This means that we may use them in conjunction with the entire set of small
cycle Parikh vectors G, instead of just with the individual small cycles Gi.
If successful, these procedures then impose a semiflow on every small cycle
in G in the synthesised solution. This will be detailed in the next section.

For instance, in Figure 12, this leads to the addition of the dashed
elements in PNS 23, which otherwise would not be necessary, so that the
T -vector (1, 1), which is a (minimal) semiflow generated by TS 24, is also a
semiflow of the considered solution of TS 23. In general, the correctness of
the underlying choice-free synthesis algorithm ensures the eventual truth of
the second conjunct of (1), whenever possible. In Figure 11, this will fail
because it is impossible to augment PNS 21 by a semiflow (3, 2).

Note, however, that (1) must be established in its entirety for the
necessary marking distribution according to Proposition 3 to be possible. For
example, if we drop the dashed elements in PNS 23, then we need an infinite
number of initial tokens in p1 and in pb in order to allow an unbounded

Simultaneous Petri Net Synthesis 229

number of repetitions of ab as requested by TS 24, which is not allowed.
However, synchronising PNS 23 and PNS 24 with the dashed elements, we get
the net and markings exhibited in Figure 13: a single token in pb is enough
to get a solution of TS 24, and dropping this token yields a solution to TS 23.
Note that the obtained solution is not optimal (p1 and p′1 play the same
role, as well as p2 and p′2), but this is irrelevant here since we do not aim at
minimality, simply at the correctness of the solution.

a

b

p1 p2p′1 p′2

pb

Figure 13: A simultaneous solution of TS 23 and TS 24 obtained by synchro-
nising PNS 23 and PNS 24 on the transitions. Depending on whether a token
is absent or not on pb, TS 23 or TS 24 is solved.

6.3 Extended Individual Synthesis

In this section, we develop the semiflow homogenisation just explained in the
previous section, extending (a slightly simplified version of) the algorithm
described in [4] (but using [17] works equally well). The main addition is to
take care of the minimal semiflows arising from the analysis of all the given
transition systems when synthesising any one of them.

Let us thus have a closer look at the way to perform the choice-free
synthesis of a finite labelled transition system TS i (i = 1, ...,m) in presence
of an extended set of (minimal) semiflow G (including the Parikh vectors Gi
of its small cycles, but also the ones arising from other TS j ’s). In general
synthesis, two kinds of separation problems need — and suffice — to be
solved, state separation problems and event/state separation problems [1], but
it is known [4] that the state separation problems play no role in bounded
choice-free synthesis.

Places of a (choice-free) solution have the general form illustrated in
Figure 14, and they must satisfy three conditions:

- the weights must be compatible with the semiflows in G,

230 E. Best, R. Devillers, U. Schlachter, H. Wimmel

µ0

p

x

a1

a2

...
an

k+h

h

ka1

ka2

kan

Figure 14: A general pure (h = 0) or non-pure (h > 0) choice-free place p
with initial marking µ0. Place p has at most one outgoing transition named x.
The set {a1, . . . , an} comprises all other transitions, i.e. T = {x, a1, . . . , an},
and kaj denotes the weight of the arc from aj to p (which could be zero).

- the initial markings must be high enough to allow to reach all the states
of the TS i (each such place, together with its markings corresponding
to the various reachable states, then yields a region in the sense of [1]),

- the initial markings should be low enough to allow excluding forbid-
den transitions in TS i (this materialises the event/state separation
problems).

In the following, we shall fix x, but in the procedure we shall of course
consider all the labels in T .

First, the weights must satisfy the following cyclic constraints:

∀Υ ∈ G :
∑

l∈{1,...,n}

kal ·Υ(al) = k ·Υ(x).

As a consequence, if x does not belong to the support of Υ, we may deduce
that kal = 0 for all values of l such that Υ(al) > 0. This may thus reduce
considerably the number of pre-transitions of a place p as in Figure 14, and in
the following we shall denote by A(x) the set of those possible pre-transitions
(it may happen that more kal ’s will finally be null, but we shall not capture
them now).

Let us denote by TΥ = supp(Υ) the support of Υ ∈ G, and by T0 =
T \

⋃
Υ∈G TΥ the transitions that do not belong to the support of some

semiflow in G. There are then two different cases:

Simultaneous Petri Net Synthesis 231

1. if x ∈ TΥ belongs to the support of some (unique5) Υ in G, A(x) =
(TΥ \ {x}) ∪ T0, and

k =
∑

a∈TΥ\{x}

ka ·Υ(a)/Υ(x)

2. if x ∈ T0, A(x) = T0 \ {x} and there is no special relation fixing k with
respect to the other weights.

