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Larry R. Gorman (USA), Steven G. Sapra (USA), Robert A. Weigand (USA) 

The role of cross-sectional dispersion in active portfolio 

management 

Abstract 

We derive and interpret the main results of Modern Portfolio Theory and the Theory of Active Portfolio Management 

from the perspective that, for active investors, the cross-sectional dispersion of returns is more relevant as a measure of 

risk than time series volatility. We show that all key measures of portfolio risk  total, systematic and idiosyncratic  

are positively related to return dispersion, with dispersion primarily affecting idiosyncratic risk. Moreover, active port-

folio returns are a function of managers’ skill and cross-sectional dispersion, with realized dispersion acting as a lever-

age factor for realized skill. Regardless of their level of skill, however, active managers will tend to reduce their active 

weights as the cross-sectional dispersion of returns increases. While higher levels of dispersion represent opportunities 

to earn higher active returns, managers’ information ratios are expected to remain unchanged, as realized tracking error 

is expected to vary proportionately with dispersion and managers’ active returns. Absolute return investors are, there-

fore, more likely to benefit from tactically adjusting the activeness of their strategies with the level of return dispersion. 

Keywords: alpha, tracking error, information ratio, volatility, cross-sectional dispersion, active portfolio management. 

JEL Classification: G11, G17. 
 

The role of cross-sectional dispersion in active 

portfolio management. Introduction© 

The ultimate goal of active equity management is to 

outperform a benchmark index such as the S&P 500 

or Russell 1000. Investment managers implement 

active portfolios by overweighting stocks on which 

they have positive opinions and underweighting 

stocks that they view less favorably. Without the 

ability to determine which securities will outperform 

and which will underperform, managers’ efforts will 

be futile, and their relative performance disappoint-

ing. Beyond the ability to rank winners and losers, 

however, active portfolio management also requires 

a reasonable degree of return dispersion in order to 

provide an adequate opportunity set for ranking 

stocks’ relative expected returns. In fact, when ac-

tive managers predict which stocks will perform 

better than others, they are essentially forecasting 

the cross-sectional dispersion (or standard devia-

tion) of returns, which is simply a more formal term 

for the future distribution of relative winners and 

losers. It follows intuitively that dispersion  the 

extent to which stock prices will move in different 

directions  represents a key consideration in any 

forecast of relative security returns. For example, as 

stock returns become more dispersed, the same set 

of active portfolio weights will generate larger dif-

ferences in relative performance. Conversely, if 

stock returns are perfectly correlated  implying 

zero cross-sectional dispersion  the notion of rank-

ing the cross-section of returns becomes meaning-

less, since all stocks would yield the same return. 

Metrics that describe the cross-sectional behavior of 
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asset returns should, therefore, be highly relevant in 

active portfolio management. 

We extend this intuition by developing an analytical 

framework in which the major results of Modern 

Portfolio Theory (MPT) and Active Portfolio Man-

agement (APM) are derived and interpreted from a 

perspective in which cross-sectional dispersion, 

rather than the traditional metric time series volatil-

ity, is the relevant measure of risk. We propose 

that cross-sectional dispersion is a more applica-

ble measure of risk because, in the same sense 

that relative-return investors are focused on gen-

erating portfolio returns relative to some mean 

benchmark return, dispersion measures volatility 

relative to the performance of the same bench-

mark. More technically, we substitute cross-

sectional dispersion for time series volatility as 

the critical variable in the derivation of investors’ 

optimal portfolio weights and active expected 

returns. Under the simplified covariance matrix 

used in this paper, the active management equa-

tions retain their simple and intuitive forms, how-

ever, which allows us to illustrate how developing 

a better understanding of cross-sectional disper-

sion and its drivers can improve active managers’ 

performance. Our major findings and conclusions 

include: 

The cross-sectional dispersion of returns (
C S

) 

has two main drivers. Dispersion is positively 
related to the average volatility of individual se-

curities ( ) and negatively related to securities’ 

average correlation ( ). Understanding the dif-

ferential effect of  and  upon 
C S

 has sig-

nificant implications for active portfolio man-
agement. 
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Active portfolio returns are a function of man-

agers’ skill (information coefficients) and cross-

sectional dispersion, with realized dispersion 

acting as a leverage factor for a manager’s real-

ized skill. Active returns will be higher (lower) 

than expected whenever realized dispersion is 

higher (lower) than expected. 

Our analysis shows that all active managers will 

be averse to cross-sectional risk, regardless of 

their level of skill. Holding risk aversion con-

stant, managers will tend to reduce their active 

portfolio weights as the cross-sectional disper-

sion of returns increases.  

Portfolio tracking error is shown to be linear in 

cross-sectional dispersion, which implies that 

unexpected changes in dispersion will result in 

unexpected changes in tracking error. Accurate 

forecasts of cross-sectional dispersion are, there-

fore, necessary for a manager to ensure that re-

alized tracking error conforms with expected 

tracking error. 

