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As a self-adaptive mechanism, intrinsic plasticity (IP) plays an essential role in maintaining

homeostasis and shaping the dynamics of neural circuits. From a computational point

of view, IP has the potential to enable promising non-Hebbian learning in artificial neural

networks. While IP based learning has been attempted for spiking neuron models, the

existing IP rules are ad hoc in nature, and the practical success of their application has not

been demonstrated particularly toward enabling real-life learning tasks. This work aims to

address the theoretical and practical limitations of the existing works by proposing a new

IP rule named SpiKL-IP. SpiKL-IP is developed based on a rigorous information-theoretic

approach where the target of IP tuning is to maximize the entropy of the output firing rate

distribution of each spiking neuron. This goal is achieved by tuning the output firing rate

distribution toward a targeted optimal exponential distribution. Operating on a proposed

firing-rate transfer function, SpiKL-IP adapts the intrinsic parameters of a spiking neuron

while minimizing the KL-divergence from the targeted exponential distribution to the

actual output firing rate distribution. SpiKL-IP can robustly operate in an online manner

under complex inputs and network settings. Simulation studies demonstrate that the

application of SpiKL-IP to individual neurons in isolation or as part of a larger spiking

neural network robustly produces the desired exponential distribution. The evaluation of

SpiKL-IP under real-world speech and image classification tasks shows that SpiKL-IP

noticeably outperforms two existing IP rules and can significantly boost recognition

accuracy by up to more than 16%.

Keywords: intrinsic plasticity, spiking neural networks, unsupervised learning, liquid state machine, speech

recognition, image classification

1. INTRODUCTION

Neural plasticity, the brain’s ability to adapt in response to stimuli from the environment, has
received increasing interest from both a biological and a computational perspective. As one such
main self-adaptive mechanism, intrinsic plasticity (IP) plays an important role in temporal coding
and maintenance of neuronal homeostasis. Behaviors of IP have been discovered in brain areas
of many species, and IP has been shown to be crucial in shaping the dynamics of neural circuits
(Marder et al., 1996). In particular, Baddeley et al. (1997) observed the exponentially distributed
neuron responses in visual cortical neurons. Such responses may aim at allowing neurons to
transmit the maximum amount of information, e.g., measured by the highest entropy, to their
outputs with a constrained level of firing activity. Discovered in individual biological neurons, IP
changes the excitability of neurons through modification of voltage-gated channels (Desai et al.,
1999).
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From a computational point of view, one of the early
biological IP models was explored on the Hodgkin-Huxley type
neurons where a number of voltage-gated conductances were
considered (Stemmler and Koch, 1999). Since then, much IP
mechanism research has been conducted for different kinds of
artificial neurons. On the one hand, Triesch (2005) first proposed
a mathematical approach to derive an IP rule based on the
sigmoid neuronmodel. This work used the Kullback Leibler (KL)
divergence from an exponential distribution to the actual output
firing rate distribution to derive an adaptation rule for the neuron
to generate responses following the exponential distribution.
Based on the same principle, an IP rule for hyperbolic tangent
neurons was also proposed (Schrauwen et al., 2008). On the other
hand, IP can control average firing activity and aid synapses to
undergo Hebbian modification via STDP depending upon their
history of use (Watt and Desai, 2010). Furthermore, it was shown
that an improvement in performance could be obtained when
the reservoir of an echo state network (ESN) is adapted using
IP such that the neurons in the network can autonomously tune
themselves to the desired output distribution (Schrauwen et al.,
2008).

As the third generation of artificial neural networks, it has
been shown that spiking neural networks (SNN) are more
computationally powerful than previous generations of neural
networks (Maass, 1997). However, developing effective intrinsic
plasticity (IP) mechanisms for SNNs is a challenging problem.
Several empirical IP rules were proposed for SNNs, however,
without a rigorous theoretical foundation. Lazar et al. (2007)
presented an IP rule by which a spiking neuron’s firing threshold
voltage changes by a fixed value per update based on whether
the neuron fired or not. However, this method cannot precisely
determine when and how much the firing threshold voltage
should be changed in different situations, and there is no clear
understanding of the optimality of the resulting IP behavior. Li
and Li (2013) presented an approach in which the parameters
of the IP rule derived for sigmoid neurons in Li (2011) were
empirically mapped to ones for spiking neurons. Since this rule is
derived based on the sigmoid neuronmodel which is significantly
different from the spiking neuron model, the property of this IP
rule remains elusive when it is applied to adapt the output firing
activity of spiking neurons. Recently, Li et al. (2018) proposed
an IP rule according to the inter-spike-interval (ISI). However,
similar to Lazar et al. (2007), this method only constraints the
ISI into a certain range but does not have a rigorous target for
adapting the output response. Moreover, Panda and Roy (2017)
proposed another homeostasis mechanism called Non-Hebbian
Plasticity which decays synaptic weights based on the activity
of postsynaptic neurons. It can control the reservoir neurons
responses to match the firing rate profile of the input and also
avoid weight crowding caused by STDP. This Non-Hebbian
Plasticity is based on synaptic plasticity which is different from IP,
the intrinsic neuronal plasticity. As discussed in Watt and Desai
(2010), both of them are homeostatic plasticity mechanisms and
observed in biological neurons. They can work together for
homeostatic regulation.

