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Enrico De Giorgi (Switzerland) 

A behavioral explanation of the asset allocation puzzle 

Abstract 

This paper combines a behavioral reward-risk model based on prospect theory with multiple investment accounts to 

explain the asset allocation puzzle, that is, the observation that investors violate the two-fund separation property of 

optimal mean-variance allocations. In a empirical analysis with U.S. data, the authors show that investors with prefe-

rence according to the behavioral reward-risk model and multiple investment accounts, invest a higher proportion into 

bonds and large cap stocks as their risk tolerance diminishes, consistently with the empirical findings. 

Keywords: portfolio selection, asset allocation puzzle, prospect theory, mental accounting. 

JEL Classification: G11, D81. 

Introduction

The modern portfolio theory of Markowitz (1952) is a 
rich source of intuition and also the basis for many 
practical decisions. Markowitz’s seminal idea was to 
evaluate portfolios by using two opposing criteria: 
reward, measured by the portfolio’s expected return, 
and risk, measured by the porfolio’s variance. Under 
certain conditions, the mean-variance model of portfo-
lio selection leads to two-fund separation (Tobin, 
1958), that is, all investors hold a combination of the 
same portfolio of risky assets combined with the risk-
free asset. Two-fund separation greatly simplifies 
the advice one should give to a heterogenous set of 
investors since the proportion of risky assets in the 
optimal portfolio is then independent of investor’s 
risk aversion. 

Even though practitioners adhere to the reward-risk 
methodology, their advices do not seem to follow the 
two-fund separation property1. This so-called asset 
allocation puzzle was first observed by Canner, Man-
kiw, and Weil (1997) who found that in practitioners’ 
advice the more risk-averse is the client, the larger is 
the bonds-to-stocks ratio. Moreover, Wang (2003) 
identifies an asset allocation sub-puzzle, that is, in 
financial advisors’ recommendations the proportion of 
large cap stocks relative to total holding of stocks in-
creases with increasing risk aversion. 

In this paper we combine the behavioral reward-risk 
model suggested by De Giorgi, Hens, and Mayer 
(2006) with the behavioral portfolio theory of She-
frin and Statman (2000) and provide a behavioral 
solution to the asset allocation puzzle and the sub-
puzzle. The behavioral reward-risk model of De 
Giorgi, Hens, and Mayer (2006) is based on the 
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trade-off between gains and losses that is incorpo-
rated in the prospect theory of Kahneman and Tversky 
(1979). The prospect theory is a descriptive model of 
preferences which assumes that alternatives are eva-
luated according to a reference-dependent, kinked 
(loss aversion) and convex-concave value function in 
addition to inverse S-shaped probability weighting 
functions. For given asset payoffs, De Giorgi, Hens, 
and Mayer (2006) define reward as the prospect theory 
value function applied over gains, while risk is the 
negative of the prospect theory value function applied 
over losses and normalized by the index of loss aver-
sion. The normalization for losses implies that loss 
aversion describes the investor’s tradeoff between 
gains and losses, while it doesn’t impact how investors 
measure losses. Gains and losses are defined with 
respect to a subjective reference point, which describes 
investors’ target returns or aspiration levels. Conse-
quently, the risk measure describes the risk that assets’ 
payoffs are below the reference point. 

The reward and risk measures that De Giorgi, Hens, 

and Mayer (2006) defined based on prospect theory 

obviously depend on the parametrization of prospect 

theory by means of the utility index, as well as on the 

choice of the reference point which defines what is 

perceived as a gain and what is perceived as a loss. De 

Giorgi, Hens, and Mayer (2011) show that under some 

conditions for the utility indexes and the reference 

points, the behavioral reward-risk model of De Giorgi, 

Hens, and Mayer (2006) also satisfies the separation 

property for optimal portfolio allocations. Examples of 

reward and risk measures leading to this result are 

those defined by means of the piecewise-power value 

function suggested by Tversky and Kahneman (1992) 

and having the risk-free return as reference point, 

which are common specifications of prospect theory in 

behavioral finance. 