Our results are consistent with the Fundamental 

Law of Active Management. We find that when 

cross-sectional dispersion rises (falls), the in-

crease (decrease) in portfolio expected return 

will be proportional to the increase (decrease) in 

tracking error. Higher dispersion periods repre-

sent opportunities to earn higher active returns, 

but managers’ information ratios are expected to 

remain unchanged. 

The paper’s exposition will proceed as follows. In 

the next section we introduce our theoretical frame-

work. In the following two sections we illustrate key 

similarities between the results of time series-based 

MPT and our cross sectional-based model, begin-

ning with an example of portfolio diversification, 

and next showing how the key drivers of dispersion 

(  and ) affect the total, systematic, and indio-

syncratic risk of a portfolio. In the final section we 

show that cross-sectional dispersion is a fundamen-

tal variable affecting active managers’ choice of 

portfolio weights and their forecasts of expected 

returns, and illustrate dispersion’s effect on the 

management of portfolio tracking error and the in-

formation ratios managers are able to achieve. 

1. Initial perspectives: cross-sectional dispersion 

in theory and practice 

This section provides introductory perspectives on 

the cross-sectional dispersion of returns. It is impor-

tant to bear in mind that our analysis proceeds from 

the view that to active investors, return dispersion is 

more relevant as a measure of risk than time series 

volatility, the risk metric usually featured in the 

theoretical MPT and APM frameworks. We propose 

that understanding the drivers of cross-sectional 

dispersion and the inherent parallels between time 

series- and cross sectional-based portfolio manage-

ment models can enhance performance because 

active investors are essentially forecasting the dis-

tribution of the cross-section of returns whenever 

they attempt to identify future winners and losers. 

We begin by considering the structure of one of the 

primary inputs into the portfolio construction proc-

ess in Modern Portfolio Theory, the variance-

covariance (VCV) matrix of stock returns. Gener-

ally, the VCV matrix is represented by an N N  

matrix, where N represents the total number of 

securities in the market. Diagonal elements of the 

VCV matrix can assume different non-negative 

values, representing the time series variances for 

each security, while the off-diagonal elements rep-

resent the covariances between the returns of vari-

ous pairs of assets. When a VCV matrix is unre-

stricted in its structural form, analytical results are 

often complex and difficult to interpret, however. 

Therefore, in the interest of tractability and intui-

tion, our analysis employs a simplified VCV ma-

trix of stock returns.
 
Specifically, we assume that 

the VCV matrix is described by the two-parameter 

matrix
1
: 

,111 22
I      (1)

 

where  is the average time series volatility of 

individual stocks,  is the average stock-by-stock 

correlation, 1 is an 1N  vector of ones, and I  is 

the N N  identity matrix. The VCV matrix  is 

required to be positive semi-definite, which can 

be achieved by assuming 0 1 . Additionally, 

 has the property that all stocks have a variance 

equal to 
2

 and a covariance with all other assets 

equal to 
2
.  

Formally, cross-sectional dispersion equals the 

cross-sectional standard deviation of returns (i.e., 

the standard deviation of returns measured across 

all stocks on a particular day or month), which takes 

an intuitive form under the VCV matrix in equation 

(1). As shown in the Appendix, under , return 

dispersion (
C S

) equals: 

1
CS .                  (2) 

Equation (2) shows that cross-sectional dispersion is 

a function of two time series-based parameters: the 

                                                      
1 The variance-covariance matrix and our other modeling assumptions 

are the same used in recent research such as Buckle (2004) and Clarke, 

de Silva, Sapra and Thorley (2008). 
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average level of individual securities’ time series 

volatility, as measured by , and the average corre-

lation between securities, as measured by . More-

over, dispersion is positively related to volatility 

( ) and inversely related to the correlation of secu-

rity returns ( ), ceteris paribus. The differential 

effect of  and  upon 
C S

 has significant impli-

cations for active portfolio management.   

For example, consider periods characterized by 

dramatic increases in both time series volatility and 

asset return correlations. Although investors often 

take for granted that higher volatility increases the 

payoff to active management as the spread between 

high- and low-performing stocks widens, and that 

they just need to identify which stocks will be win-

ners and which will be losers, the above analysis 

shows that tactically adjusting portfolios towards 

more aggressive positions based on an increase in 

time series volatility alone only considers half of the 

story. Without also assessing how the mean correla-

tion amongst assets may be simultaneously chang-

ing, active investors will be unaware that conditions 

for identifying future winners and losers may have 

become more difficult, despite a higher-volatility 

environment. If correlations “explode” (approach 

1.0), return dispersion can decline as asset returns 

become increasingly similar, even though volatility 

may be increasing at the same time. The cross-

sectional dispersion of returns can decline under 

these circumstances, which decreases the expected 

payoff to active portfolio management. With lower 

dispersion, active management (tilting portfolio 

weights toward or away from their inherent index 

weights) provides diminished value because inves-

tors’ relative performance will be only negligibly 

different from their benchmarks. Only absolute re-

turn investors who are able to forecast the broad 

market’s general short-term direction will have an 

opportunity to outperform. In a low-dispersion envi-

ronment, relative return investors who fail to recog-

nize the dynamics behind the resulting reduction in 

the value of active management may be disap-

pointed with – and perhaps baffled by – their per-

formance ex-post. Equation (2) provides the gate-

way for understanding how the expected benefits of 

active management change over time with the driv-

ers of cross-sectional dispersion  and . 