From an information theoretical perspective, it may
hypothesize that a nervous cell maximizes the mutual

information between its input and output. Neglecting the
intrinsic uncertainty of the output, i.e., the output uncertainty
after the input is known, the above target is equivalent to
maximizing the output entropy. To this end, it is instrumental
to note that the exponential distribution of the output firing
rate attains the maximum entropy under the constraint of a
fixed mean firing rate (Bell and Sejnowski, 1995). Thus, inspired
by the IP rule for sigmoid neurons of Triesch (2005), we aim
to derive an IP rule for spiking neurons while minimizing the
difference between the output firing rate distribution and the
targeted exponential distribution. However, there are several
significant challenges in deriving such a rule. Unlike artificial
neurons whose output is in the form of firing rate, spiking
neurons generate responses in the form of discrete spikes. As
a result, firing rate information, as well as its dependency on
the input, must be appropriately characterized from discrete
spike times, which has not been established before under the
context of intrinsic plasticity. Besides, it is not clear how a proper
expression of the entropy of the output firing rate distribution
(or its difference from the targeted exponential distribution) can
be derived and robustly maximized (minimized) in an online
fashion.

In this article, we approach the above challenges as follows.
First, we derive a differentiable transfer function bridging the
input current strength and output firing rate when the input
level is fixed based on the leaky integrate-and-fire(LIF) model.
This transfer function is referred to as the firing-rate transfer
function (FR-TF). It shall be noted that FR-TF can correlate
the dynamic evolution of the output firing activity measured
as averaged firing rate as a function of a received input over
a sufficiently long timescale. Next, with this transfer function,
we derive an information-theoretical intrinsic plasticity rule
for spiking neurons, dubbed SpiKL-IP, to minimize the KL-
divergence from the exponential distribution to the output
firing rate distribution. We further present an online version
of the SpiKL-IP rule for minimizing our KL-divergence based
loss function in a way analogous to the stochastic gradient
descent (SGD) method, which is widely adopted for training
deep learning neural networks. Finally, we address two practical
issues to ensure the proper operation and robustness of the
proposed online IP rule. Among the two issues, it is desirable
to apply the proposed IP tuning using the instantaneous input
current and the measured output firing rate, allowing seamless
consideration of the potentially dynamically changing current
input. However, this creates a mismatch to the underlying FR-
TF transfer function, which is addressed by making the online IP
rule dependent only on the output firing rate such that the LIF
model parameters are tuned based on the input/output activities
of long timescales. Under various settings, the outputs of targeted
spiking neurons converge robustly to the desirable exponential
distribution under the proposed SpiKL-IP rule.

We evaluate the learning performance of the proposed IP rule
for real-world classification tasks under the context of the liquid
state machine (LSM). When applied to the reservoir neurons
of LSM networks, our rule produces significant performance
boosts. Based on the TI46 Speech Corpus (Liberman et al., 1991),
the SpiKL-IP rule boosts the recognition accuracy by 6% for
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single-speaker English letter recognition and by up to more than
16% for the challenging task of multiple-speaker English letter
recognition. For image classification using the CityScape dataset
(Cordts et al., 2016), our proposed method can improve the
accuracy by more than 2%.

The rest of this article is organized as follows. Section 2
first introduces previous intrinsic plasticity working on spiking
neurons. Then, it presents the derivation of the proposed firing-
rate transfer function (FR-TF) and the complete online IP rule.
Section 3 demonstrates the application of the proposed IP under
various simulation settings. Finally, section 4 concludes this
work.

