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Destabilizing Optimal Trading Strategies in the Stock Market 

Haim K. Levy1

Abstract

A simple dynamic general equilibrium model of trading strategies is presented, where inves-

tors apply optimal investment strategies with stock and bond based on Merton (1971). Our investors 

employ two dynamic asset allocation strategies: Constant Proportion Portfolio Insurance (CPPI), and 

Constant Mix (CM) strategy, being demand and supply strategies of portfolio insurance in the under-

lying assets markets. We show that it is optimal for the portfolio insurer to buy shares, and for the 

CM investor to sell shares as their portfolios increase in value due to liquidity shocks, (and vice 

versa) enabling us to define a Walrassian clearing mechanism for shares periodically. The resulting 

equilibrium price dynamics is a generalized diffusion that may oscillate at high volatilities if portfolio 

insurance dominates the market, but the price path can obtain low variability if the contrarian inves-

tors dominate. The aggregate effect of the low risk-averse, portfolio insurers increase toward their 

planning horizon, resulting in an increasing price path, trade volume, and return volatility as the hori-

zon gets closer. In spite of their destabilizing effect on equilibrium prices, regulatory agencies cannot 

prohibit such strategies since they stem from optimal asset allocation rules between stocks and bonds 

that each individual investor can apply, while the aggregate, unobservable values matters.  

Key words: Destabilizing Trading Strategies, Portfolio Insurance.  

Introduction 

In a seminal paper, Merton (1971) showed that the optimal asset allocation strategy for a 

price-taking investor with Hyperbolic Absolute Risk Aversion (HARA) utility function is linear in 

wealth. Since in his model, the stock price process is an exogenous diffusion and the investor is 

atomistic, Merton solves for the optimal investment strategy made by the investor. In such an 

economy, strategies cannot affect prices; prices are determined by the assumption of lognormal 

return distribution and HARA utility. However, Kedar-Levy (2002) proves that under the HARA 

utility function used by Merton, the level of the investor’s Relative Risk Aversion (RRA) deter-

mines whether the investor’s next-period demand for units of shares is positive or negative. Inves-

tors with RRA lower than the market price for variance risk will demand units of shares when the 

stock price increases in order to make their optimal allocation. Investors whose RRA is greater 

than the market price for variance risk must sell units of shares in order to make the optimal asset 

allocation. Assume, for example, that all investors have an RRA lower than the market price for 

variance risk and they anticipate a price increase over the next period. All investors want to buy 

shares, but there is none for sale; hence, the price will increase to reflect the value of the informa-

tion, but there will be no trade. Alternatively, assume that some of the investors’ RRA is higher 

than the market price for variance risk and they want to sell units of shares given the same infor-

mation (this is optimal for them since the anticipated price increase makes the value of their exist-

ing shares higher than their optimal holdings should be, thus they must sell units of shares.) In this 

case, the stock price will change and there will be trade. Yet, we argue that investors cannot map 

the quality of the information to a unique price, and definitely not to agree, instantaneously that 

this is the “fair” price. Rather, investors will submit to the market a vector of desired trades in 

units of shares, conditional on the market-clearing price, such that the value of stock they will have 

in their portfolio will satisfy optimal asset allocation whatever the equilibrium price will be. This 

basic idea allows for trade and an explicit price revelation within a dynamic asset-pricing model. 

The present paper is aimed at asking: how will volatility and trade volume vary under different 

assumptions on investors’ utility parameters.   

                                                          
1 I extend many thanks to Profs. Dan Galai and Itzik Venezia for long discussions and helpful insights. I assume full 

responsibility for any remaining errors. 
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Kedar-Levy (2002) showed that investors with low RRA (i.e., lower than the market price 

for variance risk) actually implement a Constant Proportion Portfolio Insurance (CPPI) strategy, 

while those with high RRA implement a Constant Mix (CM) strategy. CPPI is a portfolio insur-

ance strategy that investors implement with stocks and bonds, rather than options, aimed to assure 

that their total wealth will not decline under a pre-specified value, the Floor. Since it implies trade 

in the same direction of the price change, it is referred to as a “momentum” or “trend-chasing” 

strategy. The CM strategy can be considered the opposite of CPPI in terms of periodic trade: it 

indicates trading in an opposite direction to price changes, hence denoted “Contrarian.”  