2. Portfolio diversification and systematic and 

idiosyncratic risk from the cross-sectional 

perspective 

In this section and the one that follows, we further 

develop our analysis by illustrating parallels be-

tween time series- and cross sectional-based depic-

tions of portfolio diversification and systematic and 

idiosyncratic risk. We provide additional examples 

of how appreciating both frameworks can enhance a 

portfolio manager’s understanding and performance. 

This section will focus on how a manager’s choice 

of the number of stocks held in a portfolio (n) af-

fects portfolio risk, while the next section will focus 

on the effects of the drivers of cross-sectional dis-

persion – average stock volatility ( ) and return 

correlations ( ) – on the relevant measures of risk. 

As shown in the Appendix, for the VCV matrix 

specified in equation (1), the time series (total) risk 

of any n -asset portfolio can be expressed as:  

,1222

PPP ww      (3) 

where 
2

P
 is portfolio volatility and 

P
w  is an 1n  

vector of portfolio weights that sum to one
1
. For 

example, in the case of an equally-weighted portfo-

lio of size n , the total risk (variance of returns) of a 

portfolio equals:  

2

2 2
1

P
n

.                                       (4) 

Substituting from Equation (2), which expresses 

dispersion as 
2 1 , the volatility of an 

equally-weighted portfolio equals:  

2
2 2 CS

P
n

.                                                 (5) 

Equation (5) shows our first key result: the total risk 

of any equally-weighted portfolio (usually depicted 

as a time series-based metric) can also be expressed 

as a function of the cross-sectional dispersion of 

returns and its drivers  and . The limiting cases 

of Equation (5) are:  

1. The equally-weighted market portfolio comprised 

of all N  assets in the market ( n N ).  

2. The single asset ( 1n ) case. 

In these two cases total risk is expressed, respec-

tively, as: 
2

2 2 CS

p n N N
,                                       (6) 

and  

2 2 2

1p CSn
.                                          (7) 

                                                      
1 The total number of assets in the market is assumed to be N, and hence 

1  n  N for any equally-weighted portfolio of size n. 
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In order to partition total risk into its systematic and 

idiosyncratic components, we express the relation 

between total, systematic and idiosyncratic risk for 

any n -asset portfolio as
1
: 

,222222

eMeMP      (8) 

where  represents the portfolio’s market beta 

(which will be equal to 1.0 under the VCV matrix 

depicted by equation (1)) and 
2

e
 is the portfolio’s 

idiosyncratic risk. Substituting equation (6) (the 

variance of the market portfolio) into equation (8) 

allows us to decompose portfolio variance into its 

systematic and idiosyncratic components, where 

both are functions of the parameters  and : 

2
2 2 2CS
P e

N
.                                     (9) 

Equation (9) shows that the systematic risk of a 

portfolio (
P

SR ) of any size n  (1 n N ) can be 

expressed as: 
2

2 CS

P
SR

N
.                                             (10) 

Equations (9) and (10) also show that the systematic 

risk of a portfolio is independent of portfolio size, n  

(recall that the denominator in the second term, N  

is the total number of assets available for investment 

in the market, which is usually different than the 

number of assets in the portfolio, n). Equations (9) 

and (10), therefore, demonstrate, from a cross-

sectional perspective, a familiar principle of time 

series-based MPT: systematic risk is unaffected 

by diversification
2
. Since the systematic risk of a 

portfolio is invariant to changes in portfolio size, 

any reduction in total risk due to diversification 

occurs entirely via the idiosyncratic component of 

portfolio risk.
 

Additional insights into the relation between idio-

syncratic risk and cross-sectional dispersion can be 

obtained by directly comparing equations (9) and 

(10). Specifically, for any n -asset portfolio we have 

,2
2

2
2

22

e
CSCS

P
Nn

          (11) 

                                                      
1 Idiosyncratic risk is also commonly referred to as active risk and 

tracking error, especially amongst active, relative return-focused inves-

tors. At present, we use the more general term idiosyncratic risk. Later 

in the analysis, when discussing active investing, we employ the term 

active risk. 
2 However, this does not imply that systematic risk is a constant. As 

, ,
CS

 or change, systematic risk can change as well. 

which implies 

2 2 1 1
e CS

n N
.                                          (12) 

Equation (12) expresses our next important result: 

the idiosyncratic risk of a portfolio can be expressed 

solely as a scaled version of cross-sectional disper-

sion. Note how, analogous to the results of time 

series-based MPT, the magnitude of this cross sec-

tional-based expression for idiosyncratic risk de-

creases as portfolio size (n) increases. The impact of 

individual asset idiosyncratic (cross-sectional) risk 

is, therefore, diversified away as n  increases. More-

over, because idiosyncratic risk need to be neither 

measured nor viewed from the more traditional time 

series-based framework, the risk diversification 

tenets of Modern Portfolio Theory can be inter-

preted from either a pure time series or cross-

sectional perspective. From a time series perspec-

tive, diversification reduces the idiosyncratic risk of 

a portfolio by lowering the net effect of the con-

stituent assets’ idiosyncratic risk. From a cross-

sectional perspective, diversification reduces cross-

sectional dispersion’s contribution to idiosyncratic 

risk, which also has a practical interpretation: when 

active investors increase the number of stocks in a 

portfolio they are diversifying away the risk of mis-

identifying future winners and losers.  

