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The gut microbiota of vertebrates play a crucial role in shaping the health of their hosts.
However, knowledge of the avian intestinal microbiota has arguably lagged behind that
of many other vertebrates. Here, we examine the intestinal bacterial communities of
the hooded crane and the greater white-fronted goose at the Shengjin Lake of China,
using high-throughput sequencing (Illumina Mi-Seq), and infer the potential pathogens
associated with each species. Intestinal bacterial alpha-diversity in the greater white-
fronted goose was significantly higher than that in hooded crane. The intestinal bacterial
community compositions were significantly different between the two hosts, suggesting
that host interactions with specific communities might have profound implications.
In addition, potential pathogens were detected in both guts of the two hosts, suggesting
that these wild birds might be at risk of disease and probably spread infectious
disease to other sympatric vertebrates. The gut of hooded crane carried more potential
pathogens than that of the greater white-fronted goose. The potentially pathogenic
community compositions were also significantly different between the two hosts,
suggesting the divergence of potentially pathogenic communities between hooded
crane, and greater white-fronted goose. Finally, bacterial and potentially pathogenic
structures showed strong evidence of phylogenic clustering in both hosts, further
demonstrating that each host was associated with preferential and defined bacterial
and potentially pathogenic communities. Our results argue that more attention should
be paid to investigate avian intestinal pathogens which might increase disease risks for
conspecifics and other mixed species, and even poultry and human beings.

Keywords: migratory bird, sequencing, wetland, intestinal bacteria, pathogen

INTRODUCTION

The gut microbiota of vertebrates is one of the most densely populated microbial assemblages
(Whitman et al., 1998), and plays an essential role in the health of their hosts (Heijtza et al., 2011).
The intestinal microbes contribute to many necessary functions for their hosts, including aiding in
digestion (Turnbaugh et al., 2006; Stanley et al., 2012), vitamin synthesis and metabolism (Eberl and
Boneca, 2010), protection against pathogens (Guarner and Malagelada, 2003; Koch and Schmid-
Hempel, 2011), training of the immune system (Atarashi et al., 2011; Chung et al., 2012), organ
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development (Stappenbeck et al., 2002; Rahimi et al., 2009), and
regulation of host physiology (Backhed et al., 2004; Meinl et al.,
2009). The microbiota may even affect mate choice and induce
hybrid inviability (Sharon et al., 2010; Brucker and Bordenstein,
2013). In vertebrates, the intestinal microbial assemblage patterns
are shaped by a series of complex and dynamic interactions
throughout life, including diet (De Filippo et al., 2010), lifestyle
(Ley et al., 2008; Nicholson et al., 2012), and seasonal fluctuations
(Hird et al., 2014). Intestinal microbial communities are largely
shaped by their host species, and microbial communities tend
to be more similar between more closely related hosts (Eckburg
et al., 2005).

Birds represent an interesting study system for intestinal
microbes because they have unique life history traits and
developmental strategies that are different from other vertebrates
(Kohl, 2012). However, research of the avian intestinal microbiota
has arguably lagged behind that of many other vertebrates.
Recent studies of avian intestinal microbiota are mainly focused
on ornamental and economically important birds (e.g., kakapo,
hoatzins, poultry, etc), most of which showed that gastrointestinal
microbial communities bring benefits to their hosts (Jin et al.,
1998; Angelakis and Raoult, 2010; Torok et al., 2011; Zhang et al.,
2011; Cao et al., 2012; Stanley et al., 2012). However, there are also
pathways through which the colonization of intestinal microbes
might be of detriment, triggering a series of avian diseases (Ford
and Coates, 1971; Potti et al., 2002; Cao et al., 2012; Singh et al.,
2013). Migratory birds travel long distances and utilize diverse
habitats, which potentially exposes them to a broad range of
pathogens and could spread infectious disease to conspecifics
and/or other bird species, or even poultry and human beings
(Altizer et al., 2011). However, the assumption that migrating
birds facilitate pathogenic propagation has not been definitely
verified.

