
Scientific Annals of Computer Science vol. 23 (2), 2013, pp. 229–249

doi: 10.7561/SACS.2013.2.229

Algorithmics of Posets Generated by Words
Over Partially Commutative Alphabets

(Extended Version)

Łukasz Mikulski1, Marcin Piątkowski1, Sebastian Smyczyński1

Abstract

It is natural to relate partially ordered sets (posets in short) and
classes of equivalent words over partially commutative alphabets. Their
common graphical representation are Hasse diagrams. We investigate
this relation in detail and propose an efficient online algorithm that
decompresses a concurrent word to its Hasse diagram. The lexicograph-
ically minimal representative of a trace (an equivalence class of words)
is called its lexicographical normal form. We give an algorithm which
enumerates, in the lexicographical order, all distinct traces identified
by their lexicographical normal forms. The two presented algorithms
are the main contribution of this paper.

Keywords: poset, Hasse diagram, partially commutative alpha-
bets, algorithms, generations

Introduction

Many practical problems related to partially ordered sets have a very high
time complexity. Examples of such problems are the #P-complete problem
of counting the number of posets linear extensions [1] or the NP-complete
problem of computing the minimal number of jumps [3].

Among less complex problems one can mention a problem of computing
the Hasse diagram of a poset (the transitive reduction of its graph) which
has cubic time complexity. We consider a language-theoretic approach to

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruń, Poland.
Email: {lukasz.mikulski, marcin.piatkowski, sebastian.smyczynski}@mat.umk.pl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201399642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

230 Ł. Mikulski, M. Piątkowski, S. Smyczyński

posets that uses words over partially commutative alphabets. It allows us to
exploit the inner structure of a given poset to develop new algorithms. The
complexity of these algorithms depends not only on the number of elements of
a poset, but also on the complexity of its structure (the size of the concurrent
alphabet used to represent the poset). The basic theory together with some
algorithms can be found in [4] and [5]. However, most of ideas presented
there is based on the projection representation of traces which results O(nk)
memory complexity.

In the first section we give some basic notions related to the formal
languages, partial orders and concurrency theories. In Section 2 we look more
closely at the relation between words over partially commutative alphabets
and posets. We analyse the dependence graphs of concurrent words and their
relation to the Hasse diagrams of posets. We also summarise the situation
when Hasse diagram has a special structure. Particularly, we show that every
poset can be generated by the word over the partially commutative alphabet.
Moreover we prove that P4-freeness of dependence relation of the concurrent
alphabet guarantees N -freeness of the Hasse diagram.

In the following section we deal with a decoding of the Hasse diagram
from an arbitrary concurrent word and give an online algorithm for its
construction. The presented algorithm works in time of O(nk2), where n
denotes the size of the poset, and k the size of the alphabet. Note that the
presented algorithm has memory complexity of O(k2). Together with the
possibility of immediate output of partial results it allows us to process long
words.

The study of the properties of words over partially commutative al-
phabets requires efficient tools for the enumeration of distinct classes of
equivalent words (in the sense of the independence relation). We deal with
this practical problem in the fourth section. Basically, we identify classes
of equivalent words with their lexicographical normal forms [5]. Further,
we show how to compute the considered representatives of all classes in the
lexicographical order. For a given concurrent word (that is canonical), the
single step of our algorithm computes the next (in the lexicographical order)
word that is canonical. Moreover, if we consider possible blocks of identical
letters instead of their individual occurrences, we can achieve the better time
complexity of a single step.

The preliminary version of this paper was published in Proceedings
of Prague Stringology Conference 2011 ([13]). The new version is revised,
contains some additional facts, proofs, new and extended examples, and

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 231

improved description of generation algorithm (with better time complexity).

1 Basic Notions

We use some basic notions of formal languages theory. By Σ we denote a finite
set, called the alphabet. Elements of the alphabet are called letters. Words
are sequences over the alphabet Σ. The sets of all finite words is denoted by
Σ∗, while by Alph(w) ⊆ Σ we denote the set of all letters contained in the
word w.

A concurrent alphabet is a pair (Σ,D), where Σ is an alphabet and
D ⊆ Σ× Σ is a reflexive and symmetric relation, called dependence relation.
With dependence we associate, as another relation, an independence relation
I = Σ × Σ \D. Having the concurrent alphabet we define a relation that
identifies similar words. We say that a word σ ∈ Σ∗ is in relation ≡D with a
word τ ∈ Σ∗ if there exists a finite sequence of commutations of subsequent
and independent letters that leads from σ to τ . Relation ≡D⊆ Σ∗ × Σ∗ is
a congruence (whenever it causes no confusion, relation symbol D will be
omitted).