Further insights into cross-sectional dispersion’s 

contribution to total, systematic and idiosyncratic 

risk can be obtained by considering the cases when 

1n  and n N . For the single asset case ( 1n ), 

equation (12) shows that individual asset idiosyn-

cratic risk is virtually equivalent to cross-sectional 

dispersion, since as N becomes large, 1/ N  be-

comes very small
3
. In the limiting case, as n  ap-

proaches N , idiosyncratic risk is reduced to zero, 

which is equivalent to saying that the impact of 

cross-sectional dispersion on idiosyncratic risk is 

completely diversified away.  

As shown in equation (10), systematic risk also de-

pends on cross-sectional dispersion. Therefore, total 

risk will always contain some exposure to cross-

sectional dispersion, even for fully-diversified port-

folios. For reasonable values of  (0.20 to 0.40), 

 (0.30 to 0.70), and N  > 100, however, the effect 

of cross-sectional dispersion on systematic risk will 

be negligible. For example, using the inputs  = 

0.3, = 0.5 and 500N , systematic variance (per 

                                                      
3 In fact, for a large number of assets in the market N , cross-

sectional dispersion is equivalent to individual asset (n = 1) idiosyn-

cratic risk. 
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equation (10)) is equal to 0.0754. In this case, the 

term involving cross-sectional variance equals 

0.0004, which comprises less than 1% of systematic 

risk. Therefore, while cross-sectional risk always 

has some effect on systematic risk, the majority of 

dispersion’s impact on total risk occurs via the idio-

syncratic component, not the systematic component. 

Diversification reduces cross-sectional dispersion’s 

effect on total risk to negligible levels. 

3. How the drivers of cross-sectional dispersion 

affect total and idiosyncratic risk 

The analysis presented in this section will show that 

changes in the key drivers of cross-sectional dis-

persion 
2

 and  will affect total, idiosyncratic 

and cross-sectional risk, but not necessarily in 

similar ways. Equation (5) shows that we can ex-

press the total risk of any equally-weighted portfo-

lio of size n  as: 
2

2 2
1

P
n

.                                   (13) 

From equation (2), we know:  

2 2 1
CS

.                                                (14) 

After substituting equation (14) into equation (12), 

the idiosyncratic risk of an equally-weighted portfo-

lio of size n  can be expressed as 

2 2 1 1
1e

n N
.                                (15) 

Equations (13), (14), and (15) show that all three 

primary risk measures (total, cross sectional, and 

idiosyncratic) can be expressed in terms of the 

model parameters 
2

 and .  

We examine how changes in either 
2

 or  affect 

the three risk measures by taking the partial deriva-

tive of each expression. With three risk measures 

and two input variables, a total of six partial deriva-

tives are of interest. We, therefore, compute partial 

derivatives for total risk: 

2

2

1
0P

n
,                                      (16) 

2
2 1

1 0P

n
,                                       (17) 

idiosyncratic risk: 

2

2

1 1
1 0e

n N
,                              (18) 

2
2 1 1

0e

n N
,                                 (19) 

and cross-sectional risk: 

2

2
1 0CS ,                                           (20) 

2
2 0CS .                                               (21) 

In Table 1 we report the magnitude and direction of 

the impact for reasonable levels of 
2

, , n  and 

N : 
2

 = (0.5)
2
 = 0.25 (50% annualized volatility 

for a typical stock),  = 0.30, n  = 100, and N  = 

1000. For these input values, the partial derivative 

values are: 

Table 1. The drivers of dispersion and portfolio risk 

Risk  
measure: 

VCV Input: 

2

P
 

2

e
 

2

CS
 

2
 0.3070 0.0063 0.7000 

 0.2475 0.0023 0.2500 

Notes: The impact of changes in 
2

 and  on total, idiosyn-

cratic and cross-sectional risk, as measured by partial deriva-

tives. The derivatives are evaluated for values of 
2

= 0.25, 

= 0.30, n  = 100 and N  = 1000. 

As shown in Table 1 and Equations (16) through 
(21), the parameters that drive cross-sectional dis-

persion  
2

 and   make distinctly different 

contributions to each measure of risk. While all 
three measures of risk are positively related to the 

average level of time series variance, 
2

, this is not 

the case for . Total risk is positively related to , 

but idiosyncratic risk and cross-sectional dispersion 

are negatively related to . Total risk rises with  

because as asset correlations rise, the positive im-
pact upon the systematic component of total risk 

2

2
1

N
 is larger in magnitude than the 

negative impact upon the idiosyncratic component 

of total risk 
2 1 1

1
n N

, which leads to a 

net overall increase in total risk. Conversely, idio-
syncratic risk declines as correlations rise because 

an increase in  compresses cross-sectional disper-

sion (per equation (2)) and, in our model, the idio-
syncratic risk of a portfolio is simply a scaled meas-
ure of dispersion (per equations (12) and (15)). In-
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tuitively, as stocks become increasingly correlated 
(or, equivalently, as cross-sectional dispersion de-
clines), the risk of misidentifying high- and low-
performing stocks also declines. The net result is that a 
rise in the correlation among securities reduces a port-
folio’s idiosyncratic risk, ceteris paribus. 