The hooded crane (Grus monacha) and greater white-fronted
goose (Anser albifrons) are two large long-distance migratory
colonial wading wild birds. The hooded crane is defined
as a vulnerable species in the IUCN (International Union
for Conservation of Nature and Natural Resources) Red List
of Threatened Species and is a first-class national protected
wild animal in China, breeding in south-central and south-
eastern Siberia and Russia, and wintering in China, Japan,
and South Korea (Zheng et al., 2015). The East Asia greater
white-fronted goose breeds mainly on the Siberian arctic coast,
and hibernates in China, India, and Japan. The greater white-
fronted goose is one of the most abundant wintering bird
in the Yangtze River floodplain. However, in recent decades,
the wintering population of greater white-fronted geese has
decreased markedly (Cao et al., 2008), with the population falling
from around 140,000 in 1987 to about 18,000 in 2010 due
to habitat loss and hydrological changes (Zhao et al., 2012).
The wintering period of these two migratory birds is from
October to April in the Yangtze River floodplain. Anthropic
activities trigger rapid degradation of lake wetlands, leading to the
significant reduction in food availability, which forces wintering
birds to change their dietary structure and flock together for
foraging (Barzen et al., 2009; Zhou et al., 2010; Yang et al.,
2015).

Shengjin Lake, an internationally important wetland, is a
river-connected shallow lake in the middle of the Yangtze River
floodplain (Fang et al., 2006). Shengjin Lake is the most important
wintering ground for hooded cranes and greater white-fronted
geese, providing them with suitable feeding habitats during the
wintering period (Chen et al., 2011). Previous studies have
demonstrated that hooded cranes and greater white-fronted geese
forage together in this area (Chen et al., 2011; Yang et al., 2015;
Zheng et al., 2015), which offered the opportunity to compare
intestinal bacterial and potentially pathogenic communities
between these two hosts. A better understanding of intestinal
microbes as well as pathogens of wild birds is important for
clarifying avian ecology and disease propagation. In this study,
high-throughput sequencing method (Illumina Mi-Seq) was used
to analyze the intestinal bacterial communities of wintering
hooded crane and greater white-fronted goose at the Shengjin
Lake. In particular, we want to examine the bacterial communities
and infer the potential pathogens in the guts of these two hosts.

MATERIALS AND METHODS

Ethics Statement
Fecal samples of hooded crane and greater white-fronted goose
were collected after foraging to avoid human disturbance.
Non-invasive sample collection did not involve the hunting
of experimental animals. Permission was obtained from the
Shengjin Lake National Nature Reserve of Anhui Province.

Site Selection and Sample Collection
The Shengjin Lake (30.15–30.30◦N, 116.55–117.15◦E) is a river-
connected shallow lake, which flows into the Yangtze River
(Supplementary Figure S1). The lake is an internationally
important wetland, which serves as indispensable wintering
and stopover habitat for migratory birds on the East Asia-
Australasian flyway (Chen et al., 2011; Fox et al., 2011). The
average annual temperature and precipitation are 16.14◦C and
1600 mm, respectively (Fang et al., 2006).

Fecal samples from hooded crane and greater white-fronted
goose were collected on the 10th of March, 2018 at the Shegan,
Shengjin Lake (Supplementary Figure S1). Hooded crane mainly
eats Vallisneria natans and Potamogeton malaianus (Zheng et al.,
2015) while greater white-fronted goose feeds primarily on Carex
spp. (Zhang and Lu, 1999; Cheng et al., 2009) in the early
wintering period (i.e., from October to next January) at Shengjin
Lake. However, the wading birds alter their dietary structure to
exploit paddy fields as foraging habitat due to food shortage in
the later wintering period (i.e., February to April; Zhou et al.,
2010; Yang et al., 2015). There are lots of paddy fields around the
Shegan region, so hooded cranes and greater white-fronted geese
forage together here.

Before sampling, a telescope was used to search the flocks of
hooded crane and greater white-fronted goose. The fresh fecal
samples were collected immediately after foraging of wild birds.
The interval distance for samples was more than 5 meters to avoid
individual repetition. The fecal samples were kept in a cooler
and transported refrigerated to the lab as quickly as possible.
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The outside of each sample was cut and discarded to avoid
contamination; the rest was homogenized within each plastic
valve bag and stored at −20◦C for DNA extraction.

Fecal DNA Extraction
DNA extractions were carried out on 200 mg of fecal samples
using the Qiagen QIAamp R© DNA Stool Mini Kit following
the DNA isolation protocol. The extracted DNA was dissolved
in 60 µl of elution buffer, quantified by NanoDrop ND-1000
(Thermo Scientific, United States), and stored at −20◦C.