In general, optimal solutions to the behavioral re-
ward-risk model do not satisfy the two-fund separa-
tion property. For example, if reward and risk meas-
ures are defined according to a piecewise-power value 
function and the reference point is higher than the risk-
free return and identical for all investors, then two-
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fund separation is violated. Nevertheless, when the 
reference point is identical for all investors, deviations 
from two-fund separation in the behavioral reward-risk 
model are not systematic, e.g., the bonds-to-stocks 
ratio and the ratio between large cap stocks and the 
total holding of stocks are not monotonic as a function 
of investors’ loss tolerance. However, this is due to the 
assumption that all investors possess the same refer-
ence point, which is not realistic, e.g., we expect inves-
tors with higher loss tolerance to also possess higher 
reference points. Consequently, we extend the beha-
vioral reward-risk model in order to allow investors 
possessing different or even multiple (if multiple in-
vestment goals exist) reference points. 

We combine the behavioral reward-risk model with 
the multiple-account version of the behavioral portfo-
lio theory of Shefrin and Statman (2000). According to 
this theory investors possess different mental accounts 
which correspond to different aspiration levels, in-
vestments goals, or, in our framework, reference 
points1. Low aspiration accounts refer to need for secu-
rity, while high aspiration accounts refers to hope for 
richness. In the behavioral reward-risk model, risk 
increases with the reference point, since the value and 
the probability of losses obviously increase when the 
reference point is higher. Therefore, investors with low 
degrees of loss tolerance mainly invest in accounts 
with low reference points, while investors with higher 
degrees of loss tolerance put a higher proportion of 
their wealth into accounts with high reference points. 
For each account, investors determine the minimum 
risk portfolio. Indeed, given their reference point for 
the corresponding mental account, investors’ goal is to 
minimize the risk of being below the reference point, 
while higher reward refers to mental accounts with 
higher reference points or aspiration levels. Finally, 
investors allocate their wealth between the different 
accounts in order to maximize their total reward, given 
the loss constraint implied by their loss tolerance. This 
step is a simple linear program since investors treat 
mental accounts separately, e.g., aggregate the differ-
ent accounts ignoring co-movements between the 
payoffs of accounts’ specific portfolios. 

We perform an empirical analysis on U.S. data. We 
specify the behavioral reward-risk model using the 
piecewise-exponential value function, as suggested by 
Kobberling and Wakker (2005) and De Giorgi and 
Hens (2006). We define investors’ account using de-
terministic reference points, which corresponds to 
various target returns. We compute optimal portfolios 
as a function of investors’ loss tolerance according to 
the behavioral reward-risk model with multiple ac-

                                                     
1 Mental accounting refers to the set of “cognitive operations used by 
individuals [...] to organize, evaluate, and keep track of financial activi-
ties” (Thaler, 1999). Here we consider the component of mental ac-
counting which relates to the way investors assign different activities, or 
investment goals, to different (mental) accounts.

counts. We show that the bonds-to-stocks ratio is low-
er in high aspiration accounts relative to low aspiration 
accounts. Similarly, the ratio between large cap stocks 
and the total holding of stocks is higher for low-to-
medium aspiration accounts relative to very high aspi-
ration accounts. Since investors with lower loss toler-
ance mainly invest in low aspiration accounts, their 
portfolios also present a lower bonds-to-stocks ratio 
and a lower ratio between large cap stocks and total 
holding of stocks. These findings are consistent with 
the financial advisors’ recommendations reported by 
Canner, Mankiw, and Weil (1997) and Wang (2003). 

1. Related literature 

In their seminal work, Canner, Mankiw, and Weil 

(1997) relax the key assumptions leading to the mean-

variance two-fund separation theorem, which are: (1) 

existence of a riskless asset; (2) mean-variance objec-

tive functions; (3) investors use historical distributions; 

(4) assets can be freely traded (that is, there are no 

short-sale or borrowing constraints); (5) investors op-

erate over a one-period planning horizon, and; (6) 

there is no background risk like human capital. How-

ever, they conclude that deviating from these assump-

tions does not provide satisfactory explanations of the 

recommended portfolio allocations, in particular of the 

relationship between the bonds-to-stocks ratio and risk 

aversion. Indeed, the authors state that it is hard to 

explain recommended portfolio allocations with a 

rational model. 