The impact of dispersion on idiosyncratic and total 

risk can be further understood by noting that the 

directional impacts (signs) of the partial derivatives 

are the same for both idiosyncratic risk and cross-

sectional risk, but the values in Table 1 differ by 

approximately two orders of magnitude, i.e., by 

approximately 100. This occurs due to interaction 

with the number of securities in the portfolio (n), the 

factor analyzed in the previous section. Equations 

(12) and (15) show that the link between cross-

sectional risk and idiosyncratic risk depends only on 

N  and n , and not on 
2

 or . The approximate 

two orders of magnitude difference is explained by 

the factor 
Nn

11
, which equals 0.009 with N = 

1000 and n = 100, with an inverse of 111.1
1
. We see 

that as the number of securities in a portfolio rises, 

cross-sectional dispersion’s effect on a portfolio’s 

idiosyncratic risk component decreases, since as 

noted earlier, dispersion represents the diversifiable 

component of returns. 

The above result is intuitively comparable with time 

series-based MPT as well. In both frameworks, 

holding a more diversified portfolio (increasing n) 

lowers idiosyncratic risk, and for portfolios consist-

ing of all of the stocks in the benchmark (N), idio-

syncratic risk equals zero (i.e., the case of an index 

fund). Larger portfolios will always diversify away 

a greater amount of cross-sectional dispersion, ce-

teris paribus. And, the more cross-sectional disper-

sion is diversified away, the less changes in cross-

sectional dispersion can affect idiosyncratic (and 

total) risk. 

4. Cross-sectional dispersion and active portfolio 

management 

In the previous sections we showed that: 1) total, 

systematic and idiosyncratic risk are positively re-

lated to cross-sectional dispersion; 2) cross-sectional 

dispersion primarily affects the idiosyncratic com-

ponent of portfolio risk; and 3) in the limit, as n  N, 

the effect of cross-sectional dispersion on the idio-

syncratic component of total risk is completely di-

                                                      
1 This can also be seen by comparing Equations 18 and 20 and equations 

(19) and (21), each of which differ by the factor 

Nn

11 . 

versified away
2
. We next focus on the role of cross-

sectional dispersion in active portfolio management, 

where investors attempt to outperform a benchmark 

such as the Russell 1000. Specifically, we derive 

investors’ vectors of optimal active portfolio 

weights and benchmark-relative expected returns in 

the context of a cross sectional-based active man-

agement framework. 

The essence of active investing involves construct-

ing portfolios with position weights that differ 

from the benchmark weights, which induces 

tracking error
3
. Of course, investors employ ac-

tive position weightings with the expectation that 

they will subsequently be compensated with posi-

tive benchmark-relative returns. More formally, 

active investors are assumed to solve the follow-

ing optimization problem to determine their vec-

tor of active holdings: 

,
2

0

max AAAw
ww

a
rEwU

A

  (22) 

where E r  is a mean-zero 1n  vector of bench-

mark-relative expected returns, 
o

a  is the manager’s 

coefficient of absolute risk aversion,  is the vari-

ance-covariance matrix given by equation (1), and 

A
w  is an 1n  vector of active weights that repre-

sent the difference between the weight in the man-

ager’s portfolio and the weight in the benchmark 

index. By definition, tracking error, 
2

A
, is equal to 

'
A A

w w . In the Appendix we show that tracking 

error can also be expressed in terms of cross-

sectional risk and active weights: 

2 2

A C S A A
w w .                                                   (23) 

Making this substitution into equation (22) and 

maximizing with respect to 
A

w  yields the vector of 

optimal weights, as given by
4
: 

*

2A

o CS

E r
w

a
.                                                      (24) 

                                                      
2 See equations (10) and (12). 
3 In the context of active portfolio management, idiosyncratic risk 

relative to a benchmark index is typically referred to as tracking error. 

The two are equivalent when the benchmark index is the entire market, 

and the beta of the portfolio equals one.  From here on we will use the 

terminology tracking error when discussing active management versus 

an equally-weighted benchmark index of size n. 
4 The solution to equation (22) is also shown in Clarke et al. (2008) as 

2 1
o

E r
w

a

. With the substitution 2 2 1
CS

, the two 

expressions are equivalent. 
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Notice that, thus far, we have made no assumptions 

regarding the nature of the relative expected return 

vector, E r . Following Grinold (1994), Clarke, de 

Silva and Thorley (2006) show that an appropriate 

formulation for E r  is given by: 

,2/1
zVICrE      (25) 

where V  is an n n  general VCV matrix of asset 

returns, IC  (the information coefficient) is the as-

sumed correlation between expected returns and 

actual returns (a measure of manager skill), and z  is 

a mean-zero 1n  vector of information, assumed to 

distributed as ~ (0,1)N , that reflects a manager’s 

opinion on the relative attractiveness of securities. 