Bird Species Determination
Primer sets BIRDF1–BIRDR1 were used to amplify COL gene
to confirm bird species (Hebert et al., 2004). PCR reaction was
carried out in 50 µl reaction mixtures containing 100 ng of fecal
DNA, each deoxynucleoside triphosphate at a concentration of
200 µM, forward or reverse primers at a concentration of 0.4 µM
and 2 U of Taq DNA polymerase (TaKaRa, Japan). The cycling
parameters were as follows: 95◦C for 5 min, followed by 35 cycles
of 95◦C for 30 s, 55◦C for 45 s, and 72◦C for 90 s, with a final
extension period at 72◦C for 10 min. The PCR products were
sequenced and then blasted (>97% sequence identity) in National
Center for Biotechnology Information (NCBI). Only the fecal
sample with sequence belonged to hooded crane or greater white-
fronted goose was kept for high-throughput sequencing. A total
of 30 fecal samples, 15 from hooded crane and 15 from greater
white-fronted goose, were determined in this study.

PCR and Amplicon Library Preparation
An aliquot (50 ng) of purified DNA from each sample was used
as template for amplification. Primer sets F515/R907 equipped
with sequencing adapters and unique identifier tags were used
to amplify the V4-V5 hypervariable regions of the bacterial 16S
rRNA genes fragments (Biddle et al., 2008) for the Illumina
Mi-Seq platform (PE 300) at Majorbio (Shanghai, China). PCR
reaction was carried out in 50 µl reaction mixtures containing
each deoxynucleoside triphosphate at a concentration of 200 µM,
forward or reverse primers at a concentration of 0.4 µM and
2 U of Taq DNA polymerase (TaKaRa, Japan). The following
cycling parameters were used: 35 cycles of denaturation at 94◦C
for 45 s, annealing at 55◦C for 45 s, and extension at 72◦C for
45 s; with a final extension at 72◦C for 10 min. To check for
contamination, PCR negative controls were performed without
added DNA template. Negative PCR controls did not contain
detectable PCR product and were not processed for sequencing.
Triplicate reaction mixtures per sample were pooled together and
purified using an agarose gel DNA purification kit (TaKaRa). The
PCR products were pooled in equimolar amounts (10 pg for each
sample) before sequencing.

Processing of Sequence Data
Bacterial raw data were processed by the Quantitative Insights
Into Microbial Ecology (QIIME v.1.9; Caporaso et al., 2010).
The poor-quality sequences (below an average quality score
of 30 and the length <250 bp) were removed. High quality
sequences were clustered into Operational Taxonomic Units

(OTUs; 97% similarity; de novo approach) using UCLUST
(Edgar, 2010). Chimera and singleton OTUs were deleted. The
most abundant sequence within each OTU was selected as the
representative sequence identified by the ribosomal database
project Classifier (Wang et al., 2007), and aligned by PyNAST
(Caporaso et al., 2010). To equally rarefy samples, randomly
selected subsets of 5,600 sequences (lowest sequence read depth;
repetition with 20 times) per sample were used to compare
bacterial community compositions and diversity for all samples.

Potentially Pathogenic Species
Determination
All identified bacterial species were manually searched as
key words in Web of Science. These bacterial species which
have been demonstrated by references as pathogens in human
and/or animals were set aside for further analysis. A total of
11 potentially pathogenic species have been detected in this study
(Supplementary Table S1). The Clostridium perfringens might
cause disease in humans, birds, pigs, dogs, goats, etc. (Craven
et al., 2000; Songer, 2010; Mafruza et al., 2012; Kiu and Hall,
2018; Liu et al., 2018). The Prevotella copri and Staphylococcus
aureus probably invade humans and mice (Scher et al., 2013;
Tong et al., 2015). The Helicobacter pylori, Elizabethkingia
meningoseptica, Bacillus cereus, and Prevotella nigrescens are
mainly human pathogens (Kotiranta et al., 2000; Kusters et al.,
2006; Stingu et al., 2013; Jean et al., 2014). Fish are the primary
hosts for Flavobacterium columnare and Piscirickettsia salmonis
(Durborrow et al., 1998; Smith et al., 1999). The Plesiomonas
shigelloides might be a pathogen in humans and fish (Claesson
et al., 1984; Hu et al., 2014; Behara et al., 2018). The Mucispirillum
schaedleri might cause disease in mice (Loy et al., 2017).