To emphasise that considered word w ∈ Σ∗ is over a concurrent alphabet
(Σ, D) (an alphabet equipped with a dependence relation) we call it a partially
commutative word. On the other hand, dividing the set Σ∗ by the relation
≡ we get a quotient monoid. The elements of Σ∗/≡ are often called traces
(see [6, 11, 12]). This way, every partially commutative word σ determines a
trace α = [σ].
Example. Let Σ = {a, b, c, d} and (Σ, D) be the concurrent alphabet, where

a

D

b

cd

while the independence relation is
a

I

b

cd

The words abbaacd and abbcaad are equivalent.
Note that dependence relation D is reflexive. However, here and through

the paper loops in graphical representation of the relation are omitted.
A partial order on the set X is a reflexive, antisymmetric and transitive

relation ≤ ⊆ X × X. If additionally every pair of elements from X is
comparable, the relation ≤t is called the total order. A pair (X,≤) is called
the partially ordered set, (poset in short). Observe that in the case of a

232 Ł. Mikulski, M. Piątkowski, S. Smyczyński

totally ordered set (X,≤t) elements of X form a sequence (denoted by w≤t).
A linearisation of a partial order (X,≤) is a sequence w≤t for any total order
(X,≤t) containing (X,≤), which means that ≤ ⊆ ≤t.

With every poset we can associate its directed graph (digraph in short)
G = (X,E). The vertices of G are elements of the poset. There is an arc
between two vertices x, y ∈ X if x < y (i.e. x ≤ y but x 6= y). Such a graph
is always acyclic. We can also define the Hasse diagram of the poset (X,≤)
as a transitive reduction of the graph G. More general, the graph of every
relation on X which transitive closure is equal to ≤ is called a diagram of ≤.

Definition 1 Let G = (X,E) be an acyclic graph. The Hasse diagram of G
is the acyclic graph H = (X,E′ ⊆ E), such that an arc (x, y) ∈ E′ if there
is no z ∈ X (different than x and y) for which there are both paths (in G)
from x to z and from z to y.

The example of a poset’s graph and its Hasse diagram is shown on
Figure 1. We can observe that the size of the Hasse diagram is significantly
smaller than the size of the poset’s graph. Therefore, Hasse diagrams can be
seen as a compact representations of posets. Another efficient representation
of a poset is discussed in the following section.

• • • • • • •

Figure 1: The graph of an example poset. The dashed edges are not
contained in its Hasse diagram.

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 233

2 From Partially Commutative Words to Posets

With every word w over partially commutative alphabet (Σ, D) we can
associate a poset. One of the diagrams of this poset is induced by the
dependence graph of a word w. An element vj associated with the letter
wj is greater than an element vi associated with the letter wi if i < j and
wiDwj . The label of the element (vertex) vi is denoted by `(vi) = wi. It is
worth noting that two words are equivalent if and only if their dependence
graphs are the same (isomorphic and respecting labelling).

By the definition of a diagram, reflexive transitive closure of the depen-
dence graph of a word is basically a graph of a poset associated with the
word. Additionally, transitive reduction of this dependence graph is exactly
the Hasse diagram of the considered poset, see Figure 2.

Remark 1 For an arbitrary concurrent word, its Hasse diagram represen-
tation is unique. On the other hand, two different words over the same
concurrent alphabet can lead to the same Hasse diagram structure (without
taking into account the labelling of the nodes).

Σ = { a, b, c, d} D =
a b

cd

a b b a c a d

a b b a c a d

Figure 2: A concurrent alphabet (Σ, D), dependence graph and Hasse
diagram of word abbacad over that alphabet.

234 Ł. Mikulski, M. Piątkowski, S. Smyczyński

Lemma 1 Every finite poset (P,≤) can be generated by a word over concur-
rent alphabet.

Proof: For a given finite poset (P,≤), let us define a concurrent alphabet
(Σ, D) in such a way that Σ = P and p1Dp2 if and only if p1 ≤ p2 or p2 ≤ p1.
An arbitrary linearisation of the poset (P,≤) corresponds in a natural way
with a word v ∈ Σ∗ which generates a poset equal to (P,≤). 2

The above observations allow us to represent every poset in a compressed
way by a pair consisting of concurrent alphabet and a single word over that
alphabet. In the next section we will provide an efficient algorithm that
produces a Hasse diagram by decompressing a given word to its associated
poset.

Further optimisation, possible only for Hasse diagrams which are minimal
series-parallel graphs [18], leads us to another data structure which can be
used to solve many problems in a simpler way (for instance, the #P-complete
problem of counting the number of linear expansions [1] can be solved in a
linear time for such posets). In what follows, by a sink of a directed graph
we mean any vertex v1 that has no outgoing arc, while by a source we mean
any vertex v2 that has no ingoing arc. Note that every acyclic graph has at
least one source and one sink, while a path may be considered as a special
kind of graph with all vertices having at most one ingoing and at most one
outgoing arc, and exactly one sink and one source.