In this paper we demonstrate that the lower the RRA parameter of both investors, but par-

ticularly of the CCPI investors will be, the equilibrium price volatility will increase to levels typi-

cally associated with unstable episodes in the stock market, such as financial bubbles. Since the 

asset-allocation, and trade decisions are made independently by each individual investor, the rela-

tive wealth managed by CCPI and CM strategies and the RRA applied by each investor are im-

plicit in the overall marketplace. This lack of complete structural knowledge might result in epi-

sodes of apparent instability and high volatility in the stock market due to over-implementation of 

portfolio insurance, as indeed has been documented after the October 1987 market crash in the US. 

(A partial list may include Brennan and Schwartz, 1989, Black and Perold, 1992, Donaldson and 

Uhlig, 1993, Grossman and Zhou, 1996 and many others.) 

If portfolio insurance is applied by institutions, one can empirically reveal the strategy ex-

post. Tracking individual investors’ trades however, is more difficult because of the lack of trade 

data at the individual investor level. If one assumes that institutions implement investment strate-

gies that reflect the preferences of the individual investors who deposited their funds with the insti-

tutions, than the institutions’ strategies are informative. Empirical evidence indeed suggests that 

most institutional investment patterns may by classified as either momentum or contrarian (e.g., 

Badrinath and Wahal, 1999, Grinblatt, Titman and Wermers, 1995, Lakonishok, Shleifer and 

Vishny, 1992.) The aggregate value of implemented portfolio insurance strategies cannot be de-

termined since much of it has been executed through derivatives, but there appears to be an agree-

ment among researchers that the popularity of portfolio insurance increased dramatically before 

the October 1987 market crash. Many researches and two investigation committees concluded that 

portfolio insurance has probably played an important role in cascading stock price decline1. No 

external political or economic event occurred between Friday and Monday capable of justifying 

such a collapse. Grossman (1988a, 1988b) argues that program trading techniques, designed for 

market index arbitrage by trading futures, generally should not increase the underlying asset's 

volatility. However, investors attempting to execute portfolio insurance strategies in the stock and 

bond markets do increase share price volatility. If the derivative assets market had been more de-

veloped, argues Grossman, the underlying assets markets would not have been affected. 

Brennan and Schwartz (1989), present a single period model of an economy in which fi-

nancial assets are traded continuously by some “normal” agents and some portfolio insurers. They 

conclude that return volatility and risk premium increase as the proportion of portfolio insurers 

increases. In multi-period models, Black and Perold (1992), Grossman and Zhou (1996), 

Donaldson and Uhlig (1993), Basak (1995) and others found similar qualitative results. In all these 

models, portfolio insurance is implemented either through options or is justified under peculiar 

utility functions. In Black and Perold (1992) the utility function is linear up to the minimum con-

sumption level and concave above it; Grossman and Zhou (1996), who use options in their model, 

write "… in the presence of portfolio insurers, it is futile to try to construct the price equilibrium 

as if there is a representative agent with a smooth utility function". (p. 1397). In Basak (1995), the 

portfolio insurer acts as such until his insurance horizon is met, but he acts as a "normal agent" 

between the insurance horizon and his subsequent consumption horizon. Benninga and Blume 

(1986) analyze the optimality of multi-period portfolio insurance strategies with options and con-

clude that: "In complete markets with continuous rebalancing of portfolios, the characteristics of 
the implied utility functions are so peculiar that it is doubtful that any investor would want to fol-

low a two-date insurance strategy." (p. 1352). The unique feature of our model, when compared to 

                                                          
1 See Brady and S.E.C. Committees, both in 1988, Kyle (1988), Rubinstein (1988), Shiller (1988).  
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the above, is that in our model portfolio insurance is an optimal strategy adopted by rational inves-

tors who have a smooth utility function.  

The rest of this paper is made of Section 1, which describes CPPI and CM; Section 2 

where we construct the model and Section 3 where we present simulations. Section 4 concludes. 

1.  The Nature of CM and CPPI 

In both strategies discussed here, the portfolio is solely comprised of stock and bond. CPPI 

resembles a long position of portfolio insurance and CM is equivalent to a short position of portfolio 

insurance. CPPI was first documented in Perold (1986) and Black and Jones (1987), who gave it the 

attractive e = mc formulation. According to that strategy, at each point in time (t = 0,1,2,3...,T), the 

portfolio insurer keeps the exposure ( te ) to stock equal to the product of a multiplier (m) and a cush-

ion ( tc ). The cushion is the difference between total assets held by the investor ( tW ) and a floor 

( tF ), which resembles the value under which total assets should not fall. Formally,  

)-Fm(W =mce tttt . (1) 

Since the investor holds shares ( tS ) and bonds ( tB ), (1) takes the form 

)-F+B = m(Se tttt . (2) 

An important feature of CPPI results from the fact that m>1. Since the "exposure" at t is

the amount held in shares, equation (2) becomes )-F+B = m(SS tttt . Rearranging it we get 

tt
t FB

m

m)(S 1
. Since m>1 the left-hand side must be negative for long positions of stock 

and bond, which implies tt<FB .