Statistical Analysis
Identification of intestinal bacterial taxa that differed significantly
between host species was performed by linear discriminant
analysis (LDA) effect size (LEfSe), which uses the non-parametric
Kruskal-Wallis rank sum test with the default setting (an alpha
value of 0.05 and an effect size threshold of 2) to identify
biomarkers (Segata et al., 2011). The differences in bacterial and
pathogenic community compositions between host species were
analyzed by non-metric multidimensional scaling (NMDS) and
analysis of similarity (ANOSIM; permutations = 999) using the
vegan package (Version 2.0-2; Oksanen et al., 2011) in R v.2.8.1 (R
Development Core Team, 2006). The nearest taxon index (NTI)
was calculated to test phylogenetic structure using the picante
package (Purcell et al., 2007) in R v.2.8.1 (R Development Core
Team, 2006). More positive NTI values indicate phylogenetic
clustering, while more negative NTI values indicate phylogenetic
overdispersion (Webb, 2000). One-way ANOVA was used
to analyze alpha-diversity and NTI values which followed
normal distribution across samples (Kolmogorov-Smirnov test;
Supplementary Table S2). The Mann-Whitney-Wilcoxon test
was used to analyze the relative abundance of pathogenic species
which followed non-normal distribution (Kolmogorov-Smirnov
test; Supplementary Table S2).
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FIGURE 1 | Intestinal bacterial alpha-diversity in hooded crane and greater
white-fronted goose. Bars represent mean; error bars denote standard
deviation; letters above bars represents significant differences from one-way
ANOVA (P < 0.05). HC, hooded crane; GG, greater white-fronted goose;
OTU, operational taxonomic unit; PD, phylogenetic diversity. The units of OTU
richness and PD are number of OTUs and branch length of phylogenetic tree,
respectively.

Data Availability
The raw data were submitted to the Sequence Read Archive
(SRA) of NCBI under the accession number SRP159542.

RESULTS

Intestinal Bacterial Alpha-Diversity
We obtained a total of 443,460 quality-filtered bacterial sequences
across all samples for the primer pair F515/R907, ranging from
5622 to 25132 sequences per sample (Supplementary Table S3).

A total of 5,325 bacterial OTUs was found, ranging from 265 to
885 across all samples (97% similarity), 32.3% of which (1722)
were found in both species. The unique bacterial OTUs were
1545 (29.0%) and 2058 (38.6%) for the hooded crane and greater
white-fronted goose, respectively. One-way ANOVA showed that
bacterial alpha-diversity in the gut of the greater white-fronted
goose was significantly higher than that of the hooded crane
(Figure 1).

Intestinal Bacterial Community Structure
The dominant intestinal bacterial phyla were Firmicutes
(79.60%), Proteobacteria (11.83%), Bacteroidetes (4.71%), and
Actinobacteria (1.21%). The dominant intestinal bacterial
classes were Clostridia (77.33%), Alphaproteobacteria (8.60%),
Bacteroidia (4.47%), Bacilli (2.20%), and Gammaproteobacteria
(1.72%). LEfSe analysis identified specific intestinal bacterial
taxa that were differentially abundant across the two hosts. The
results showed that bacteria in eight phyla (i.e., Fibrobacteres,
Fusobacteria, Gemmatimonadetes, OP11, OP3, Spirochaetes,
Thermi and Verrucomicrobia), and 16 classes (i.e., Holophagae,
Acidimicrobiia, Thermoleophilia, Chloroflexi, Ellin6529,
Fibrobacteria, Fusobacteriia, Gemm_1, ZB2, OP11_3, OP11_4,
Koll11, Spirochaetia, SC3, Deinococci and Verruco_5) were
significantly more abundant in the gut of the hooded crane
(Figure 2 and Supplementary Figure S2). Soil bacteria from four
phyla (i.e., Armatimonadetes, Bacteroidetes, Proteobacteria, and
Synergistetes) and nine classes (i.e., Soilbacteres, Coriobacteriia,
SJA_176, Bacteroidia, Cytophagia, Ignavibacteria, Erysipelotrichi,
Synergistia, and Deltaproteobacteria) were significantly more