Several authors have suggested solutions to the asset 

allocation puzzle. For this reason we make an effort 

here to precisely place our contribution in this litera-

ture. Some authors are skeptical about the conclusion 

of Canner, Mankiw, and Weil (1997) concerning the 

inconsistency of financial advisors with respect to the 

modern portfolio theory. Elton and Gruber (2000), for 

example, claim that the bonds-to-stocks ratio test is not 

sufficient to assert that financial advisors do not follow 

modern portfolio theory. In particular they point out 

that violations of two-fund separation might result 

from constraints that advisors are obliged to satisfy, 

like short-sale constraints, and the bonds-to-stocks 

ratio can be increasing or decreasing depending on the 

set of historical data or forecasted expected returns 

used to derive optimal strategies. They conclude that 

in order to test deviations of advisors’ recommenda-

tions from the modern portfolio theory of Markowitz 

(1952) one should also take into account the input data 

used by financial advisors to derive the recommend 

allocations. Indeed, Siebenmorgen and Weber (2003) 

asked German advisors’ to provide both recommended 

allocations for different investors and input data used 

to compute them. However, they found that recom-

mended allocations were difficult to explain within the 

mean-variance model of Markowitz (1952) even when 

using the input data provided by the advisors. 
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Shalit and Yitzhaki (2003) relax the assumption 
about mean-variance preferences and test the efficien-
cy of financial advisors’ portfolio allocations with 
respect to second-order stochastic dominance (SSD). 
They show that these allocations are not inefficient, 
that is, not dominated with respect to SSD by any al-
ternative allocation. Therefore, even if the recom-
mended allocations are not mean-variance efficient, 
they are optimal for at least one risk-averse expected 
utility maximizer, that is, there is no alternative alloca-
tion that is preferred by all risk-averse investors. Our 
concern about this approach is that the set of portfolio 
allocations that are not dominated by others with re-
spect to second order stochastic dominance is large. 
Thus, several portfolios could be justified using second 
order stochastic dominance, while the fact that the 
bonds-to-stocks ratio of recommended allocations 
shows a specific shape as function of risk tolerance 
remains unexplained. Note that also in the mean-risk 
model introduced by De Giorgi (2005) investors select 
portfolios that are not dominated with respect to 
second order stochastic dominance, but two-fund sepa-
ration is satisfied. 

Other authors argue that a static portfolio model is not 

able to capture important aspects of the portfolio deci-

sion process and suggest relaxing assumption (5) 

above, advocating inter-temporal hedging activities as 

a solution of the asset allocation puzzle. Brennan and 

Xia (2000, 2002), Campbell and Viceira (2001, 2002), 

and Bajeux-Besnainou, Jordan, and Portait (2001) 

consider a dynamic model with stochastic interest rate 

where bonds can be used to hedge against the interest 

rate risk and show that the bonds-to-stocks ratio in-

creases with risk aversion due to the hedging compo-

nent of investors’ optimal portfolios. Mougeot (2003) 

introduces a dynamic model with stochastic interest 

rate and estimation risk, that is, uncertainty about mar-

ket’s excess return, and shows that hedging compo-

nents for estimation risk and interest rate risk can ra-

tionalize the asset allocation puzzle. 

While dynamic models of portfolio selection represent 

a theoretical framework for solving the asset allocation 

puzzle that is very appealing to economists, Lioui 

(2007) shows that the results obtained are mainly dri-

ven by the assumption that bonds perfectly hedge the 

interest rate risk and the market price of risk is 

constant, and these assumptions lack empirical 

support. He shows that in a more realistic dynamic 

model for portfolio selection the asset allocation 

puzzle might even be more puzzling. Moreover, 

Wang (2003) points out that inter-temporal hedg-

ing might help explaining the bonds-to-stocks ra-

tio, but it cannot explain why the proportion of 

large cap stocks relative to the total holding of 

stocks increases with risk aversion in financial advi-

sors’ recommendations. 

Gomes and Michaelides (2004) provide a human 
capital explanation of the puzzle: investors face a 
stochastic uninsurable labor income and more risk 
adverse households invest a smaller percentage of 
their assets in stocks since they prefer labor income 
substitutes such as long-term bonds. Again, intro-
ducing human capital does not help understanding 
the sub-puzzle identified by Wang (2003). 

