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Abstract 

This paper investigates the problem of longevity risk sharing between an annuity provider and the annuitants. In this 

field, the idea of reducing the annuity periodic payments in similar way to what happens in the context of securitization 

is gaining. In the following the authors refer to a contract in which the installments of life annuities are scaled by a 

demographic index. The main finding is that, scaling the periodic installments, would result  in a significant reduction 

in the level of benefits. The conditions that allow to limit the reduction of benefits without worsening the insurer’s 

position is investigated. The conclusion is that it is possible to achieve an equilibrium not only reducing the amount of 

the periodic installments but also moving forward the retirement age. 

Keywords: longevity risk, forecasting mortality, stochastic mortality intensity, deferral annuity, indexed life annuities. 
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Introduction81 

During the 20
th
 century, human life expectancy have 

considerably increased for the populations of many 

developed countries. Although the past trends 

suggest that further changes in the level of mortality 

are to be expected, the future improvements of life 

expectancy are uncertain and difficult to be 

predicted.

This uncertainty about the future development of 
mortality gives rise to longevity risk. The real 
challenge for public pension systems and for private 
insurance companies consists precisely in the design 
of products able to absorb any adverse events 
concerning the future mortality. In other words, the 
challenge is how to deal with the longevity risk. 
When we treat benefits depending on the survival of 
a certain number of individuals, the calculation of 
the present values, used both for pricing and for 
reserving, requires an appropriate projection of 
mortality in order to avoid an underestimation of 
future costs. Therefore, actuaries have to employ 
projected life tables incorporating a forecast of 
future trends of mortality. The insurer bears the risk 
that the projections of mortality turn out to be 
incorrect and the annuitants live longer than 
expected. Different approaches for the construction 
of the projected tables have been developed until 
now (for a full report on this subject, see Pitacco, 
2004), but no one turned out to be suitable for the 
problem solution. Actually, this problem is deeply 
felt by private insurance companies. Although the 
annuity market is not well developed in western 
countries, the reduction of the intervention field of 
public systems, due to the main goal of the cost 
containment and the gradual shift from defined 
benefit schemes to defined contribution systems, 
suggests a growing interest of individuals for 
annuities.

                                                     
 Albina Orlando, Massimiliano Politano, 2013. 

The main problem for insurers is to make the 

annuities market attractive to the insured. Indeed the 

risk borne out by insurers for insurance annuities, 

which is undoubtedly too high, is reflected in high 

premiums charged for these products that discourage 

individuals who are intending to purchase annuities. 

For this reason, many insurance companies and 

pension funds providers focus in the issue of sharing 

the longevity risk. An ordinary way to solve this 

problem is through reinsurance, but this method often 

involves high costs. The securitization provides a 

viable alternative (see Denuit, Devolder and 

Goderniaux, 2007), but unfortunately the longevity 

bonds are not a very attractive business for investors. 

Denuit et al. in 2011 have proposed a very interesting 

idea based on the reduction of annuity periodic 

payments in a similar way to what happens in the 

context of securitization. In this work, we try to 

develop this concept relying on past mortality 

experience of the Italian population measured in the 

period of 1954-2008. A computational tractable 

approach based on a CIR type stochastic process for 

modeling the future uncertainty about the force of 

mortality is used. We find that the process of 

reducing the payments for the insured would result in 

a significant reduction in the level of benefits hardly 

acceptable by the annuitant. On the other hand, 

without a proper reduction of benefits, the pension 

provider would face and hardly sustainable level of 

risk. At this point, in our opinion, it is possible to 

reconcile the two positions not only reducing the 

amount of periodic payments but also moving 

forward the retirement age, depending on the level of 

risk borne out by the insurer. In this way, the 

unknown factor is deferral time of the annuity, which 

becomes the variable to be controlled in order to 

achieve the equilibrium. 

The literature on the attractiveness of deferred 

annuities has addressed the issue of choosing 
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between the purchase of an immediate annuity and a 

deferred one (see Milevsky and Young, 2007; Blake 

Cairns and Dowd, 2006). Because of the longevity, 

the choice of a deferred annuity is often preferred by 

the annuitants (see Milevsky, 2005). We contribute 

to this literature by linking the time of deferral and 

the impact of longevity risk. In the following we 

refer to the case of a longevity indexed life annuity 

with the aim of finding an equilibrium between the 

reduction of benefits (or the increase of premiums) 

and the annuity deferral. 