Definition 2 A minimal Series-Parallel digraph (MSP) is a graph consisting
of a single vertex and no arcs or is constructed from two disjoint MSPs –
G1 = (V1, E1) and G2 = (V2, E2) – by the following operations:

• Parallel composition: GP = (V1 ∪ V2, E1 ∪ E2);

• Serial composition: GP = (V1 ∪ V2, E1 ∪ E2 ∪ T1 × S2);

where T1 is the set of sinks of G1 and S2 is a set of sources of G2. In other
words, series-parallel graphs can be represented as an expression built by
series and parallel composition of graphs with single-vertex graphs as atoms.

The example of the graphical representation of the composition opera-
tions is shown on Figure 3.

The properties of series-parallel graphs are deeply studied (see for
instance [2, 15, 18]). A very useful determinant for sequential parallel graphs
is their N -freeness [17].

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 235

a

b c

d

acbaddbaacabd

D

a1

c2

b3 a4

d5 d6

b7

a8 a9

c10

a11 b12

d13

Figure 3: The dependent alphabet D, the word w and its Hasse diagram
divided to series-parallel blocks.

Definition 3 An N -poset is a poset consisting of four elements a, b, c, d
with relations a < c, b < c and b < d (drawing a graph of such poset with
greater elements higher brings to mind capital letter N).[10]

Definition 4 A poset is N -free if its graph does not contain an induced
subgraph isomorphic with Hasse diagram of N -poset.

Remark 2 In the case of undirected graphs, analogue is P4-free graph (a
graph that does not contain an induced path of length 3).

The example of the graphical interpretation of the above mentioned
notions can be seen on Figure 4.

In general, this type of graphs, also in the context of partial orders,
is deeply studied (see [9, 16, 18] and the references therein). However,
observation worth mentioning is the following:

Lemma 2 If a dependence graph D of an alphabet Σ is P4-free then the
Hasse diagram of every partially commutative word w ∈ (Σ∗, D) is N -free.

Proof: We prove this lemma by contradiction. Let us suppose that there
exists a word w over concurrent alphabet (Σ, D) with P4-free graph of
relation D which Hasse diagram H(w) has induced digraph N = (Vn, En) of
N shape.

236 Ł. Mikulski, M. Piątkowski, S. Smyczyński

a b

c d(a)

•

•

•

• • (b)

•

•

•

• •(c)

Figure 4: N -poset, simple N -free poset and P4-free graph.

v1 = a
v2 = b

v3 = c
v4 = d

(a)

(i)

(ii)

(iii)

v1 = a
v2 = b

v3 = c
v4 = d

v5 = e

(b)

Figure 5: Proof situation.

Without loss of generality we can assume that graph N is the first graph
in Figure 4. It means that Vn = {v1, v2, v3, v4} and labels of these vertices
are v1 = a, v2 = b, v3 = c, v4 = d.

Let us consider the situation depicted in Figure 5a. We start from
relation (i) and claim that letters a and b are independent. Indeed, otherwise,
there has to be a path p in H(w) between vertices v1 and v2. Let us suppose
that v1 is source of path p. Then there is a path from v1 to v3, so there
should not be an arc (v1, v3) in Hasse diagram.

We proceed by deducing that letters c and d (relation (ii)) are also
independent. Otherwise, there is a path p between vertices v3 and v4 in
graph H(w). If v3 is a source of path p then arc (v2, v4) should not be present

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 237

in H(w). If v4 is a source of path p then arc (v2, v3) should not be present
in H(w).

The relations aIb and cId shows that `(v1) 6= `(v2) and `(v3) 6= `(v4).
We also know that bDc so `(v1) 6= `(v3) because one letter can not be at
once dependent and independent with another. For similar reasons b 6= d
and b 6= c.

Now we consider the relation (iii) from Figure 5a. Firstly let us suppose
that aId. Then also a 6= d and we have a subalphabet {a, b, c, d} ⊆ Σ with a
dependence graph of shape P4. It is in contradiction with the assumption
that D is P4-free.

The last situation to consider is aDd. Then there should be a path p
between v1 and v4. If the vertex v4 is a source of path p then we have a
path form v2 to v3 of length greater than 1, so the arc (v2, v3) should not be
present in graph H(w). Let us suppose that vertice v1 is a source of path p.
Let the first arc of path p be (v1, v5) and the label of v5 is denoted by e (see
Figure 5b). Then, the letter e is independent with c (otherwise, one of arcs
(v1, v3) or (v1, v5) should not be present in H(w)) and independent with b
(otherwise, one of arcs (v1, v3) or (v2, v4) should not be present in H(w)).
It means that `(v5) 6= `(v2), `(v5) 6= `(v3) and `(v5) 6= `(v1), so we have a
subalphabet {a, b, c, e} ⊆ Σ with a dependence graph of shape P4. It is in con-
tradiction with the assumption that D is P4-free and the proof is complete. 2

3 Construction of Hasse Diagram

This section is devoted to the problem of constructing the Hasse diagram
(see Definition 1) for an arbitrary concurrent word. At the beginning, we
give an algorithm and its pseudo-code. After that, we discuss the complexity
of our solution.