FIGURE 2 | LEfSe analysis of intestinal bacterial biomarkers associated with host types. Identified phylotype biomarkers ranked by effect size and the alpha value
was <0.05. Each filled circle represents one biomarker. Cladogram representing the taxonomic hierarchical structure of the phylotype biomarkers identified between
two host types; green, phylotypes overrepresented in gut of hooded crane; red, phylotypes statistically overrepresented in gut of greater white-fronted goose; yellow,
phylotypes for which relative abundance is not significantly different between the two host types. HC, hooded crane; GG, greater white-fronted goose.
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FIGURE 3 | The intestinal bacterial community compositions (A) and the
values of nearest taxon index (NTI; B) in guts of two hosts. HC, hooded crane;
GG, greater white-fronted goose; ANOSIM, analysis of similarity.

abundant in the gut of the greater white-fronted goose (Figure 2
and Supplementary Figure S2).

The bacterial community compositions were significantly
different between the guts of the hooded crane and the greater
white-fronted goose (ANOSIM: P = 0.001; Figure 3A). The
bacterial Bray-Curtis dissimilarity within host species was bigger
in the gut of the hooded crane than in the greater white-fronted
goose (Supplementary Figure S3). The NTI was calculated to test
the bacterial phylogenetic structure in the two species. The NTI
values were positive for all samples tested, which showed that
bacterial communities were phylogenetically clustered in both
hooded crane and greater white-fronted goose (Figure 3B). In
addition, NTI was lower in the gut of the hooded crane than in the
greater white-fronted goose, which indicated that phylogenetic
clustering was weaker in the gut of the hooded crane than in the
greater white-fronted goose (Figure 3B).

Intestinal Potential Pathogen
A total of 6168 (1.39% relative to all bacterial reads) potentially
pathogenic sequences were found across all samples, ranging
from 7 to 910 sequences per sample (Supplementary Table S3).
Potentially pathogenic sequences were significantly higher in the
gut of the hooded crane than in the greater white-fronted goose.

These sequences grouped into 81 potentially pathogenic OTUs,
39.51% of which (32) were found in both host species. The gut
of the hooded crane (37) had more unique pathogenic OTUs
than the greater white-fronted goose (12, Figure 4A). One-way
ANOVA showed that potentially pathogenic OTU richness was
significantly higher in the gut of the hooded crane than in the
greater white-fronted goose (Figure 4B).

A total of 11 potentially pathogenic species was detected in the
guts of the hooded crane and the greater white-fronted goose.
The primary dominant pathogenic species was C. perfringens
which might be detrimental for birds (Supplementary Table S1).
The other potential pathogens might cause diseases in human
and/or specific animal species (Supplementary Table S1). In
addition, the hooded crane gut carried more relative abundance
of C. perfringens and M. schaedleri than in the greater
white-fronted goose. The relative abundance of P. copri and
P. shigelloides were significantly higher in the gut of the greater
white-fronted goose than in the hooded crane (Supplementary
Table S4). The potentially pathogenic community compositions
were significantly different between hooded crane and greater
white-fronted goose (ANOSIM: P = 0.001; Figure 4C). The
potentially pathogenic NTI values were positive for all the
samples, indicating that potentially pathogenic communities
were also phylogenetically clustered in both the guts of hooded
crane and greater white-fronted goose (Figure 4D). In addition,
potentially pathogenic phylogenetic clustering was stronger in
the gut of the hooded crane than in the greater white-fronted
goose (Figure 4D).

DISCUSSION

In this study, we found significant differences in the intestinal
bacterial community composition and diversity between hooded
crane and greater white-fronted goose, demonstrating that
bacterial taxa showed strong host-preference, suggesting that
hosts were the crucial factor in shaping the intestinal bacterial
structure (Eckburg et al., 2005). Previous study has shown
that heritable taxa might be a reason to cause the shift
in bacterial communities between different hosts (Goodrich
et al., 2014). In this study, we found strong evidence for
phylogenetic clustering of bacterial communities in both guts
of the hooded crane and the greater white-fronted goose
(Figure 3B), suggesting that different hosts were associated
with specific and defined intestinal bacterial communities, which
might be included by hosts mediated metabolic pathways and/or
dietary selection (Nicholson et al., 2012; Goodrich et al., 2014).