The Constant Mix strategy (CM) (Perold and Sharpe, 1988) can be described as a CPPI 

with a multiplier 0<m<1 and a floor of zero, thus (2) becomes )( ttt BSmS . According to 

this strategy, the investor invests a constant proportion of wealth in the risky asset, which implies 

that an increase in the stock value increases its proportion beyond its optimal level, thus the inves-

tor must sell some shares in order to restore the optimum proportion.  

We argue that the CPPI and CM strategies are optimal for risk averse investors with 

HARA preferences such as 

1

)1(
)(

C
CV ,

-=if1,=;0
-1

C
;0;1:..ts .

Based on Merton’s result whereby the optimal equity position is given by 

r

e
W

r
W

Ttr

ttt

)(

2

* 1
, (3) 

where tt W
*

 is the optimal proportion out of wealth invested in the risky asset, i.e., tS ;

the ratio between equity premium and the variance of the risky asset, divided by 1 ,

serves as the multiplier,  
2

r
m ; and the floor is given by 

r

e
F

Ttr

t

)(1 . Hence, the 
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multiplier will be greater than unity when 
2

r
, and the floor will be negative if 0 ,

satisfying DRRA preferences for the CPPI strategy. Otherwise, a multiplier less than unity will 

hold when 
2

r  and the floor will be zero if 0 , satisfying CRRA preferences for the 

CM strategy. Now that we have demonstrated the optimality of CPPI and CM, we turn to develop 

an equilibrium between both strategists and show how can they destabilize stock prices.  

2. The Model 

A. Model Formulation 

Assume two groups of individual investors manage their portfolios through one of the two 

dynamic asset allocation rules, CPPI and CM. Investors face household consumption liquidity 

shocks that add/withdraw from their managed portfolio. We assume that the aggregate amount of 

wealth managed in the economy through each of the strategies can be represented by standardized, 

group-wise diffusion processes  

)(
~

1,, tZtWW DDtDtD  (4) 

and

)(
~

1,, tZtWW CCtCtC
, (5) 

where 1,tKW  are wealth as of t-1 of group K={C,D};  and  are the respective drift terms 

for groups C and D, respectively (either may be positive, negative or zero); C  and D  are the stan-

dard deviations of the respective Wiener processes; and KZ   is a normally distributed random variable 

that represents the aggregate shocks of group K. It is assumed that these processes are not correlated. 

There is a single risky asset (possibly the market portfolio) of which N shares are traded 

and held by either of the two investor groups, thus tNNN tCtD ,, . There is a single risk-

less asset, which earns a giver riskless return r.

At the beginning of each period, all investors must reallocate their portfolio according to 

their strategies between the risky and riskless assets, given the individual liquidity shock. There-

fore, the aggregate wealth at t can be given by 

tKtKtKtKtK BSWWW ,,,1,,

~~~~
. (6) 

Portfolio rebalancing for the CPPI strategy is made according to the following formulation, 

)
~~

(
~

,,,, tDtDtDtDtDt FBNPmNP , (7)

where 
tDtDtDt WNP ,

*

,,
,

2

D

D

r
m ,

tDtDttD BNPW ,,,

~~~
, and 

tDtDtD NNN ,1,,

~~
.

Notice that tKN ,

~
 is the number of shares investor K must trade in order to bring her portfolio to 

its optimal weights. For now, we let the floor as 
r

e
F

Ttr

D

DD
tD

)(

,

1
.

Following the CM strategy, investors of type C will rebalance their portfolio each period 

according to their given preferences, which in aggregate we denote as,   

)
~~

(
~

,,, tCtCtCtCt BNPmNP  (8)
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with an equivalent notation, and specifically, 
tCtCtC NNN ,1,,

~~
.