The paper is organized as follows. Section 1 

describes the annuities indexing process. In section 2 

the general issue of modeling the uncertainty in 

future mortality is fronted and a CIR type model for 

describing the future evolution of hazard rates is 

described. In section 3 the effects that a certain 

hypothesis about the future mortality can have on 

the longevity index values are deepened. In section 

4 the authors look for the conditions that allow to 

reduce the loss of benefits to the insured by 

decreasing the period of payment of the annuity. 

The final section concludes and discusses the 

results.

1. Longevity index 

Let us consider an individual aged x in the calendar 

year t. His remaining life is indicated by the notation 

Tx(t). Therefore, the individual will die at age x + Tx(t)

in the calendar year t + Tx(t). Then qx(t) = P(Tx(t)  1) 

is the probability that an individual aged x in calendar 

year t dies before reaching the age x + 1 and p x(t) = 

= 1 – qx(t) = P(Tx(t) > 1) is the probability that the 

same individual reaches the age x + 1. 

Let px+k
mod

(t + k) (k = 0,…, – x) be the predicted 

one year survival probability referred to an 

individual aged x in the calendar year t deducted by 

some survival model, where  denotes the ultimate 

age. Therefore px+k
mod

(t + k) (k = 0,…,  – x) is the 

assumption that is made on the future mortality.

As time passes, the observed values of the one year 

survival probabilities px+k
obs

(t + k) (k = 0,…,  – x)

become available, so that it is possible to compare the 

values predicted on the basis of a given model with 

the actual ones, by means of the following ratio: 

1

0

modk

j
obs

jx

jx
kt

jtp

jtp
i ,                                             (1) 

which can be assessed each future calendar year k.

The basic idea is that the annual payment due at 

time k to an individual buying a longevity indexed 

annuity at age x in calendar year t, is adjusted by the 

factor (1). Hence, if the contract specifies an annual 

payment of 1, the annuitant receives a stream of 

payments ,...., 21 tt ii  as long as he or she survives. 

In practice, we consider a basic life annuity contract 

paying one monetary unit of currency at the end of 

each year as long as the annuitant survives. The 

single premium is given by 

x

k
xk

txT

k

kx
x tpktvktvEta

11

, ,,1 ,          (2) 

where 1
(x,k)

 is an indicator which equals one if the 

individual with age x at time t is alive in the future 

year k (k = 1,…,  – x), v(t,k) is the deterministic 

discount factor, kpx(t) is the ordinary survival 

probability will be defined rigorously in the next 

section.

At this point, if the predictions contained in the 

model are chosen such that the increase in longevity 

is greater than predicted, then the payments due to 

the insured are reduced accordingly. Substantially, 

the random longevity indexed life annuity is given 

by the following equation: 

x

k

xkkt

tT

k

kt

kxIL

x tpiktvktviEta
x

11

,..
,,1 (3)

The annuitant bears the non diversifiable risk that 

the predicted mortality trend departs from that of the 

reference population.  

Our work focuses on evaluating ex post the effects 

that a certain hypothesis about the future mortality 

can have on the index values.  

The aim of our work is twofold: on the one hand, 

the authors analyze the values of the index in order 

to quantify the effects that an incorrect choice by the 

insurer can have on the benefits paid to the insured, 

on the other the conditions that allow to reduce the 

loss of benefits to the insured by decreasing the 

period of payment of the annuity are deepened. 

2. The mortality model 

Let us consider an individual aged x in the calendar 

year t. As seen, p x(t) = P(Tx(t) > 1) is the probability 

that an individual reaches the age x + 1. Analogously 

kpx(t) is the probability that an individual aged x in year 

t reaches age x + k in the year t + k. If we consider 

the hazard rate for an individual aged x + t in the 

year t x+t we have 

k dssx
xk eEtp 0 .                                         (4) 

We describe the evolution in time of mortality by a 

widely used stochastic mortality model, supposing 
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that the force of mortality at time t for an individual 

aged x + t is given by 

ttxtxtx dBdtd ,                       (5) 

where  and  are positive constants,  is the long-

term mean and Bt is a Standard Brownian Motion. 

This model, referred as the CIR mortality model has 

the property that the mortality rates are continuous 

and remain positive. Moreover, for 22  the 

mortality rates does not reach zero, and the drift 

factor tx  ensures the mean reversion of x+t

towards the long term mean .