The algorithm exploits the knowledge of the structure of resulting
diagram. We can summarise it in the following facts:

Lemma 3 Let w ∈ Σ∗ be a word and H(w) = (V,EH) be a Hasse diagram
of w. If there exists the arc connecting vertices vi and vj (labelled a = wi and
b = wj respectively) then letters a and b do not appear in word w between
indexes i and j.

Proof: Let G = (V,E) be the dependence graph of the word w over the

238 Ł. Mikulski, M. Piątkowski, S. Smyczyński

concurrent alphabet (Σ, D). The existence of an arc between vi and vj in
graph H implies that there is also an arc in the graph G, hence letters a and
b are dependent (formally aDb). Let us suppose that there exists a letter
c = `(vk) (for i < k < j) that is dependent both with a and b. Then, by
Definition 1, there is a path in graph G between vertices vi and vj of length
greater than one, so there is no arc between vi and vj in graph H(w), which
leads to a contradiction, and completes the proof. 2

Lemma 4 Let w ∈ Σ∗ be a word and H(w) be a Hasse diagram of w. Then,
in H(w), for each vertex there are no more than k = |Σ| outgoing arcs and
no more than k ingoing arcs.

Proof: Let G = (V,E) be the dependence graph of the word w over concur-
rent alphabet (Σ, D). Let us suppose that there is a vertex vi which has k+ 1
outgoing arcs. There are k letters in alphabet Σ, so two of these outgoing
arcs lead to two distinct vertices vj and vk (i < j < k) labelled with the
same letter. Without loss of generality we can assume that `(vi) = a and
`(vj) = `(wk) = b. From Lemma 3 there is no arc in graph H(w) between
vertices vi and vk, which proves that there are at most k outgoing arcs.
Similar reasoning allows us to prove the second part of the lemma on the
number of ingoing arcs. 2

Lemma 5 Let w ∈ Σ∗ be a word and H(w) = (V,E) be a Hasse diagram
of w. Ingoing arcs of a given vertex vi are fully determined by the vertices
associated with last occurrences of letters dependent with `(vi). More formally,
(vj , vi) ∈ E if and only if j < i and `(vi)D`(vj) and there is no vertex vk,
such that `(vk)D`(vi) and j < k < i and there is a path from vj to vk.

Proof: Let (vj , vi), where `(vj) = a, be an arc in H(w). Lemma 3 implies
that vj must be the last occurrence of letter a in word w that precedes wi.
Second part of the lemma follows directly from Definition 1 (see proof of the
Lemma 3). 2

Using foregoing observations we propose an additional structure that
saves information about last occurrences of each letter processed so far. It

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 239

allows us to immediately add a new vertex to Hasse diagram, with all of
its ingoing arcs. Our structure consists of a list of dependencies, a set of
visibility (both of size at most k) and a pointer to the last occurrence, for
each letter of the alphabet Σ. The list Da contains all letters dependent with
a in LIFO (last in – first out) order of their last occurrence in the currently
constructed part of the diagram. The set Va contains all letters b whose last
occurrences are visible from the last vertex labelled with a. In other words,
there exists a path from vi to vj where vi and vj are the last occurrences of
letters `(vi) and `(vj) in hitherto diagram. Such elements vi will be called
sources of vj . The last element is a pointer La which is basically a pointer
to the last vertex labelled with the letter a in processed diagram. We will
also use a temporary set V .

Before we start generating Hasse diagram, we set all pointers to null
and all sets to be empty. The lists of dependencies should be complete with
all dependent letters, but the initial order does not matter. With such data
we are ready to process a new letter a of a word w in online manner, updating
the proposed structure after each step and creating a new vertex and new
arcs. During the addition of the new vertex labelled with letter a we clear
set V and browse the list Da. For each letter b from that list we check if the
pointer Lb is not empty and if b does not belong to V (its last occurrence is
not already visible from the new vertex). If we succeed, we add a new arc
from the vertex vb pointed by Lb to the newly created vertex. Addition of
a new arc implies that there is also a path from every source of vb to the
recently created vertex. Therefore, we add set Vb to our temporary set V . It
is worth noting that the order of processing letters form list Da is important
because of the dynamically changing set V .

After adding new arcs, we have to update our structure. Firstly, we
remove the letter a from each set Vb – the new vertex is now the last occurrence
of letter a. Next, we switch the position of the letter a in every list Db – the
letter a is the most recent letter now. The last operation is the update of the
set Va to V ∪ a and pointer La to the position of the new vertex. Note that
in the rest of the generation process we need only the most recent vertex
labelled with a and we do not have to store other vertices labelled with the
same letter.