Since the period t equilibrium price, tP , and the number of shares each investor would op-

timally trade (
tCtD NN ,,

~
,

~
) such that market clearing holds are unknown at the beginning of t, they 

must be solved together in equilibrium. We turn now to formalize the periodic demand/supply 

schedules for units of shares by each strategy, starting with CPPI. Extracting tP  from (7) we get 

)1)(
~

(

)
~

(

,1,

,

DtDtD

ttDDs

t
mNN

FBm
P . (9) 

In the Price-Quantity plane this function has a positive relationship between tP  and 

tDN ,

~
 since 1Dm . We therefore refer to (9) as the "supply function" and denoted s. Taking tP

from the CM strategy (8) yields, 

)1)(
~

(

~

,1,

,

CtCtC

tCCd

t
mNN

Bm
P . (10) 

In this equation there is a negative relationship between price and quantity of shares 

tCN ,

~
 in every t, since 1Cm , thus (10) could be referred to as the "demand function,” and be 

assigned the symbol d.

Isolating the marginal changes in traded shares as a function of price   

1,

,

,
)1(

)
~

(
tD

D
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t

ttDD

tD N
mP

FBm
N , (11) 

,
)1(

~

1,

,

, tC

C

d

t

tCC

tC N
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Bm
N

 (12) 

and impose market clearing conditions 
d

t

s

t

tDtC

PP

NN ,,

~~
. By equating (11) and (12) we get 

NNN
mP

Bm

mP

FBm
tCtD

C
d

t

tCC

D
s

t

ttDD

1,1,

,,

)1(

~

)1(

)
~

(
. (13) 

In equilibrium 
d

t

s

tt PPP , which we replaced in (13) and solve for it 

)1(

~

)1(

)
~

(1 ,,

C

tCC

D

ttDD

t
m

Bm

m

FBm

N
P . (14)

Rearranging the variables in (14) based on their definitions the dynamic equilibrium price 

for the shares reduces to  

N

WmFWm
P

tCCttDD

t

,,

~
)

~
(

. (15) 

Therefore, at every point in time, tP  is the equilibrium price for shares in a stock market 

with the CM and CPPI strategies. It is straightforward to show that the resulting equilibrium price 

path will be a generalized diffusion process with a weighted average drift term  

tWm)F(WmP C,tC
'
tD,tDt 11 . (16) 
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B. Possible Floor Paths 

The literature assigns the CPPI floor increasing paths in time (Perold and Sharpe, 1988), 

constant (Black and Jones, 1987, 1988, Zhu and Kavee, 1987) or decreasing as in Merton, (1971). 

In our setting, the relative weight of the CPPI vs. CM strategists may change, and hence change 

the proportion of the floor value vs. total wealth under management, and the aggregate allocation 

between CPPI and CM. Additionally, changes in demographic parameters such as age cohorts, life 

expectancy and standard of living may change the coefficient DDD /  and the horizon T over 

time. Since the aggregate floor path affects the equilibrium stock price-path we shall explore the 

increasing, constant and decreasing path alternatives for the floor.  

B.1 Decreasing Floor  

A decreasing floor represents an assumption that the floor is a capitalized value of some 

minimum periodic consumption level, 

D

DD . The capitalized floor decreases in time, reaching 

zero at T. A decreasing floor will force share prices upwards, as given in (16).  

B.2 Increasing Floor  

In this alternative (subscript A), the floor, 
)(

,

tTr

At XeF  (X = positive constant, 

 tWX tD ,, ), will increase in time at the local derivative rate 
)('

,

tTr

At rXeF 1. The interest-

ing result stemming from that definition of the floor, is that the equilibrium price path is not forced 

up or down, as opposed to the finding that price path is forced upwards when the floor decreases in 

time. When the floor increases in time, the upper boundary on tB is released thus allowing share 

price to move up or down more freely, which may result in an increase in rate of return variability. 

B.3 Fixed Floor 
A third alternative for the floor definition represents a fixed amount of time-to-horizon T,

(subscript B), that is, constant,,r

t,B=XeF  tWX tD ,, . In that case, the effect on bond 

holdings, and therefore on the stock price path, will be almost similar to the previous case, only the 

upper boundary on bond holdings will not be released in time since the partial derivative of this 

floor with respect to time is zero. A flat floor sets a fixed upper limit on bond holdings. Should the 

limit be effective, due to the combination of multipliers and/or relative holdings of bonds and 

stocks, it may keep the share prices at a level higher than would otherwise be obtained.  