This paper suggests a solution to the asset allocation 
puzzle by addressing assumption (2) above for mean-
variance two-fund separation, that is, that investors 
possess mean-variance objective functions. Indeed, we 
provide a behavioral explanation of the asset allocation 
puzzle and the sub-puzzle assuming that investors 
possess reward-risk preferences founded in the pros-
pect theory of Kahneman and Tversky (1979) and, 
additionally, have different mental accounts which 
correspond to different aspiration levels, or reference 
points. We are not the first suggesting a behavioral 
explanation to the asset allocation puzzle. Siebenmor-
gen and Weber (2003) use a static mean-variance port-
folio selection model where investors are assumed to 
calculate portfolio’s variance without taking correla-
tions into account (pure risk), combined with a naive 
diversification criterion1. Wang (2003) also analyzes 
investors’ choices in a static mean-variance portfolio 
model with pure risk (correlations are ignored), but 
instead of using naive diversification, investors are 
assumed to be averse to extreme losses. In the model 
of Wang (2003), aversion to extreme losses is given by 
a worst-case threshold which is assumed to depend on 
investors’ tolerance to volatility. However, the author 
does not give any functional form to the relationship 
between volatility aversion and loss aversion. 

Our solution to the asset allocation puzzle differs 
from these papers by the fact that we depart from 
the mean-variance setup of Markowitz (1952) and 
use a behavioral reward-risk model that is founded 
in the prospect theory, using the reference point 
which characterizes prospect theory preferences to 
define investors’ mental accounts (Thaler, 1985, 
1999). Extensive experimental evidence supports 
prospect theory as a descriptive model of decision-
making under risk, showing that people have differ-
ent attitudes to risk when facing gains or losses, and 
that people are loss averse, that is, dislike symmetric 
payoffs around their reference points. By contrast, 
mean-variance preferences treat gains and losses in 
the same way. Prospect theory also represents the 
natural framework to study portfolio selection with 
multiple mental accounts, which reflect different in-
vestment goals or reference points. Finally, aversion to 

                                                     
1 Siebenmorgen and Weber (2003) assume that investors solve a tra-

deoff between pure risk and naive diversification, where naive diversifi-

cation is measured as the distance from the 1/n portfolio strategy (see 

DeMiguel, Garlappi, and Uppal, 2007). 
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extreme losses can be easily incorporated into prospect 
theory; see Jalal, Jondeau, and Rockinger (2007) and 
Basili, Renó, and Zappia (2008). Our approach is also 
related to the recent behavioral literature applying 
prospect theory and loss aversion to explain low par-
ticipation in equity markets, under-diversification, the 
disposition effect and the equity premium puzzle: see 
Benartzi and Thaler (1995), Barberis, Huang, and 
Santos (2001), Gomes (2005), Berkelaar, Kouwen-
berg, and Post (2004), Barberis, Huang, and Thaler 
(2006), Barberis and Huang (2008a, 2008b, 2009), Jin 
and Zhou (2008), Dimmock and Kouwenberg (2010), 
De Giorgi and Legg (2009), Bernard and Ghossoub 
(2010), He and Zhou (2011), De Giorgi, Hens, and 
Levy (2011), De Giorgi (2011). We add to this impor-
tant literature by showing that prospect theory and 
mental accounting also helps explaining the asset allo-
cation puzzle and the sub-puzzle. 

The remainder of the paper is organized as follows. 
In section 2 we briefly describe the behavioral re-
ward-risk model of De Giorgi, Hens, and Mayer 
(2006). Section 3 presents an empirical analysis of 
the asset allocation puzzle on U.S. data. The final 
section concludes the proposal. 

2. The behavioral reward-risk model 

In this section, we briefly describe the behavioral re-

ward-risk model of De Giorgi, Hens, and Mayer 

(2006), which is based on the prospect theory of 

Kahneman and Tversky (1979). We assume a one-

period portfolio model, where uncertainty is given by a 

finite state-space {1,..., S}, where each scenario s = 

1,..., S has probability ps  (0,1). There are K + 1 assets 

with random gross returns Rk, k = 1,..., K, and R = 

(R1,..., RK+1)'. We denote by RK +1 the vector of 

assets weights and w0 is the investor’s initial wealth. 