As a consequence, if s[y〉r with s, r ∈ Si and y 6= x, if we represent by Ms

the marking reached after following any sequence leading to s from the initial
state (the result does not rely on the specific sequence which is followed), we
haveMs(p) ≤Mr(p), and if y 6∈ A(x) we haveMs(p) = Mr(p). We shall thus
define on Si the partial order s ≤x r iff s[α〉r with α ∈ (T \ {x})∗, s ∼x r iff
s[y〉r or r[y〉s with y 6∈ A(x), ≡x= (∼x)∗ is the equivalence relation s ≡x r
generated by ∼x, and <x=≤x \ ≡x. We then have s <x r ⇒Ms(p) ≤Mr(p)
and s ≡x r ⇒Ms(p) = Mr(p).

As to the various reachable markings of such a place p, we have that,
for each state s ∈ Si, the marking of that place corresponding to s is

Ms(p) = µ0 +
∑

a∈A(x)

ka ·∆s(a)− k ·∆s(x) ≥ 0.

In order to allow executing x whenever needed, this leads to the constraint
that

∀s ∈ Si : s[x〉 ⇒Ms(p) ≥ k + h. (2)

However, as mentioned in [4], it is not necessary to check all the constraints (2)
to get an initial marking µ0 high enough. Let us consider the following cases:

• if x does not occur in TS i, then the constraint is empty;

• if x occurs in TS i and P(x) ∈ G, we also have P(x) ∈ Gi and s[x〉 ⇒
s[x〉s. Then also k = 0 and s[y〉r ⇒Ms(p) ≤Mr(p)⇒ r[x〉r (which is
compatible with the well known property that one may push forward
Parikh-equivalently any cycle in a finite, deterministic and persistent
lts [2]). We thus only have to check the initial x-loops. If ıi[x〉ıi, then

5since the various Υ’s are disjoint.

232 E. Best, R. Devillers, U. Schlachter, H. Wimmel

we simply have to make x isolated, and there is no constraint to check.
Otherwise, let ILi(x) = {s ∈ Si | s[x〉 ∧ ∀r ∈ Si : r <x s ⇒ ¬r[x〉},
and mX i(x) be the subset of ILi(x) where one only keeps a single
representative of the equivalence classes of ≡x. The constraints (2)
then reduce to

∀s ∈ mX i(x) : Ms(p) ≥ h; (3)

• otherwise, since P(x) 6∈ Gi, if s[xl〉r with l > 0, then we must have
s 6= r. Moreover, Ms(p) ≥ l · k + h, or equivalently, Mr(p) ≥ h. For
this reason, when considering the marking of p at a state s with s[x〉,
the idea is to follow x-chains in forward direction as long as possible:
from determinism and P(x) 6∈ Gi , there is a unique last state. Thus,
we are interested in the following subsets of states of Si:

XNX i(x) = {r ∈ Si | [x〉r ∧ ¬r[x〉}

mXNX i(x) = {r ∈ XNX i(x) |6 ∃s ∈ XNX i(x) ∧ s <x r}
which are produced by x but do not enable x, and in the subset
mX i(x) of mXNX i(x) where one only keeps a single representative of
the equivalence classes of ≡x. The above considerations amount to a
proof of the fact that we may again replace the constraints (2) by the
constraints (3).

Similarly, in order to exclude forbidden transitions, it is not necessary
to construct a place p such that Ms(p) < k + h for each state s such that
¬s[x〉. Indeed, if Ms(p) < k+h, the same place p will exclude r[x〉 whenever
r ≡x s since then Ms(p) = Mr(p), and more generally whenever r ≤x s since
then Mr(p) ≤Ms(p). This leads to consider the set of states:

NXX i(x) = {s ∈ Si | ¬s[x〉 and ∀r ∈ Si : s <x r ⇒ r[x〉}

i.e. the set of states not enabling x such that it is not possible to find a
potentially “better” one from it, and mNXX i(x) as the subset of NXX i(x)
where one only keeps a single representative of the equivalence classes of ≡x.