Under equation (1), V , and thus: 

1 2
E r IC z .                                             (26) 

In the Appendix, it is shown that equation (26) is 

equivalent to: 

CS
E r IC z .                                            (27) 

The intuition behind equation (27) is as follows. For 

a given level of skill (IC), the magnitude of a man-

ager's expected returns will rise as cross-sectional 

dispersion increases. In the limiting case, when 

cross-sectional dispersion is equal to zero ( 1  or 

0 ), the expected return vector will consist only 

of zeros, since there is no cross-sectional difference 

amongst security returns. In this case there is no 

opportunity to add value, and thus, no role for 

active management, because it is not possible to 

earn returns that differ from the benchmark. The 

potential for active management to add value is, 

therefore, positively related to the level of cross-

sectional dispersion. 

Using the expression for expected returns given by 

equation (27), we can re-write the vector of optimal 

weights (equation (24)) as: 

*

A

o CS

IC
w z

a
.                                                  (28) 

Equation (28) shows that managers with higher lev-

els of skill (IC) will optimally hold portfolios with 

larger active weights than managers with lower lev-

els of skill. Further note that all managers, regard-

less of their levels of skill, are averse to cross-

sectional risk, however. Given their personal level 

of risk aversion 
o

, managers will tend to reduce 

their active weights as the level of cross-sectional 

dispersion increases.  

The result that investors are averse to cross-

sectional risk (depicted by the denominator of equa-

tion (28)) may appear counterintuitive at first. After 

all, dispersion drives the value of active investing, 

which might lead one to surmise that greater disper-

sion would lead to larger active weights, as manag-

ers attempt to “cash in” on the opportunity set pro-

vided by a higher dispersion environment. Because 

equation (28) is the result of maximizing expected 

returns net of tracking error variance, however, 

when dispersion increases, there is a trade-off be-

tween increasing utility via higher portfolio ex-

pected returns (
A CS

w IC z ) and decreasing 

utility via higher tracking error variance 

(
20.5 o CS A Aa w w ). Dispersion, therefore, af-

fects utility from different directions, with the net 

result being that the vector of optimal weights de-

clines in magnitude as dispersion increases. 

In practice, it is more common for active investors 

to optimize portfolios subject to a specific tracking 

error constraint than as a function of investors’ 

(largely unobservable) risk aversion level. In the 

Appendix we show that equation (28) can be re-

written so that a manager’s vector of active 

weights is a function of the desired level of track-

ing error
1
:
 
 

* A
A

CS

w z
n

.                                                  (29) 

Equation (29) allows us to directly relate our cross-

sectional framework to a key result of the theory of 

Active Portfolio Management. Substituting equa-

tions (27) and (29) into 
Aw E r  results in the well-

known Fundamental Law of Active Management 

(Grinold, 1989): 

A

E r
IC n .                                                   (30) 

The left-hand-side of equation (30) is commonly 

referred to as the information ratio, and is equal to 

IC  times the square root of n  (the number of ac-

tive positions in a portfolio, or “breadth”)
2
. Intui-

tively, the Fundamental Law results because the 

information ratio is invariant to cross-sectional dis-

                                                      
1 The link between equations (29) and (28) implies that the optimal level 

of tracking error depends upon skill (IC), breadth (n) and risk aversion 

( 0), such that 1

A o
a IC n . 

2 Although the variable n is commonly referred to in the literature as 

“the number of independent bets,” our results show that stock returns do not 

need to be independent in order for the fundamental law to hold. In our 

model stocks are correlated by , yet the fundamental law still results. 
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persion  when dispersion rises (falls), the increase 

(decrease) in portfolio expected return is propor-

tional to the increase (decrease) in tracking error, 

thus leaving a manager’s information ratio un-

changed. This result is driven by equations (27) and 

(29), which show that both expected returns and 

portfolio allocations scale directly with cross-

sectional dispersion.  

Equation (29) shows that a portfolio’s active posi-

tion weights depend on a manager’s estimates of the 

critical model inputs 
CS

 (return dispersion) and 

IC  (skill), which in practice will be subject to error. 

Next we illustrate how realized values of both active 

returns and tracking error (the numerator and de-

nominator, respectively, of the information ratio) 

also depend on realized values of dispersion and 

skill. In the Appendix we derive an expression relat-

ing a manager’s realized tracking error to expected 

tracking error:  

CS
A A

CS

E
E

                                     (31) 

Equation (31) shows that realized tracking error 

(
A

) is linearly related to realized dispersion, and 

that tracking error will be higher or lower than ex-

pectations whenever realized dispersion is higher or 

lower than expectations. In practical terms, equation 

(31) shows that when markets are characterized by 

unexpected positive (negative) shocks to cross-

sectional dispersion, such as those that occur prior 

to an economic recession, a rise (decline) in realized 

tracking error will result (see Gorman, Sapra and 

Weigand (2010) for empirical evidence). Accurate 

forecasts of cross-sectional dispersion are, therefore, 

necessary for a manager to ensure that realized 

tracking error is consistent with expectations. 