Prospect theory suggests modeling investors’ prefe-

rences as follows: 

Assumption 1 (Prospect Theory Preferences). Inves-

tors evaluate portfolio payoffs according to the value 

function:

S

s

sXRPsXvXV
1

))()(()(     (1) 

for all portfolio payoffs X = 'Rw0 ,

where v is a two-time differentiable function on R\{0}, 

strictly increasing on R, strictly concave on (0, )

and strictly convex on (- ,0), with v(0) = 0; s = w(ps)

and w is a differentiable, non-decreasing function 

from [0,1] onto [0,1] with w(p) = p for p = 0 and 

p = 1 and with w(p) > p (w(p) < p) for p small (large); 

RP(X) is a subjective reference point, which might 

depend on the payoff X. If RP(X) = RP for all X,

then the reference point is fixed. If RP(X)

= (1 + ) q(X), where q(X) is the price of portfolio X
and  > 0, than the reference point corresponds to a 
fixed target return .

The prospect theory assumes that investors code 
payoffs in terms of gains and losses, that is, payoffs 
above and below a subjective reference point, re-
spectively. Moreover, it also assumes different risk 
attitudes with respect to gains than with respect to 
losses (reflection principle). These assumptions 
suggest a natural way to define a reward-risk trade-
off that describes investors’ preferences. De Giorgi, 
Hens, and Mayer (2006) rewrite the value function 
(1) by separating portfolio outcomes which are 
above the reference point and portfolio outcomes 
which are below the reference point and obtain 

S

s

sXRPsXvXV
1

)))()(,0(max()(

,)))()(,0(min(
1

1

s

S

s

XRPsXv          (2) 

where 1
)('0lim

)('0lim

xv

xv

x

x
is the index of loss 

aversion, as defined by Benartzi and Thaler (1995) 

and Kobberling and Wakker (2005). 

Equation (2) can be seen as a tradeoff between risk 

and reward, where the reward and risk measures are 

s

S

s

XRPsXvXPT )))()(,0(max(
1

, (3)

s

S

s

XRPsXvXPT )))()(,0(max(
1

1

, (4) 

respectively. PT+ measures positive deviations of 
assets’ returns with respect to the reference point. 
By contrast, the reward measure ignores assets’ 
payoffs which are below the reference point, that is, 
losses. Rather than affecting portfolio reward, we 
believe that losses should impact portfolio’s risk. In 
fact, losses are determined by means of the risk 

measure PT . Finally, the index of loss aversion 
measures the investor’s tradeoff between gains and 

losses, since PT  has been normalized by  and 
therefore does not account for loss aversion. The 
portfolio choice problem is: 

1

00

,1

,)(thatsuch)(max

KRe

ptRwPTRwPT (5)

where
1KRe  is a vector of ones. The parameter 

pt represents investor’s risk aversion and is closely 
related to it’s index of loss aversion . In the sequel, 

we will consider pt  as the parameter reflecting in-
vestors’ loss aversion. We call problem (5) the be-
havioral reward-risk model. 
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3. Empirical application 

This section derives the optimal (PT+, PT )-portfolio 
allocations between cash, bonds, small-mid caps and 
large caps using yearly historical returns from 1927 
to 2007. We show that the prospect theory reward-
risk model with mental accounting (Thaler, 1985, 
1999) offers an explanation to the asset allocation 
puzzle and the sub-puzzle. 

3.1. Data. We use yearly nominal returns of the 
CRSP market portfolio (“market”), of a bond index 
(“bonds”), and of the US one-month Treasury Bill 
(“cash”). In addition to this, we also include yearly 
nominal returns of two Fama and French US com-
mon stock portfolios formed on market capitaliza-
tion of equity: small-mid caps (“small-mid”) and 
large caps (“large”)1. The equity data are obtained 
from Kenneth French’s online data library; the bond 
index corresponds to the U.S. intermediate-term gov-
ernment bond index maintained by Ibbotson Asso-
ciates; T-Bill data are also from Ibbotson Associates. 
The sample covers the period from January 1927 to 
December 2007, with a total of 81 yearly observations. 
Table 1 gives the summary statistics of our data. In our 
empirical analysis, similarly to Canner, Mankiw, and 
Weil (1997), we assume that cash is risk-free with a 
yearly gross return R0 = 1 + r = 1.0378 corresponding 
to the mean gross return of the T-Bill. 