Hence, extending the analysis in [4], in order to check if there is a
choice-free solution of TS i compatible with the set of semiflows G, and to
build it, for each x ∈ T and s ∈ mNXX i(x), we need to solve the system

∀r∈mX i(x) : 0 < k ·
[

1 + ∆s(x)−∆r(x)
]

+
∑

a∈A(x)

ka ·
[

∆r(a)−∆s(a)
]

if x ∈ TΥ :
∑

a∈A(x) ka ·Υ(a) = k ·Υ(x)

Simultaneous Petri Net Synthesis 233

If this system is solvable in the domain of natural numbers (with ka = 0
if a 6∈ A(x)), let us define µ = max{k · ∆r(x) −

∑
a∈A(x) ka · ∆r(a) | r ∈

mXNX i(x)}. If µ ≥ 0, by choosing h = 0 and M i
0 = µ we shall get a place

satisfying all the needed conditions. If µ < 0, it is not possible to create
a suitable pure place from this solution, but we may choose h = −µ and
M i

0 = 0 and we shall again get an adequate place.

If x occurs in some Υ ∈ G, it is possible to eliminate k from the unknowns
of the above system, and save an equation, but we shall not do it here.

For instance, for systems TS 1 and TS 2 of Figure 1, for which G =
{P(b),P(c)} and T0 = {a, d} is the set of non-live transitions, when x = d, we
get three systems of one inequation each. With ka = F (a, p) and k = F (p, d),
these systems are

0 < k · [1 + 0− 1] + ka · [1− 0] (for ı1 ∈ mNXX 1(d), s ∈ mX 1(d))
0 < k · [1 + 1− 1] + ka · [1− 1] (for s ∈ mNXX 1(d), s ∈ mX 1(d))
0 < k · [1 + 2− 2] + ka · [0− 0] (for s′ ∈ mNXX 2(d), s′ ∈ mX 2(d))

There is a way to solve all of them with a single place p3 (as in Figure 1):
F (a, p3) = F (p3, d) = 1. With these values, the minimal (and adequate)
initial marking of this place has no token for the solution of TS 1 and 2 tokens
for the solution of TS 2.

7 Concluding Remarks

We have described (the theory behind) an algorithm solving the simultaneous
synthesis problem for choice-free Petri nets – in fact: we specified several such
algorithms, since pre-synthesis can be curtailed if desired, albeit at the peril
of extending proper synthesis, which may give rise to more costly procedures
and less informative results. We also enhanced the pre-synthesis phase of an
individual choice-free synthesis problem with new checks (namely, reduced
distances and earliest Parikh cycles) that were not used in previous work.
Hence, in this paper, about everything from section 4 is new, also when we
only consider a single lts, but section 6.3 is mildly new.

Many directions are open for future research: to consider special cases
(e.g., acyclic transition systems, marked graphs); or to generalise the setup
(e.g., to several labelled transition systems with a single initial state each,
but with possibly some common states – see also [8]); or to switch the focus

234 E. Best, R. Devillers, U. Schlachter, H. Wimmel

to other classes of nets, or systems. We also plan to combine our synthesis
procedure with a factorisation technique [7, 8, 9] in order to reduce the
complexity by a divide and conquer strategy.

It also seems possible to capture a range of examples similar to the one
depicted in Figure 11 during pre-synthesis, by generalising Theorem 3. The
authors are engaged in this extension and have obtained partial results. We
are also interested in incorporating the novel algorithms described in this
paper in our tool APT [15].

Acknowledgements. The authors would like to thank the reviewers for
helpful comments.

References

[1] É. Badouel, L. Bernardinello, P. Darondeau: Petri Net Synthesis. Texts
in Theoretical Computer Science, Springer-Verlag, ISBN 978-3-662-
47967-4, 339 pages (2015). doi:10.1007/978-3-662-47967-4.

[2] E. Best, P. Darondeau: A Decomposition Theorem for Finite Persistent
Transition Systems. Acta Informatica 46: 237–254 (2009). doi:10.1007/
s00236-009-0095-6.

[3] E. Best, R. Devillers: Petri Net Pre-Synthesis Based on Prime Cycles
and Distance Paths. Science of Computer Programming 157 (2018),
41–55. doi:10.1016/j.scico.2017.07.005.

[4] E. Best, R. Devillers, U. Schlachter: Bounded Choice-Free Petri Net
Synthesis: Algorithmic Issues. Acta Informatica (2017). doi:10.1007/
s00236-017-0310-9.

[5] S. Crespi-Reghizzi, D. Mandrioli. A Decidability Theorem for a Class
of Vector-Addition Systems. Inf. Process. Lett., 3(3):78–80, 1975. doi:
10.1016/0020-0190(75)90020-4.

[6] J. Desel, J. Esparza: Free Choice Petri Nets. Cambridge Tracts in
Theoretical Computer Science 40, 242 pages (1995). doi:10.1017/
CBO9780511526558.