B.4 Demographic Changes 

This alternative, where the floor exhibits oscillations resulting from changes in demo-

graphic data appears more realistic when modeling economic agents' lifetime planning. Long-term 

oscillations in demographic variables may affect the economic real variables gradually, but sys-

tematically as it affects CPPI through the floor. These effects on the floor are a function of cohort 

size and minimum consumption per capita, which varies by age. Browsing the vast amount of data, 

one can finds that young (Ages 0-25) and old (55+) cohorts consume about 33%-50% less than 

prime age cohorts (25-55), depending on the average income bracket the consumer family is in 

(Welch, 1979). Estimating changes in population age distribution together with immigration and 

net population growth is not a trivial task, as one can learn from differences across estimating 

agencies2. In order to obtain a reasonable estimation for the floor one must define and estimate 

minimum consumption, analyze its distribution by age and in time. Finding the proper lifetime 

capitalization rate over the life cycle is another issue. This task in itself deserves a dedicated study 

and is beyond the scope of this paper. However, in order to get a feeling of their potential impact, 

                                                          
1 A similar definition of the floor has been presented in Perold and Sharpe (1988).  
2 The UN estimate of US population distribution (forecast to 2050) consists of three growth scenarios, while US federal 

agencies have a different estimate.   
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pseudo demographic oscillations are presented in simulations N1-N4 from which one can learn 

that these oscillations can result in long-term cyclical patterns of the stock prices. 

3. Simulations 

In all 28 simulations presented below the same periodic, random liquidity shocks, were 

used for each group. Share prices are then calculated in each simulation based on the relevant sup-

ply and demand functions parameters in t. This was done in order to allow proper comparison of 

different market conditions1. In all simulations, assets at t = 0 were set equal between both groups. 

Additionally, the nominal initial number of shares held by group D is constant in all simulations in 

order to allow proper trading volume comparisons. Due to the fact that group D’s portfolio compo-

sition and rebalancing amounts are sensitive to the ratio of the floor to total assets held by the 

group, we have additionally controlled for this ratio at the beginning of each simulation ( DWF /0 ).

The risk free interest rate was held fixed at 3% per annum (except where otherwise indicated), 

leaving changes in the floor to be made via the periodic consumption coefficient DDD /  only. 

It should be emphasized however that exogenous changes in the risk free rate would result in a 

change in the floor and in share prices. An increase in the risk free rate will reduce the floor level, 

which will reduce shares rate of return and volatility, and vice versa.  

A. Constant, Infinite and Fixed Floors 

The first set of simulations in Figure 1 analyzes the fixed floor vs. the decreasing floor al-

ternatives for different multiplier combinations. We mention that different multipliers result from 

different RRA parameters. The first 12 simulations (A1-A6 and B1-B6) have a T = 500 periods 

horizon, from which statistics are drawn for the initial 250 periods, since the floor in this range is 

flat. In all “A” simulations the multiplier Cm  is equal to 0.01, representing an extremely high 

risk-aversion, while in all “B” simulations Cm  was set to 0.95, nearly its highest possible value. 

The multiplier Dm  is either at its lowest possible value, 1.01 or 7.50, representing low risk aver-

sion, and in any case it was set similar between all pairs of simulation A1-B1, A2-B2, C1-D1, etc. 

Finally, the ratio DWF /0  was set to 0.25 in simulations A1, A2, B1, B2; it was then set to 0.475 

in simulations A3, A4, B3, B4 and to 0.95 in simulations A5, A6, B5, B6. This structure allows us 

to analyze the effect of each multiplier, the ratio DWF /0  and the horizon on the stability and ex-

pected return of equilibrium stock prices.  

Figure 1 demonstrates the following: 

1. By comparing A1 with B1, A2-B2, A3-B3 etc., one can conclude that the higher mul-

tiplier by the CM strategy stabilizes the stock price path. The intuition is that the 

greater the multiplier Cm  is, the greater will be the supply (demand) of shares when 

there is an increase (decrease) in the flow of funds to the market, resulting in a stabi-

lized price path.   

2. By comparing A1-A2, A3-A4 and A5-A6, as well as their equivalent pairs of simula-

tion in series B, one can see that an increase in Dm  will destabilize the equilibrium 

price path.  

3. By comparing the four simulations A1, B1, A2, B2 with A3, B3, A4, B4 and with 

simulations A5, B5, A6, B6 one can see that an increase in the ratio DWF /0  sub-

stantially increases the stock price volatility, potentially destabilizes the market. 