Equation (31) provides insight into the relation be-

tween the denominator of the information ratio, 
A

, 

and realized cross-sectional dispersion. Not surpris-

ingly, the numerator of the information ratio, the 

portfolio’s expected active return, is also dependent 

upon realized and expected values of 
C S

, as well 

as the key input variables IC  and z . Recall that the 

vector z  describes a manager’s relative opinion on 

the cross-section of returns, and is assumed to be 

distributed as a standard normal variable. The rela-

tion between opinions z, and realized benchmark 

relative returns r, can be measured as: 

,ˆˆˆ ezar       (32) 

where r  is the 1n  realized return vector, z  is the 

1n  analyst opinion vector, and â  is a mean-zero 

vector of residuals. In this context, ˆ  is the product 

of the manager’s realized IC and realized cross-

sectional dispersion
1
.  

In order to better understand how equation (32) 

relates to portfolio performance, note that a portfo-

lio’s realized active return rA is equal to the product 

of active portfolio weights 
A

w , and realized returns, 

*

A Ar w r , where 
*

Aw  and r  are given by equations 

(29) and (32), respectively. In the Appendix we use 

this relation to show that a manager’s realized active 

return is given by: 

CS
A A

CS

r E IC n
E

.                              (33) 

Similar to equation (31), equation (33) reveals that 

active portfolio returns are a function of realized 

IC  and realized cross-sectional dispersion. Further 

note that the last term in equation (33)  the ratio of 

realized to expected dispersion – acts as “leverage” 

for a manager’s realized skill. When skill is positive, 

higher (lower) dispersion results in higher (lower) 

realized returns. Conversely, if a high dispersion 

environment manifests when a manager experiences 

a negative IC, portfolio performance will be signifi-

cantly negative. Therefore, realized cross-sectional 

dispersion magnifies a manager’s realized skill, 

causing active returns to be higher (lower) than ex-

pectations when realized dispersion is higher 

(lower) than expectations. Actual returns and ex-

pected returns will be equal only when actual and 

expected dispersion are equal 
CS CS

E  and 

actual skill equals expected skill IC E IC . 

The previous two sections analyzed the role of 

cross-sectional dispersion in managing portfolio 

risk. In this section we illustrated dispersion’s role 

as a fundamental variable driving the performance 

of active portfolios. Unexpected shocks to cross-

sectional dispersion have direct implications for a 

manager’s tracking error and active returns. For 

example, when dispersion becomes unexpectedly 

elevated, one would expect to observe an increase in 

the tracking error of active managers. Cross-

sectional dispersion is also directly related to the 

magnitude of active portfolio returns. Holding IC  

fixed, active returns are linear in cross-sectional 

                                                      
1 Note that the regression coefficient can be expressed as 

,ˆ
CSr

z

IC
IC  since 1

z
 and 

r CS
. The second 

equality is due to the fact that equation (32) is a cross-sectional regres-

sion, and thus, the standard deviation of r is equal to the cross-sectional 

dispersion of returns. 
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dispersion: when dispersion is high (low), active 

returns will similarly be high (low). Finally, we find 

that because both tracking error and active returns 

are linear in cross-sectional dispersion, shocks to 

cross-sectional dispersion do not affect managers’ 

information ratios. This occurs because dispersion 

shocks result in a change in tracking error that is 

proportional to the change in active return. 

Conclusions 

We derive and interpret the key results of Modern 

Portfolio Theory and the Theory of Active Portfolio 

Management starting from the perspective that, for 

active investors, the cross-sectional dispersion of 

returns is more relevant as a measure of risk than 

time series volatility. Our analysis demonstrates 

how developing a better understanding of the role of 

cross-sectional dispersion in active management can 

enhance managers’ performance.  

We find that cross-sectional dispersion is driven by 

two time-series based parameters: the average level 

of time-series volatility of individual securities ( ) 

and the average correlation between securities ( ). 

Because return dispersion is positively related to  

but inversely related to , however, it is important for 

active investors to remain aware of how both of these 

underlying variables may be changing as they forecast 

their high- and low-conviction stock selections and the 

weightings they will assign to these securities.  

Interpreting portfolio diversification from a cross-

sectional perspective, we find that all key measures of 

risk (total, systematic and idiosyncratic risk) are posi-

tively related to dispersion, and that cross-sectional 

dispersion primarily affects the idiosyncratic com-

ponent of portfolio risk. We show that active portfo-

lio returns are a function of managers’ skill and 

cross-sectional dispersion, and that realized cross-

sectional dispersion serves as a leverage factor for a 

manager’s realized skill. Active returns will, there-

fore, be higher or lower than expected whenever 

realized dispersion is higher or lower than expected. 

Regardless of their level of skill, however, all active 

managers will be averse to cross-sectional risk. 