[7] R. Devillers: Products of Transition Systems and Additions of Petri
Nets. Proceedings of the16th International Conference on Application

http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/s00236-009-0095-6
http://dx.doi.org/10.1007/s00236-009-0095-6
http://dx.doi.org/10.1016/j.scico.2017.07.005
http://dx.doi.org/10.1007/s00236-017-0310-9
http://dx.doi.org/10.1007/s00236-017-0310-9
http://dx.doi.org/10.1016/0020-0190(75)90020-4
http://dx.doi.org/10.1016/0020-0190(75)90020-4
http://dx.doi.org/10.1017/CBO9780511526558
http://dx.doi.org/10.1017/CBO9780511526558

Simultaneous Petri Net Synthesis 235

of Concurrency to System Design, ACSD, 65–73 (2016). doi:10.1109/
acsd.2016.10.

[8] R. Devillers: Factorisation of Transition Systems. Acta Informatica
(2017). doi:10.1007/s00236-017-0300-y.

[9] R. Devillers, U. Schlachter: Factorisation of Petri Net Solvable Tran-
sition Systems. Proceedings of the 39th International Conference on
Applications and Theory of Petri Nets and Concurrency (ICATPN 18),
LNCS 10877, 82–98 (2018). doi:10.1007/978-3-319-91268-4_5.

[10] A. Ehrenfeucht, G. Rozenberg: Partial 2-Structures, Part I: Basic No-
tions and the Representation Problem, and Part II: State Spaces of
Concurrent Systems. Acta Informatica, Vol. 27(4), 315–368 (1990).
doi:10.1007/BF00264611 and doi:10.1007/BF00264612.

[11] R.M. Keller: A Fundamental Theorem of Asynchronous Parallel Com-
putation. Parallel Processing, LNCS Vol. 24, Springer-Verlag, 102–112
(1975). doi:10.1007/3-540-07135-0_113.

[12] A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor, O. Roig,
A. Yakovlev: Checking Signal Transition Graph Implementability by
Symbolic BDD Traversal. Proc. European Design and Test Conference,
325–332, Paris, France (1995). doi:10.1109/EDTC.1995.470376.

[13] L.H. Landweber, E.L. Robertson: Properties of Conflict-Free and Per-
sistent Petri Nets. JACM 25(3), 352–364 (1978). doi:10.1145/322077.
322079.

[14] W. Reisig: Petri Nets. EATCS Monographs on Theoretical Computer
Science 4, Springer-Verlag (1985). doi:10.1007/978-3-642-69968-9.

[15] U. Schlachter et al.: https://github.com/CvO-Theory/apt (2013–
2018).

[16] E. Teruel, J.M. Colom, M. Silva: Choice-Free Petri Nets: a Model
for Deterministic Concurrent Systems with Bulk Services and Arrivals.
IEEE Transactions on Systems, Man and Cybernetics, Part A, 27-1
(1997), 73-83. doi:10.1109/3468.553226.

[17] H. Wimmel: Presynthesis of Bounded Choice-Free or Fork-Attribution
Nets. Technical Report No. 01/18 in: Berichte aus dem Department

http://dx.doi.org/10.1109/acsd.2016.10
http://dx.doi.org/10.1109/acsd.2016.10
http://dx.doi.org/10.1007/s00236-017-0300-y
http://dx.doi.org/10.1007/978-3-319-91268-4_5
http://dx.doi.org/10.1007/BF00264611
http://dx.doi.org/10.1007/BF00264612
http://dx.doi.org/10.1007/3-540-07135-0_113
http://dx.doi.org/10.1109/EDTC.1995.470376
http://dx.doi.org/10.1145/322077.322079
http://dx.doi.org/10.1145/322077.322079
http://dx.doi.org/10.1007/978-3-642-69968-9
https://github.com/CvO-Theory/apt
http://dx.doi.org/10.1109/3468.553226

236 E. Best, R. Devillers, U. Schlachter, H. Wimmel

für Informatik, University of Oldenburg, Germany, ISSN 1867-9218, 29
pages (2018).

c© Scientific Annals of Computer Science 2018

	Introduction
	Labelled Transition Systems and Petri Nets
	Necessary Conditions for Choice-Free Synthesis
	Individual and Simultaneous Pre-Synthesis
	Algorithmic Complexity of the Pre-Synthesis
	Simultaneous Synthesis Algorithm
	Transition Synchronisation
	Homogenisation of Transition Sets and Semiflows
	Extended Individual Synthesis

	Concluding Remarks