For convenience, we now introduce the centered 

version of the model. Let us consider the shifted 

txtx
* . The process is then centred around 

 and the long-term mean converges almost 

everywhere to zero: 

ttxtxtx dBdtd
***                            (6) 

with initial condition given by the known value of 

x+t. Its solution is given by 

u

t

ux
ut

x
t

tx dBeee

0

**
0

* .           (7) 

The expected value, the covariance and the 

stationary variance functions immediately follow: 

*
0

* ][ x
t

tx eE

ts
ee

ee

tsst

x

tst

sxtx

,
2

),cov(

)()(
2

*

0

)(
2**

2
][lim

2
*

tx
t

Var .

2.1. Parameter estimation procedure. Estimating 

the parameters of the stochastic mortality model 

requires the discrete representation of the model.

To this aim, we refer to the covariance equivalence 

principle (see Deelstra Parker, 1995 which requires 

that the expected values and the stationary variances 

of the continuous and discrete processes to be equal. 

The discrete model representation is given by the 

following equation: 

ttxatxtx a
*

1
*

1
*

1

2
.                 (8) 

The expected value, the covariance and stationary 

variance functions of the previous equation are: 

*
0

* ][ x
t

txE

ts
s

a

st

s

xa

t

sxtx

,
1

1

1

1
2),cov(

2

2
2

2

*

0

2**

2

2

*

1
][lim

a

tx

t

Var

The estimation procedure starts by finding the value 

of  that minimizes the residual sum of squares 

function: 

*

2*
1

*

1

1

2

)(

tx

txtx
N

t

RSS .

The least squares estimate of 2

a
 is given by 

RSS/N – 1. 

Finally the continuous model parameters are 

obtained by means of the parametric relationships  

between continuous and discrete models, derived by 

applying the covariance equivalence principle: 

2

1

,

2
22 e

e

a
.                                               (9) 

At this point, by the Pitman and Yor formula, we 

can compute 

2

0

2

2

2/cothsinh/2/cosh

2/coth

2/coth1

exp

wkwwk

w
wk

wk
ww

x

eEtp

k

sx ds

xk
,   (10) 

where x = 0 e and 22 2w .

Applying the described estimation procedure, the 

significant parameters of the mortality-CIR model 

are obtained and therefore the survival probabilities 

for each specific calendar year. 

Our set of data relates to the Italian male 

population with annual age-specific death counts 

ranging from ages 64 to 89 over the period from 

1954 to 2008 (data source: Human Mortality 

Database, www.mortality.org). 

We refer to the class of the forward mortality 

models. These models study changes in the 

mortality rate curve for a specific age cohorts and 

capture dynamics of each age cohort over time for 

all ages greater than x in a specific year t (for 

example age x in the year t, x + 1 in the year t + 1 

and so on). In this case, the mortality curves are 

modeled diagonally (for example see Dahl, 2004; 

Cairns et al., 2006, Bauer et al., 2008). In practice, 
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on the basis of data available for the previous 25 

years, we can estimate the model parameters for the 

year t and, as a result, it is possible to get the 

forecasted survival probabilities. 

For example, with the data of the period of 1954-

1978 it is possible to obtain the column of the 

survival probabilities for the year 1979. This 

procedure is repeated thirty times in order to obtain 

the annual survival probabilities over the period 

from 1979 to 2008 and ranging from ages 64 to 89. 

These probabilities can be compared with the 

corresponding survival rates obtained from the 

tables of the Human Mortality Database. 

Regarding the choice of fixing the extreme age to 

89, recent studies (Khalaf-Allah et al., 2006) have 

shown that the most damaging effects in terms of 

annuities present values for the provider are in the 

age range 73-80. Clearly this happens because the 

number of survival is still large at these ages. As a 

consequence, even modest improvements in the 

level of survival probabilities with respect to those 

used for pricing and reserving, result in large 

additional costs for the annuity provider. The results 

of the estimation procedure are summarized in the 

following table (Table 1). The parameters  and 2

are obtained, for each year, by means of the 

relations (9), after the estimation of the discrete 

parameters in (8). We choose to calculate the long 

term mean  as the simple mean of each historical 

series used to estimate the parameters. 

Variable  takes the same value for each calendar 

year. The reason can be found in the high 

autoregressive parameter of the discrete model  = 

0.999, which is the same each year explaining the 

high correlation of each data of each series with the 

preceding one.