Holding risk aversion constant, managers will tend 

to reduce their active weights as return dispersion 

increases.  

Portfolio tracking error is also shown to be directly 

related to cross-sectional dispersion, which implies 

that unexpected changes in dispersion will result in 

unexpected changes in tracking error. Accurate 

forecasts of cross-sectional dispersion are, therefore, 

necessary for a manager to ensure that realized 

tracking error conforms with expectations. 

Because active returns and portfolio tracking error 

are both linearly related to cross-sectional disper-

sion, the results of our model are consistent with 

the well-known Fundamental Law of Active Man-

agement. Changes in cross-sectional dispersion 

represent opportunities to earn higher active re-

turns, but managers’ information ratios are ex-

pected to remain unchanged, as realized tracking 

error is expected to be proportional to managers’ 

active returns. Therefore, absolute return inves-

tors are more likely to benefit from tactically ad-

justing the activeness of their strategies with the 

level of return dispersion. 
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Appendix 

1. Proof of equation (2) 

Assume that stock returns are distributed as ~ (0, )r N , where  is given by equation (1). Thus, the return vector 

r, can be expressed as 
1 2

r z , where z  is an 1N  vector of standard normal z-scores. Let a  represent the di-

agonal term of 
1 2

 and let b  represent the off-diagonal elements of 
1 2

. Since 
1 2 1 2

, then a  and b  

solve the following two equations: 
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2 2 21a N b ,                                                                                                                                                  (34) 

2 22 2N b ab .                                                                                                                                           (35) 

Subtracting equations (35) from (34) yields 
2 2 1a b . Using the formula for the population variance 

21

ii
V r N r  and the zero mean property of standard normal z-scores, we have 

2 21 1

1 2 1 1... ...i i i n i ii i
V r N az b z z z z z N az bz .  Using the property 

2 1E z , this can be written as 
2 2 1V r a b . Taking the square root yields the cross-sectional 

standard deviation of r , 1
CS .  

2. Proof of equations (4) and (5) 

We first prove equation (4) for a general vector of portfolio weights and then substitute the equally-weighted portfolio 

into the solution. The variance of a portfolio is given by ,PP ww  where 
p

w  is an 1nx  vector of total portfolio 

weights and  is given by equation (1). Since the vector of portfolio weights sum to one, 

2 2 2 2

1 1 2 21 1 ... 1
P P N N

w w w w w w w w  and thus, 

2 2 2

1 1

1
n n

P P i i

i i

w w w w .  

Expressing in vector notation, we have 
2 2 1

P P P P
w w w w , which proves equation (3). To arrive at 

equation (5), we simply need to substitute 
11Pw n , where1 is an 1nx  vector of ones, which yields the result 

2 2 2 1 21 1P Pw w n . 

3. Proof of equation (23) 

The definition of active variance is .ww AAA

2
 Under the simplified covariance matrix of equation (1), active 

variance can be expressed as 
2 2 2 2 2 2

, , ,1 1
1

n n

A A i A i A ii i
w w w , where we have used the prop-

erty that active weights are zero-mean. Taking the square root and using vector notation, active portfolio risk is 

1A A Aw w  and using equation (2) this yields 
2 2

A CS A A A CS A A
w w w w . 

4. Proof of equation (27) 

By the same logic as in the proof of equation (2), the term 
1 2

z  can be expressed as 1a b z z . 

Thus, 
1 2 1

CS
E r IC z IC z IC z .  

5. Proof of equation (29) 

From equations (24) and (27), .zICrEw CSCS

*

A

1

0

12

0  From the definition of tracking error vari-

ance, equation (23), we have 
1 1

A o o
ICa z z ICa n . Solving this for 

o
a  and substituting back into equation 

(24), we have 
*

2

CSA A
A

CS CS

IC
w z z

IC n n
.  

6. Proof of equation (31) 

Optimal weights are generated using (29), where we augment the random variables 
cs

 and
A

 with the expectation 

operator E  to denote the fact that optimal weights are based on ex-ante expected values of the relevant input vari-
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ables. Thus, equation (29) is written as 
* A

A

CS

E
w z

E n
. A portfolio’s realized tracking error is calculated using 

equation (23), where both 
cs

 and 
A

 are considered realized values and, therefore, are not prefaced by the expecta-

tions operator. Substituting equation (29) into equation (23), and using the fact that E z z n , we have 

 

2

2 2

2

A CS
A CS A A

CSCS

E
z z E

EE n
. 

7. Proof of equation (33) 

Realized portfolio active return is given by
* A

A A

CS

E
r w r z r

E n
, where r is given by .ˆˆˆ ezar   

Let 
A

CS

E
a

E N
. Thus, active return is given by .ˆˆ

1 1 1

2
n

i

n

i

n

i

iiiiA zezzaar  The first term in brack-

ets is zero by the zero-mean property of z-scores, the second term is equal to N̂ since
2 1E z , and the last term is 

zero by regression orthogonality. Substituting back for a  and noting that ,ˆ 1

CSrz ICIC  we 

have CS
A A

CS

r E IC n
E

. 
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