The primary dominant intestinal bacterial phylum was
Firmicutes (79.60%) in both the hooded crane and the greater
white-fronted goose, which was consistent with prior studies
in other birds, such as the chicken (Lan et al., 2002), seabirds
penguin (Dewar et al., 2013, 2014) and turkey (Wilkinson et al.,
2017). Intestinal Firmicutes contributes to the decomposition
of complex carbohydrates, polysaccharides and fatty acids
(Flint et al., 2008), which improves hosts’ ability to extract
nutrients from food (Tap et al., 2009). A high proportion of
Proteobacteria (11.83%), which played an important role in
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FIGURE 4 | The intestinal pathogenic bacterial characteristics in guts of two hosts: pathogenic OTU overlapping (A), operational taxonomic unit (OTU) richness (B),
community composition (C), and nearest taxon index (NTI, D). HC, hooded crane; GG, greater white-fronted goose; ANOSIM, analysis of similarity.

energy accumulation, was found in both guts of hooded crane
and white-fronted goose (Chevalier et al., 2015), indicating that
these wintering birds might consume lots of energy to deal with
frost during wintering periods.

In this study, only 39.51% of total potentially pathogenic
OTUs was found in both guts of the hooded crane and the
greater white-fronted goose (Figure 4A). In addition, these
two hosts carried significantly different potentially pathogenic
compositions and diversity (Figure 4), suggesting the divergence
of potentially pathogenic communities between hooded crane
and greater white-fronted goose. We also found an interesting
result where the hooded crane carried less bacterial diversity
and more potentially pathogenic diversity relative to the greater
white-fronted goose. Previous studies demonstrated that healthy
mice contained more bacterial diversity while disease reduced
a host’s intestinal bacterial diversity (Manichanh et al., 2006;
de Vos and de Vos, 2012; Jeffery et al., 2012; Guan et al.,
2016), indicating that there might be a negative relationship
between intestinal bacterial and pathogenic diversity. Healthy
hosts contain various bacterial groups while disease might
break the balance of these groups to decrease bacterial diversity
(Mangin et al., 2004).

The primary dominant potential pathogen was C. perfringens
which might be detrimental for birds (Craven et al., 2000;
Ryan and Ray, 2004; Songer, 2010; Mafruza et al., 2012;
Liu et al., 2018), suggesting that these wild birds might
be at risk of disease. Hooded crane harbored much more
abundance of C. perfringens relative to greater white-fronted
goose (Supplementary Table S4), indicating that wintering
hooded crane might be suffering more severe pathogenic
invasion. Hooded cranes are a vulnerable species in the IUCN
Red List of Threatened Species, so much more attention should
be paid to protect hooded cranes. The C. perfringens triggers
tissue necrosis, bacteremia, emphysematous cholecystitis and gas
gangrene, not only to infect avian species, but also human beings
(Ryan and Ray, 2004; Songer, 2010). Particularly, three potential
pathogens in the feces of the two hosts might cause severe
diseases in fish (Supplementary Table S1). The Shengjin Lake
is an important fish farming base and these pathogens in avian
feces could easily enter into the lake. There were also several
potential pathogens which might cause diseases in human and/or
specific animal species (Supplementary Table S1). Because of the
migration of birds, they might widely propagate their intestinal
pathogens and increase the risk of disease in other animals, even
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human beings (Caron et al., 2010; Mora et al., 2013; Huang et al.,
2014; Ekong et al., 2018).

In conclusion, intestinal bacterial as well as potentially
pathogenic communities were significantly different between
the hooded crane and the greater white-fronted goose. This
work helps to build a more complete picture of intestinal
microbial communities, as well as potentially pathogenic
communities in migratory birds. However, there were certain
limitations in this research. Only two bird species with 15
replicates were chosen for analysis. In addition, the intestinal
bacterial communities of wild birds were studied within one
wintering region rather than across multiple regions. Lastly,
we did not show pathogenic interaction among wild birds
along the wintering timescale to distinguish the degree of
cross infection. These limitations should be clarified in future
studies.
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