The correctness of the algorithm presented above relies on lemmas
formulated at the beginning of this section. Let us discuss the memory and
time complexity of our solution. The proposed data structure consists of k
lists D of at most k items each. It gives us k2 elements. The k sets V can

240 Ł. Mikulski, M. Piątkowski, S. Smyczyński

Algorithm 1: Hasse diagram
Input: a word w = w1w2 · · ·wn over a concurrent alphabet (Σ, D)1

Output: a graph G representing Hasse diagram2

foreach a ∈ Σ do3

La := 0; Va := ∅;4

for i := 1 to n do5

a := wi; V := ∅;6

foreach b ∈ Da in order of the last occurrence do7

if Lb 6= 0 and b /∈ V then8

Insert an arc wLb
→ wi into G ;9

V := V ∪ Vb;10

foreach b ∈ Σ do11

Vb := Vb/{a};12

foreach b ∈ Da do13

Move a to the beginning Db;14

Va := V ∪ a; La := i;15

be implemented using O(k2) memory, we also need k pointers L. Summing
up, the most significant part of this data structure is a set of lists and the
memory complexity is O(k2).

The presented algorithm is online, which gives a linear factor in time
complexity. Let us analyse a single step of extending the diagram with a new
vertex (processing a new letter). We can see there a sequence of three loops.
The first one is the most significant. We have to compute at most k sums of
subsets of set Σ. It gives us a factor k2. Every of k operations in the second
loop (line 11) can be done in constant time. Furthermore, the operations in
last loop (line 13) has logarithmic time complexity if we make use of priority
queue but it can be implemented in constant time. Summarising, we have
a complexity of O(k2) for each step of algorithm that in total gives O(nk2)
time complexity for processing the whole word. See Figure 6 for the detailed
step by step example of the Hasse diagram generation.

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 241

Current Dependence Visibility Pointers Hasse
letter lists sets diagram

ε

Da = (a, b, d)
Db = (b, a, c)
Dc = (c, b, d)
Dd = (d, a, c)

Va = ∅
Vb = ∅
Vc = ∅
Vd = ∅

La = 0
Lb = 0
Lc = 0
Ld = 0

a

Da = (a, b, d)
Db = (a, b, c)
Dc = (c, b, d)
Dd = (a, d, c)

Va = {a}
Vb = ∅
Vc = ∅
Vd = ∅

La = 1
Lb = 0
Lc = 0
Ld = 0

a1

ad

Da = (d, a, b)
Db = (b, a, c)
Dc = (d, c, b)
Dd = (d, a, c)

Va = {a}
Vb = ∅
Vc = ∅
Vd = {a, d}

La = 1
Lb = 0
Lc = 0
Ld = 2

a1 d2

adb

Da = (b, a, d)
Db = (b, a, c)
Dc = (b, c, d)
Dd = (d, a, c)

Va = {a}
Vb = {a, b}
Vc = ∅
Vd = {a, d}

La = 1
Lb = 3
Lc = 0
Ld = 2

a1 d2 b3

adbc

Da = (a, b, d)
Db = (c, b, a)
Dc = (c, b, d)
Dd = (c, d, a)

Va = {a}
Vb = {a, b}
Vc = {a, b, c, d}
Vd = {a, d}

La = 1
Lb = 3
Lc = 4
Ld = 2

a1 d2 b3 c4

adbcb

Da = (b, a, d)
Db = (b, a, c)
Dc = (b, c, d)
Dd = (d, a, c)

Va = {a}
Vb = {a, b, c, d}
Vc = {a, c, d}
Vd = {a, d}

La = 1
Lb = 5
Lc = 4
Ld = 2

a1 d2 b3 c4 b5

Figure 6: Example of the Hasse diagram generation for the word adbcb using
Algorithm 1.

242 Ł. Mikulski, M. Piątkowski, S. Smyczyński

4 Generation of All Disjoint Traces

The problem with the compressed presentation of a poset discussed in the
previous sections is that it is not unique, see Remark 1. For a given ordered
concurrent alphabet (Σ = {a1 < a2 < . . . < ak}, D) and a word w, every
other word v equivalent with w represents the same poset. To overcome this
disadvantage we can use the notion of lexicographic normal form [5]. Basically,
from all the representatives we choose the lexicographically minimal one as a
normal form. All words that are in such normal form are called canonical
words. The natural problem that arises, is to enumerate all nonequivalent
words (in fact lexicographic normal forms of traces) of length n for a given
concurrent alphabet. In this section we deal with this problem.

Let Σ = {a1 < a2 < . . . < ak} be an ordered alphabet and X a
set of words over Σ. For a word w ∈ X we define its X-successor as the
lexicographically minimal word v ∈ X such that v 6= w and w ≤ v.

The proposed algorithm is motivated by the well known SEPA algorithm,
see [7, 8]. We consider a set X of lexicographically minimal representatives
of all nonequivalent traces of length n. For a given word w we identify and
modify only its working suffix – the suffix of w which makes it different
from its X-successor. We begin enumeration with lexicographically minimal
word w = a1a1 . . . a1. Then, we consecutively modify the current word to
its X-successor. The correctness of proposed procedure follows from several
corollaries to the following fact:

Proposition 1 Let (Σ, D) be a concurrent alphabet and < be a linear or-
dering of Σ. Then, a word w ∈ Σ∗ is the lexicographic normal form of a
trace over (Σ, D) (is canonical) if and only if for each factor aub of w with
a, b ∈ Σ, u ∈ Σ∗, ∀c∈Alph(au)(c, b) ∈ I it holds a < b.