                                                          
1 Characteristics of the underlying diffusion processes for the groups are: Average periodic change in group D's diffusion 

process is 0.00031 (0.0775 for the entire 250 periods), with a variance of periodic change 0.00032. Group C's periodic 

average diffusion process change is 0.00022 (0.055 for 250 periods) with a variance of 0.00025. The covariance between 

the periodic rate of change for both processes is 0.00013.  
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Stock Market Simulation: Sim.#: A1
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Fig. 1. Simulations A1-A6 and B1-B6: T=500 periods 
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Fig. 2. Simulations C1-C6 and D1-D6: T=250 periods
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Figure 2 shows the exact same conditions as in the simulations of Figure 1, only now the 

horizon is T=250, and therefore the floor of the CPPI investors declines and affects the equilibrium 

price. Essentially, all our conclusions with respect to Figure 1 still hold, with one important addi-

tion: as the horizon gets nearer, and the floor declines, the price path increases steadily and turns 

less stable. The price paths in C5 and C6 appear steeper than those in A5 and A6, and resemble 

boom and crash patterns. These results suggest not only that CPPI can destabilize the market, but 

its effect increases both with its popularity, with the decline in its investors relative risk aversion, 

and with the shortening horizon.   

We turn now to compare the variety of market conditions in simulations A1-A6 with the 

corresponding conditions in C1-C6, and those in simulations B1-B6 with D1-D6, (each pair x#-y# 

differs only with respect to the horizon.) This comparison yields statistics concerning the stock’s 

rate of return (ROR) in Table 1, ROR volatility in Table 2 and absolute trading volume in Table 4.  

A.1 ROR Analysis 

Table 1 

Periodic Average Rate of Return (r = 3%) 

 Firm C's 

multiplier 

M(C)=0.01 

Firm C's 

multiplier 

m(C)=0.95 

Firm D's 

multiplier 

Floor relative 

to D's assets 

Horizon 

0.001 0.000 m(D)=1.01 F0/W=25% T=500 

0.001 0.001 m(D)=7.50 

0.002 0.001 m(D)=1.01 F0/W=47.5% 

0.002 0.001 m(D)=7.50 

0.014 0.001 m(D)=1.01 F0/W=95% 

0.017 0.005 m(D)=7.5 

0.002 0.001 m(D)=1.01 F0/W=25% T=250 

0.002 0.002 m(D)=7.50 

0.004 0.002 m(D)=1.01 F0/W=47.5% 

0.004 0.003 m(D)=7.50 

0.018 0.003 m(D)=1.01 F0/W=95% 

0.021 0.009 m(D)=7.5 

  Note: Data should read 0.001 = 0.1% per period. Periodic Average ROR increases with the ratio of 

the floor to total assets held by the CPPI trader, as well as with his multiplier. ROR decreases with the CM 

trader multiplier.

Main Findings: 

1. ROR increases with the ratio of the floor to group D's assets. This results from the 

fact that the higher the ratio DWF /0  is, the larger will be the proportional change in 

group D's shares, thus, a larger demand relative to the total fixed number of shares in 

the market.  

2. ROR increases with group D's multiplier for a given ratio of DWF /0  since an in-

crease in share price is followed by buying more shares by group D when its multi-

plier is higher, and vice-versa.  

3. ROR decreases with group C's multiplier, since an increase in share price is followed 

by selling more shares by group C when its multiplier is higher, and vice versa. Be-

ing a counter-trend strategy, the Constant-Mix PI selling strategy will support a de-

clining market and hold back a bullish one.  

4. ROR increases as T is approached (All average RORs are higher for T = 250 vs. T = 

500) since group D replaces bonds with stocks. 
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5. When group C's multiplier is near zero, increasing Dm  for a given DWF /0  has no 

effect on ROR, except for very high DWF /0  ratio. However, when Cm  approaches 

1.0, increasing Dm  results in most cases in an increase in average ROR. 

A.2 Standard Deviation of ROR Analysis 

Table 2 

Periodic Standard Deviation of Rate of Return (r = 3%) 

 Firm C's 

multiplier 

m(C)=0.01 

Firm C's 

multiplier 

m(C)=0.95 

Firm D's 

multiplier 

Floor relative 

to D's assets 

Horizon 

0.016 0.010 m(D)=1.01 F0/W=25% T=500 

0.016 0.014 m(D)=7.50 

0.021 0.012 m(D)=1.01 F0/W=47.5% 

0.022 0.018 m(D)=7.50 

0.122 0.017 m(D)=1.01 F0/W=95% 

0.145 0.054 m(D)=7.5 

0.015 0.010 m(D)=1.01 F0/W=25% T=250 

0.016 0.014 m(D)=7.50 

0.020 0.011 m(D)=1.01 F0/W=47.5% 

0.021 0.018 m(D)=7.50 

0.109 0.016 m(D)=1.01 F0/W=95% 

0.126 0.048 m(D)=7.5 

Note: Data should read 0.001 = 0.1% per period. ROR Variability increases with the ratio of the 

floor to total assets held by the CPPI traders, as well as with their multiplier. It decreases with the CM trader 

multiplier and as the CPPI horizon is approached. 