Table 1. The data 

Panel A

Assets T-Bill 
Bond 
index

Market Small-mid Large 

Mean 3.78 5.34 12.01 15.63 11.74

Std. deviation 3.11 5.27 20.11 27.63 19.37

Skewness 0.95 1.16 -0.36 0.27 -0.37

Kurtosis 0.96 2.14 -0.02 0.96 0.00

Maximum 14.72 26.02 57.50 111.45 53.10

Minimum -0.04 -5.17 -44.35 -46.82 -43.21

Panel B 

 T-Bill 
Bond 
index

Market Small-mid Large 

T-Bill  1.00 0.49  -0.03  -0.10 -0.02 

Bond index 0.49 1.00 0.03 -0.03 0.06

Market  -0.03 0.03 1.00 0.93 0.99

Small-mid -0.10 -0.03 0.93 1.00 0.89

Note: Panel A reports the summary statistics of yearly nominal 
returns (in %) for the Treasury Bill, the bond index, the CRSP 
market portfolio and the two Fama and French U.S. stock port-
folios formed on market capitalization (small-mid and large). 

                                                     
1 The returns of the small-mid caps portfolio are obtained from the Lo30 

and the Med40 portfolios of Fama and French. Based on the number of 

firms nt
Lo30 and nt

Med40 contained in these portfolios and the average 

market capitalization amct
Lo30 and capitalization amct

Lo30 and amct
Med40,

we derive at each time t the weights t
Lo30 = nt

Lo30 amct
Lo30/mct

tot and 

t
Med40 = nt

Med40 amct
Med40/mct

tot where mct
tot = nt

Lo30 mct
Lo30+ nt

Med40

amct
Med40. The returns of the small-mid caps portfolio are then obtained 

as rt
sm = t

Lo30 rt
Lo30+ t

Med40 rt
Med40. The large caps portfolio corresponds 

to the Hi30 portfolio of Fama and French. 

There are 81 observations ranging from 1927 to 2007. The bond 
index and the Treasury Bill data are from Ibbotson Associates, 
the stock portfolios and the CRSP market portfolio are from 
the Kenneth French data library (http://mba.tuck.dartmouth. 
edu/pages/faculty/ken.french/). Panel B reports the correlation 
between any pair of assets. 

3.2. Prospect theory and two-fund separation. We 

compute optimal (PT+, PT )-portfolios by solving 

problem (5) using historical distributions as proxies for 

future returns, that is, we assume that future returns are 

uniformly distributed on the set {rt : t = 1927,..., 

2007}, where rt is the vector of observed returns for 

year t. We impose short-sale constraints. This is con-

sistent with the observation that financial advisors’ 

recommendations reported by Canner, Mankiw, and 

Weil (1997) and Wang (2003) only presents long 

positions on all asset classes. In general, the beha-

vioral reward-risk model is non-convex and non-

differentiable and thus we cannot apply Lagrange me-

thods. We refer to De Giorgi, Hens, and Mayer (2007) 

for a detailed discussion of the numerical methodolo-

gies used to solve the (PT+, PT )-optimization. We 

combine the behavioral reward-risk model (5) with the 

multiple-account version of the behavioral portfolio 

theory of Shefrin and Statman (2000). According to 

this theory investors possess different mental accounts, 

which correspond to different aspiration levels or in-

vestment goals. In the prospect theory reward-risk 

model this is captured by assuming that investors pos-

sess multiple reference points, which characterize their 

aspiration levels and the corresponding mental ac-

counts. Low aspiration accounts reflect need for secu-

rity, while high aspiration accounts reflects hope to 

achieve richness. Risk, as measured by PT , obviously 

increases with the reference point. Consequently, in-

vestors with low loss tolerance only invest into low 

aspiration accounts. For each account, optimal (PT+,

PT-)-portfolios are derived, where reward and risk 

measures are defined using the account-specific refer-

ence point. Finally, wealth is allocated to the different 

accounts according to investors’ loss tolerance. In 

performing this step, investors treat accounts’ specific 

portfolios as separate entities ignoring dependencies 

between portfolios’ payoffs. 

We compute optimal (PT+, PT )-portfolios for each 

account by solving problem (5). We specify reward 

and risk measures PT+ and PT , respectively, using a 

piecewise-exponential value function 

0))exp(1(

0)exp(1
)(

xx

xx
xv                 (6) 

suggested by Kobberling and Wakker (2005) and 
De Giorgi and Hens (2006). The reference point is 
assumed to correspond to a fixed rate of return, that 

is, RP(X) = (1 + ) q(X) for some  R+, which cor-
responds to the account’s aspiration level. We take 
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