Table 1. CIR-estimated mortality parameters 

Year
2

1979 0.0010005 0.02154137 0.09879589 

1980 0.0010005 0.02218555 0.09870146 

1981 0.0010005 0.02196340 0.09855553 

1982 0.0010005 0.02125207 0.09849015 

1983 0.0010005 0.02006831 0.09848095 

1984 0.0010005 0.02260864 0.09951799 

1985 0.0010005 0.02051935 0.09773577 

1986 0.0010005 0.02120267 0.09732236 

1987 0.0010005 0.01981722 0.09758413 

1988 0.0010005 0.01874663 0.09654774 

1989 0.0010005 0.01883434 0.09567750 

1990 0.0010005 0.01846146 0.09354197 

1991 0.0010005 0.01880755 0.09122329 

1992 0.0010005 0.01876966 0.09087511 

Year
2

1993 0.0010005 0.01765508 0.09013384 

1994 0.0010005 0.01824302 0.08918243 

1995 0.0010005 0.01765857 0.08768303 

1996 0.0010005 0.01786665 0.08616861 

1997 0.0010005 0.01748889 0.08443631 

1998 0.0010005 0.01756343 0.08338616 

1999 0.0010005 0.0182456 0.08166418 

2000 0.0010005 0.01765565 0.07982632 

2001 0.0010005 0.0170472 0.07782871 

2002 0.0010005 0.01693314 0.07627881 

2003 0.0010005 0.01732366 0.07500763 

2004 0.0010005 0.01858599 0.07417957 

2005 0.0010005 0.01731115 0.07317319 

2006 0.0010005 0.01812203 0.07046889 

2007 0.0010005 0.01662066 0.06851038 

2008 0.0010005 0.01709801 0.06566561 

Source: Human Mortality Database: Italian male population. 

Figures 1a, 2a and 3a (see Appendix) show the compa-
rison between the estimated annual survival probabi-
lities obtained by means of the CIR model and the 
corresponding probabilities of the Italian male 
population. The results are shown year by year over 
the period 1979-2008.  

3. The ‘adjusted’ longevity index 

In the following we model the future uncertainty 
about mortality by means of the CIR type stochastic 
process described in section 2. 

In practice, the longevity index (1) is computed as: 

1

0

k

j
obs

jx

CIR
jxCIR

kt jtp

jtp
i ,                                          (11) 

where jtp
CIR

jx  is the forecasted annual survival 

probability of a male aged 64 in 1983. The 
forecasted probabilities are obtained by means of 
the CIR type stochastic process on the basis of the 

estimated parameters; jtp
obs

jx  are the actual 

values of the annual survival probabilities deducted 
from the Italian male mortality tables over the 
period of 1983-2008. 

In formula (11), jtp
CIR

jx  are calculated  by means of 

(10), using the estimated parameters for the year 

1983, based on the mortality experience over the 

period of 1958-1982. Figure 1 shows the comparison 

between the survival curve estimated by the model 

and the table available for the year 1983. The choice 

of the year 1983 can be explained as follows: an 

individual aged 64 in 1983 gets 89 in 2008. 

Knowing the real data until 2008, the estimated CIR 

probabilities can be compared with the real data.
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Fig. 4. Comparison of longevity index (denoted by asterix) and ‘adjusted’ longevity index (denoted by circles) 

The condition that the index doesn’t fall below 80% 

limits the risk passed to the insured to a maximum 

of 20%. The insurer doesn’t take any risk; indeed 

the insurer should bear a risk if the index should go 

under 80%. 

Therefore, on the basis of an ex post analysis we 

observe that indexing the life annuity can lead to 

very low periodic installments. This condition 

doesn’t make the contract attractive to the insured. 

If the contract includes the capped version (12) the 

insured is encouraged to buy the annuity. On the 

other hand, the insurer is still exposed to the risk 

that the index goes below 80% if the predicted 

survival probabilities are estimated by means of the 

CIR stochastic model (or by means of any other 

model, knowing that at the moment doesn’t exist a 

stochastic model immune to the projection risk). 

Finally, if the ‘adjusted’ longevity index (13) is 

used, the risk passed to the insured is still limited to 

a maximum of 20% but the insurer doesn’t bear any 

risk because the adjusted longevity index doesn’t go 

below 0.8. Of course in this last case the insured 

will pay an higher premium.