Main Findings: 

1. ROR variability increases with DWF /0 . This result is due to the same mechanism 

which increases average ROR (finding 1, Table 1).  

2. ROR variability increases with an increase in Dm  for a given DWF /0 . This effect is 

stronger when Cm  approaches 1.0.  

3. ROR variability decreases with an increase in Cm for the same reason as in finding 

3, Table 1. 

4. ROR variability decreases as T is approached (values for T = 250 are lower than for T

= 500, mainly for high DWF /0 ). Recall that for the T = 500 case we only take statis-

tics of the first half of the "lifetime," whereas in the case of T = 250 the entire life-

time is considered. Even in those simulations where the conditions enable price ac-

celeration towards T, the local ROR variation tends to be small during the accelerated 

price increase since not much trade is possible (see below). A good example of that 

phenomenon is evident in simulations A1 vs. C1, A2 vs. C2 and B2 vs. D2. 

A.3 Traded Volume Analysis 

For a given change in wealth, with two traders and two trading volume categories per 

trader (“Large” and “Small” change in share ownership), trading volume analysis could be pre-

sented in a simple 2X2 matrix. Four hypotheses (marked "H") are summarized in Table 3 together 

with findings from the simulations (marked "F"). It appears reasonable to hypothesize that a large 

proportion of absolute trading volume to total number of shares in the market (hereinafter ATV/N)
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will result when both traders intend to trade many shares in response to a given wealth change, as 

in H1. ATV/N is expected to be at a lower level compared to H1 if one of the traders wish to trade a 

small number of shares in response to the given wealth change, as in H2 and H3. Finally, the low-

est ATV/N is expected in H4, where both traders wish to trade a small number of shares due to the 

given price change.  

Table 3 

Hypotheses (H) and Findings (F) Regarding ATV/N in Four Market Conditions (T = 250) 

Change in Group C Share Ownership, NC t,

Small, m(C)=0.01 Large, m(C)=0.95 

H2: Small ATV/N 

F2: 0.342 

H1: Large ATV/N 

F1: 4.434 

Large,
F0/W=95%, 

m(D)=7.5 

Change in  

Firm D 

Share 

H4: Very small 

ATV/N 

F4: 0.042 

H3: Small ATV/N 

F3: 1.040 

Small,
F0/W=25% 

m(D)=1.01 

Ownership, 

ND t,

A higher level of both multipliers and ratio of F0/W will result in a higher trading volume.

Differences are evidently large enough to conclude that trading volume is indeed a func-

tion of both multipliers and the ratio DWF /0 . Additional simulations with different random paths 

will not alter these results and we may thus turn to analyze volume in Table 4. 

Table 4 

ATV/N in Different Market Conditions 

 Firm C's 

multiplier 

m(C)=0.01 

Firm C's 

multiplier 

m(C)=0.95 

Firm D's 

multiplier 

Floor relative 

to D's assets 

Horizon 

0.043 1.051 m(D)=1.01 F0/W=25% T=500 

0.006 0.437 m(D)=7.50 

0.072 1.260 m(D)=1.01 F0/W=47.5% 

0.010 0.672 m(D)=7.50 

2.311 2.300 m(D)=1.01 F0/W=95% 

0.439 5.230 m(D)=7.5 

0.042 1.040 m(D)=1.01 F0/W=25% T=250 

0.006 0.425 m(D)=7.50 

0.068 1.229 m(D)=1.01 F0/W=47.5% 

0.009 0.632 m(D)=7.50 

1.870 2.108 m(D)=1.01 F0/W=95% 

0.342 4.434 m(D)=7.5 

Note: Data represent ratio of ATV/N.

Trading volume increases with both multipliers and with the ratio F0/W. It decreases though as T is 

approached.

Main Findings: 

1. ATV/N increases with DWF /0 as group D has to protect its higher floor. 
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2. ATV/N increases with Cm . The reason for this finding is that group C's absence from 

the stock market disables trade thus volume is low for low m(C) and increases with it. 