The proof of Proposition 1 can be found in [4]. For self consistency we
include the following corollaries equipped with independent proofs.

Corollary 1 If wv is a canonical word then both words w and v also are
canonical. In other words prefixes and suffixes of canonical words are canon-
ical.

Proof: Observe that each factor of w is also a factor of wv, hence by
Proposition 1, each factor aub of w with a, b ∈ Σ, u ∈ Σ∗, ∀c∈Alph(au)(c, b) ∈ I
it holds a < b. Using Proposition 1 we achieve that w is canonical.

Note that the same arguments can be applied to any factor of wv,
particularly for v.

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 243

Corollary 2 In every canonical word w if there exists i such that letters wi

and wi+1 are independent then wi < wi+1.

Proof: We apply Proposition 1 for u = ε.

Corollary 3 If there exists a substring wiwi+1 . . . wj−1wj of canonical word
w such that letter wj is independent with all letters wi, wi+1, . . . , wj−1 then
wj is the maximal amongst these letters. More precisely,

∀l∈{i,i+1,...,j−1}wj > wl.

Proof: We apply Proposition 1 for wlwl+1 . . . wj−1wj for i ≤ l < j.

Definition 5 Let a ∈ Σ be a letter. By Cn
a we denote the set of all canonical

words of length n which start with the letter a.

It is an easy observation that the set Cn
a is nonempty. It contains at

least the word an. Moreover, C1
a = {a}.

Lemma 6 Let w1 ∈ Σ be an arbitrary but fixed letter and w = w1w2 . . . wn

be the lexicographically smallest word from Cn
w1

(for n > 1). Then the letter
w2 is the smallest letter dependent with the letter w1 and the word w2 . . . wn

is the lexicographically smallest word from Cn−1
w2

. Moreover, the sequence of
letters w1, w2, . . . , wn is nonincreasing and every two consecutive letters from
this sequence are dependent.

Proof: We give the proof by induction on the length n.
Let w ∈ C2

w1
. Then w is of the form w1w2, where w2 is dependent with

w1 or strictly greater then w1. Therefore, the smallest element of C2
w1

is the
word w1w2, where w2 is the smallest letter dependent with w1 (maybe w1

itself). Other parts of the lemma are clearly satisfied.
Let us suppose that the lemma holds for all letters and lengths smaller

than k. We prove the case of letter w1 and length k. Let us suppose, that
word w = w1w2 . . . wk is the lexicographically smallest word from Ck

w1
. Then

the letter w2 is (similarly to the case of length 2) dependent with w1 and not
greater than w1. Moreover, from Corollary 1 the word w2 . . . wk is canonical.
If it were not the smallest word from the set Ck−1

w2
, we could change it to

the word of such property achieving better candidate for minimum, and the
proof is complete. 2

244 Ł. Mikulski, M. Piątkowski, S. Smyczyński

The foregoing facts provide us enough information on the structure of
the canonical words to design the algorithm transforming a given canonical
word w into its X-successor. The algorithm consists of three steps:

1. Finding the last index i such that wi 6= ak. We know that index i is
the starting position of the working suffix.

2. Computing the minimal letter a greater than wi such that w1w2 . . . wi−1a
is canonical. It is implied by Corollary 1.

3. Generating the rest of the working suffix to obtain the minimal canonical
word that starts from the letter a (at position i).

To implement the second step we introduce an oracle V : 1 . . . n×Σ→ Σ.
For every position i and every letter a the V (i, a) = Vi(a) answers to
the question - is there a substring wjwj+1 . . . wi−1 such that all letters
wj , wj+1, . . . wi−1 are independent from a and at least one letter from this
substring is greater than a? In the case of positive answer, Vi(a) gives
the maximal witness (the maximal letter from all substring of considered
property), otherwise it simply returns a. Such an oracle can be constructed
in linear time (with respect to n) using the following formula:

V1(a) = a

Vi(a) =

{
a : aDwi−1

max(wi−1, Vi−1(a)) : otherwise

For every letter a such that Vi(a) = a, the string w1w2 . . . wi−1a is canonical.
For the efficient generation of the working suffix in step three we use a

precomputed table Dmin such that ∀a∈Σ Dmin(a) = min{b ∈ Σ : aDb}.
After generating a new canonical word, we have to update the oracle V .

The value of Vj(a) depends only on Vj−1(a) and letter wj−1. Therefore, we
only have to update oracle from Vi+1 to Vn (for the whole working suffix).
Moreover, if there exists such an index l in the working suffix that wl = wl+1,
then the rest of the suffix is constant (all foregoing letters are equal to wl)
and computation of missing oracle values are trivial (Vl+2 = Vl+3 = . . . =
Vn = Vl+1). The example of the enumeration process described above is
shown in Figure 7.