4. Longevity indexed deferral annuities 

At this point, in order to avoid a monetary penalty

for the insured, you can search for an equilibrium 

between the reduction in benefits (or increase in 

premiums) and the deferral of the annuity. 

Essentially, it is possible to find a balance between 

economic penalty and time penalty to the insured. 

In the following we study two cases in which the 

equilibrium could be reached: on the one hand 

considering the probability estimated by the CIR 

model and those limiting the index to 0.8, on the 

other hand considering the adjusted probabilities and 

the observed ones. The technical rate is fixed to 3%. 

In the first case the unique premium ta
ADJ

x
 calcu-

lated using the survival probabilities generating the 

index value of 0.8 and the one calculated using the 

CIR survival probabilities ta
CIR

x
 both referred to the 

calendar year t are given, respectively, by the 

following expressions: 
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x , since, other parameters 

being equal, )(ta
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x  is calculated using survival 

probabilities higher than )(ta
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x . The difference 
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x  is equal to the present value of an 

annuity calculated on the basis of the adjusted 

probabilities, with duration equal to .
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The previous can be rewritten as: 
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)()(/ tata
CIR
x

ADJ
x

so that we can determine the value of  realizing the 
identity. Here, the annuitant can choose to accept a 
deferral equal to tau in return for a loss of benefit equal 
at most to twenty percent. In our numerical example, 
the deferral period is approximately eight months. 

In the second case the unique annuity premium 

ta
OBS

x
 calculated using the observed survival 

probabilities referred to the calendar year t is given by: 

x

k

OBS

k

OBS

x tpktvta
x

1

, ,                               (15) 

Notes: x = 64; t = 2008; k = 0,1,2,3…..,26 

Fig. 5 Comparison between: ax
ADJ(t) and ax

CIR(t) (subplot 1), ax
ADJ(t) and ax

OBS(t) (subplot 2) 

Also in this case  )()( tata
ADJ

x

OBS

x
, where ta

ADJ

x ( )

is given by (8). The difference )()( tata
ADJ

x

OBS

x
, is 

equal to the present value of an annuity calculated on 
the basis of the observed probabilities, with duration 
equal to . At the end we obtain: 

)()(/ tata
ADJ
x

OBS
x ,

so that we can determine the value of   realizing the 
identity. The annuitant can choose whether to accept 
a further deferral equal to tau nullifying the loss of 
benefit. In our numerical example, the deferral period 
is approximately six months. 

It should be emphasized that deferring the annuity 

allows to reach the actuarial equilibrium instead of 

reducing benefits (or increase premiums). 

It is stressed that the cases described in this section 

avoid any risk to the insurer. The reason can be 

found the premise of this analysis: the longevity 

index does not fall below 0.8. 

Our contribution is to study the insured position in 

terms of the annuity attractiveness. He can choose 

between a loss of benefits (or an increase in the 

level of premium) or the annuity deferral that, on the 

basis of the previous considerations, is very short. 

Concluding remarks 

Although the annuity market is not well developed in 

western countries, the reduction of the intervention 

field of public systems and the gradual shift from 

defined benefit schemes to defined contribution 

systems, suggests both a growing interest of 

individuals for annuities and a considerable 

development of their market in coming years. The task 

of actuaries is to make this market more attractive than 

it is now. In fact, because of longevity, the risk borne 

out by insurers for insurance annuities, which is 

undoubtedly too high, is reflected in high premiums 

charged for these products that discourage individuals 

who are intending to purchase annuities. On the other 

hand, the idea of reducing the annuity periodic 

payments in similar way to what happens in the 

context of securitization could be reflected either in a 

significant reduction in the level of benefits for the 

annuitants or in a modest reduction of the risk for the 

insurer.  

In this context, this paper looks for the conditions that 

allow to achieve an equilibrium between the reduction 

of the benefits and the annuity deferral. Based on past 

experience of the Italian population mortality 

measured in the period of 1954-2008, we find that a 
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modest deferment of the starting point of the annuity 

can balance the needs of the insurer and the insured. In 

any case, the choice of the decrease in performance 

over time and the deferral of annuity should encourage 

to buy this kind of contract. 

Further research on this subject could be oriented in 

deepening the topic of stochastic interest rates. 

Moreover, we could also consider the choice of 

different mortality models in order to quantify the so 

called model risk. 
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