(A single exception for Dm  = 1.01, Cm  = 0.01, DWF /0  = 95% and T = 500, due to 

the non-linearity of a 16 times smaller number of shares in the economy vs. the Cm

= 0.95 case (2.311 vs. 2.300).) 

3. ATV/N decrease with an increase in Dm  for a given DWF /0 . The reason is that a 

higher multiplier for D indicates to the group that it should offer/demand a larger 

value of stock for a given market condition. That forces larger price change on the 

account of traded volume (as seen in ROR variability findings).  

4. ATV/N decreases as T is approached due to higher price levels, which allows group D 

to trade the same value of stock with a smaller number of shares. 

B. Long-term Cyclical Price Patterns 

An economy in a steady demographic state should be characterized by constant aggregate 

minimum consumption, given a fixed minimum consumption level percapita. However, significant 

changes in population distribution, such as a baby-boom or immigration waves, may generate not 

only an impact on aggregate minimum consumption as of the time of change, but also echo effects 

for generations to come. The relevance of this point to the model described here is made through 

the aggregate capitalized minimum consumption level tDF , . When the total number of consumers 

in the economy fluctuates over time, tDF ,  will swing too. As seen earlier, in times of lower than 

average floor level, if and when the floor poses an effective upper limit on bond holdings, share 

prices will be forced to increase through the mechanism explained earlier. Equivalently, as the 

floor increases back, share prices will be free to decline. In the very long-term, share price level 

will gradually converge to a steady-state drift rate which is the weighted average of both investor 

types in the economy, weighted by their wealth and multipliers (see eq. (16)).  

The case of long-term swings in the floor is presented graphically in simulations N1-N4 

of Figure 3. It is evident from these simulations that the higher the proportion of floor to group D 

assets ( DWF /0 ) is, the stronger the impact on share prices path will be. While the long-term path 

is affected by the ratio of DWF /0 , the path variability is affected by the combination of both mul-

tipliers and the changes in floor level. (In simulations N1 and N2 the floor and group D multiplier 

are similar, but in N1 group C’s multiplier is 0.01, while in N2 it is 0.99.) The floor impact on 

price path could be seen when comparing the floor in simulation N4 ( DWF /0 = 0.95) to N1 and 

N2 ( DWF /0 = 0.8) and all three simulations compared to N3 ( DWF /0 = 0.44). In the “very long” 

horizon, the floor will converge to a steady state level, as population distribution will stabilizes 

(simulation N3).  
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Fig. 3: Simulations N1-N4 

4. Summary

This paper constructs a simple general equilibrium model of a stock market with two in-

vestor types, both have Hyperbolic Absolute Risk Aversion (HARA) utilities, but differ with re-

spect to relative risk aversion and displacement utility factors. The investors apply individually 

optimal portfolio strategies that allow us to clear the market and reveal the equilibrium price proc-

ess endogenously. We map the optimal portfolio rules of investors with Decreasing Relative Risk 

Aversion (DRRA) preferences to a Constant Proportion Portfolio Insurance (CPPI) strategy, and 

CRRA preferences to a Constant Mix (CM) strategy.  
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We show that if the funds managed by CPPI increase vs. overall market value, they will 

destabilize the stock price path by increased return variability and high trading volume in a fashion 

that will ex-post be similar to a financial bubble. On the other hand, the CM investor reduces the 

equilibrium price volatility by selling portfolio insurance. We also find that when the aggregate 

CPPI strategy approaches a fixed horizon, T, be it a "generation" change or an end of a planning 

period, equilibrium share prices will increase toward T at increasing volatility.  

Destabilization of the equilibrium price will intensify if the CM strategists are absent 

from the market. This might occur either because their relative risk aversion is extremely high, 

which implies a very low position in the risky asset, or because a relatively low proportion of 

funds are managed through this strategy. The opposite holds as well: The greater the proportion of 

(high risk-averse) CM investors in the market is, the greater will be their stabilizing effect on equi-

librium prices.  

Finally, we show that demographic oscillations will result in oscillations in the equilib-

rium stock price-process. Empirical evidence concerning short-term random walk but long-term 

cyclical patterns in share prices may also be explained by the results of this model. Such will be 

the case if the insured floor, being a capitalized value of lifetime minimum consumption oscillates 

in time. Oscillations might result from changes in population age structure or standard of living. 

The technique used to solve this model is simpler than existing stochastic optimal control tech-

niques yet it is powerful and provides the economic insights without mathematical complexities.  
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