The canonical word abeceeee is transformed into the next canonical word
abeecbbb in the lexicographic order. The first letter of the working suffix c is
changed to e; it cannot be increased to d due to the oracle V4(d) 6= d. Then
the rest of the suffix is generated using Dmin table. Dmin(e) = c, Dmin(c) = b

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 245

Σ = {a, b, c, d, e}
a

b

cd

eD = Dmin =
a b c d e
a b b a c

Working suffix

a b e c e e e e
V1 V2 V3 V4 V5 V6 V7 V8

a a a a e e e

V6←− V7←−

b b b b b b e
c c c c c c c
d d d d e d e
e e e e e e e

Oracle’s update

a b e e c b b b
V1 V2 V3 V4 V5 V6 V7 V8

a a a a e e e e

V7←−

b b b b b e b b
c c c c c c c c
d d d d e e d d
e e e e e e e e

Figure 7: The example of X-successor computation.

and Dmin(b) = b. Finally the working suffix ceeee is transformed into ecbbb.
The oracle V5, V6, V7, V8 is updated afterwards.

The observations mentioned above lead us to the Algorithms 2 and 3. Let
us discuss their memory and time complexity. The used memory is obviously
O(nk), mostly used for oracle V . The time complexity of steps needed for
generating the next canonical word depends on the length #SUFF of the
working suffix (lines from 6 to 13 of Algorithm 2). The line 6 is linear with
respect to #SUFF . Loop in lines 7 – 9 perform at most k iterations. The
next loop (lines 10 – 11), which generates a suffix, makes exactly #SUFF
operations. The most complex work is done in the last loop, which updates
the oracle. At most k times the execution of the procedure Update Oracle is
nontrivial and computes whole Vi. The rest of computation (at maximum
#SUFF times) will end up at line 4 of the Update Oracle procedure, which
can by simply implemented as a reference copying. It gives O(k2 + #SUFF)
complexity of the last loop.

Note that instead of reference copying we can make use of blocks of
the same letters (like in Run Length Encoding compressed representation,
see [14]). Such blocks may appear also when the algorithm changes the first
element of the working suffix to the last letter of the preceding prefix. Such
a solution needs more careful implementation but enables the reduction of
the time complexity of a single step from O(k2 + #SUFF) to O(k2). Note
that it makes the time complexity of a single step independent of the length

246 Ł. Mikulski, M. Piątkowski, S. Smyczyński

Algorithm 2: Enumerate Canonical Words
Input: w := a1a1 . . . a1;1

Output: succ(w);2

for i := 1 to n do3

Update Oracle Vi;4

repeat5

i := last index such that wi 6= ak;6

repeat7

wi := succ(wi);8

until Vi(wi) = wi ;9

for j := i+ 1 to n do10

wj := Dmin(wj−1); // Generate suffix11

for j := i+ 1 to n do12

Update Oracle Vj ;13

OUTPUT w ;14

until w = akak . . . ak ;15

of the word. However, implementing this solution we can not forget that
each non-singleton block needs two columns of the oracle.

Let us recall the example presented on Figure 7. Observe that the
compressed version of working suffix is ce4, while the resulting word is
abe2cb3. This way we avoid the problem of reference copying and filling the
suffix with a constant repeating value (letter b in the example).

If we set k as a constant enlarging only n, the time complexity of
the single step of X-successor generation is O(#SUFF), or O(1) in the
compressed version, and therefore is optimal. Nevertheless, it would be very
interesting to investigate the case when k is close to n. This case needs
another kind of optimisation and new algorithms.

5 Summary and Future Work

In the paper we have discussed an approach to encode posets by strings. We
have used concurrent alphabets and a well known notion of Hasse diagram,
which might be significantly smaller than the graph of a poset. We have

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 247

Algorithm 3: Update Oracle Vi
if i = 1 then1

foreach a ∈ Σ do V1(a) := a;2

else if i > 2 and wi−2 = wi−1 then3

Vi := Vi−1;4

else5

foreach a ∈ Σ do6

if aDwi−1 then7

Vi(a) := a;8

else9

Vi(a) := max(wi−1, Vi−1(a));10

shown that every poset can be represented by a pair consisting of a concurrent
alphabet and a word over this alphabet. However, it is very interesting how to
choose the best pair. The first criterion is the size of the concurrent alphabet
(the one from the proof of Lemma 1 is taken in a very inefficient way). The
second important property is preservation of N -freeness by achieving the
P4-free dependence relation graph.

In the third section we gave an efficient online algorithm that decompress
a concurrent word into a Hasse diagram. It is worth to note that the
concurrent word given as an input for our algorithm does not have to be
in a normal form and may be very long, as we do not have to store neither
entire word nor entire diagram (only a small piece of size O(k2)). Moreover,
utilising additional data in Algorithm 1 we are able to implement an efficient
algorithm for concatenation of Hasse diagrams (over the same concurrent
alphabet). The study of similar constructions for star operation would be
very interesting and shall lead to an efficient algebra of posets. Such a tool
would be very useful for modelling systems based on partial orders.

Section four is devoted to an algorithm which enumerates all nonequiv-
alent strings (in the sense of dependence relation). The main idea is to
construct an algorithm that is optimal (for constant size k of the alphabet)
with respect to performed changes. We also present an idea of using well
known compressed string representation (RLE), which results in obtaining
the constant time complexity of a single step. The case of k close to n
needs further work and new algorithms. Other possible directions for further

248 Ł. Mikulski, M. Piątkowski, S. Smyczyński

research is making use of run length encoding and considering only traces
restricted to a fixed Parikh vector.

References

[1] G. Brightwell and P. Winkler. Counting linear extensions is #P-complete.
In ACM Symposium on Theory of Computing (STOC), pages 175–181,
1991. doi:10.1145/103418.103441.

[2] O. Cogis and M. Habib. Nombre de sauts et graphes série-parallèles.
RAIRO- Informatique théorique, 13(1):3–18, 1979.

[3] C.J. Colbourn and W.R. Pulleyblank. Minimizing setups in ordered sets
of fixed width. Order, 1(3):225–229, 1985. doi:10.1007/BF00383598.

[4] V. Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in
Computer Science. Springer, 1990. doi:10.1007/3-540-53031-2.

[5] V. Diekert and Y. Métivier. Partial commutation and traces, pages
457–533. Springer-Verlag, New York, USA, 1997. doi:10.1007/
978-3-642-59126-6_8.

[6] V. Diekert and G. Rozenberg (editors). The Book of Traces. World
Scientific, Singapore, 1995.

[7] D.E. Knuth. The Art of Computer Programming, Volume 3. Addison-
Wesley, Reading, 1973.

[8] D.E. Knuth. The Art of Computer Programming: Volume 4, Fascicle 3.
Generating All Combinations and Partitions. Addison-Wesley, 2005.

[9] D. Kuske. Infinite series-parallel posets: Logic and languages. Lec-
ture Notes in Computer Science, 1853:648–662, 2000. doi:10.1007/
3-540-45022-X_55.

[10] A.B. Kwiatkowska and M.M. Sysło. On page number of N -free posets.
Electronic Notes in Discrete Mathematics, 24:243 – 249, 2006. Fifth
Cracow Conference on Graph Theory USTRON ’06. doi:10.1016/j.
endm.2006.06.030.

[11] A. Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Report PB-78, Aarhus University, 1977.

http://dx.doi.org/10.1145/103418.103441
http://dx.doi.org/10.1007/BF00383598
http://dx.doi.org/10.1007/3-540-53031-2
http://dx.doi.org/10.1007/978-3-642-59126-6_8
http://dx.doi.org/10.1007/978-3-642-59126-6_8
http://dx.doi.org/10.1007/3-540-45022-X_55
http://dx.doi.org/10.1007/3-540-45022-X_55
http://dx.doi.org/10.1016/j.endm.2006.06.030
http://dx.doi.org/10.1016/j.endm.2006.06.030

Algorithmics of Posets Generated by Words Over
Partially Commutative Alphabets (Extended Version) 249

[12] Ł. Mikulski. Projection representation of Mazurkiewicz traces. Funda-
menta Informaticae, 85:399–408, 2008.

[13] Ł. Mikulski, M. Piatkowski and S. Smyczynski. Algorithmics of posets
generated by words over partially commutative alphabets. In Proceedings
of the Prague Stringology Conference, Prague, Czech Republic, 2011,
pages 209–219, 2011.

[14] K. Sayood. Introduction to Data Compression. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[15] M.M. Sysło. Minimizing the jump number for partially ordered sets:
A graph-theoretic approach. Order, 1:7–19, 1984. doi:10.1007/
BF00396269.

[16] K. Takamizawa, T. Nishizeki and N. Saito. Linear-time computability of
combinatorial problems on series-parallel graphs. Journal of the ACM,
29(3):623–641, 1982. doi:10.1145/322326.322328.

[17] J. Valdes. Parsing Flowcharts and Series-Parallel Graphs. Ph.D. disser-
tation, Stanford University, Stanford, 1978.

[18] J. Valdes, R.E. Tarjan and E.L. Lawler. The recognition of series parallel
digraphs. In ACM Symposium on Theory of Computing (STOC), pages
1–12, 1979. doi:10.1145/800135.804393.

c© Scientific Annals of Computer Science 2013

http://dx.doi.org/10.1007/BF00396269
http://dx.doi.org/10.1007/BF00396269
http://dx.doi.org/10.1145/322326.322328
http://dx.doi.org/10.1145/800135.804393

	Basic Notions
	From Partially Commutative Words to Posets
	Construction of Hasse Diagram
	Generation of All Disjoint Traces
	Summary and Future Work