2. MATERIALS AND METHODS

2.1. Previous IP Rules for Spiking Neurons
Unlike other types of artificial neurons, instead of producing
continuous-valued firing rates, spiking neurons generate spike
trains, which are not differentiable at the times of spikes. Thus,
the relationship among the input, parameters of the neuron
model, and the output firing rate become obscure. This is perhaps
partially why intrinsic plasticity has not been deeply investigated
for spiking neurons. A few empirical IP rules were proposed for
spiking neuron model, which unfortunately lack rigor.

Lazar et al. (2007) proposed an IP rule to adjust the firing
threshold voltage as follows

Vth,i(t + 1) = Vth,i(t)+ η

(

xi(t)−
k

N

)

, (1)

Vth,i is the threshold of the neuron i, η the learning rate which is
chosen to be small, xi(t) the sum of Dirac delta functions and it is
1 if the neuron fires an output spike at time t and 0 otherwise,
k and N some chosen constants. This rule drives a neuron to
spike on average k out ofN times. It only targets setting the mean
firing rate to a chosen value by adapting the firing threshold but
does not attempt to generate the optimal output response, i.e., the
optimal firing rate distribution.

Li (2011) derived an IP rule that tunes sigmoid neurons to
follow the Weibull distribution in the same way as in Triesch
(2005). Li and Li (2013) adopted this rule for spiking neurons by
merely substituting the tuning parameters of the sigmoid neuron
model to the parameters for spiking neurons, namely rR and rC,
which are the reciprocals of the leaky resistance and membrane
capacitance, respectively. As analyzed by the authors, this rule can
make the firing activity of a spiking neuron at a "low but not too
low" level. However, since this rule results from a simple mapping
from the sigmoid neuron IP rule, it may not produce the optimal
firing rate distribution for spiking neurons.

Li et al. (2018) proposed an approach based on the Izhikevich
model (Izhikevich, 2003) to adjust the output firing activity such
that the inter-spike-interval (ISI) is set between some limits
specified by Tmin and Tmax. This basic idea is the same as the
one in Lazar et al. (2007) but using a different neuron model.
Again, this rule aims at helping the neuron to generate responses
at a desired firing rate level without optimizing the output
distribution to maximize the information content.

As discussed above, the existing IP rules for spiking neurons
are empirical in nature and are not derived with a rigorous
optimization objective in mind. Furthermore, no success in
real-world learning tasks has been demonstrated. We address
these limitations by rigorously deriving an IP rule that robustly
produces the targeted optimal exponential firing rate distribution
and leads to significant performance improvements by realistic
speech and image classification tasks.

2.2. Firing-Rate Transfer Function
The leaky integrated-and-fire (LIF) model is one of the most
prevalent choices for describing dynamics of spiking neurons.
This model is given by the following differential equation
(Gerstner and Kistler, 2002)

τm
dV

dt
= −V + Rx (2)

where V is the membrane potential, x the input current, τm the
time constant of membrane potential with value τm = RC, where
R and C are the effective leaky resistance and effective membrane
capacitance. Once the membrane potential V exceeds the firing
threshold Vth, the neuron generates a spike, and the membrane
potential is reset to the resting potential, which is 0mV in our
case. A refractory period of duration tr is also considered after a
spike is generated during which V is maintained at 0mV .

Before presenting the proposed SpiKL-IP rule for spiking
neurons, we shall first establish the relationship between the input
current and the resulting output firing rate. This relationship is
not evident since the response is in the form of spikes and it
depends on the cumulative effects of all the past input. As a result,
it is difficult to evaluate the output firing rate of spiking neurons
at each time point under a varying input. We deal with this
difficulty by deriving the proposed firing-rate transfer function
(FR-TF) where the input is assumed to be constant. In other
words, FR-TF correlates the dynamic evolution of the output
firing activity measured as averaged firing rate as a function of
a received input over a sufficiently long timescale.

Assuming that the input current x0 is constant and integrating

(2) with the initial condition that V
(

t(1)
)

= 0 gives the

interspike interval Tisi = t(2) − t(1) (Gerstner and Kistler, 2002)

Tisi = tr + τmln
Rx0

Rx0 − Vth
, Rx0 > Vth. (3)

where the constraint of Rx0 > Vth comes from the fact that only
when the constant input current is sufficiently large, the neuron
can generate spikes. Since both the input x0 and Tisi are constant,
the mean output firing rate of the spiking neuron is given by

y =
1

Tisi
=

1

tr + τmln
Rx0

Rx0−Vth

, Rx0 > Vth. (4)

In this way, we obtain the transfer function of spiking neurons
under the condition that it has constant input so that this relation
between input and output can be used in the deriving process.
Since this function can only represent spiking neurons with a
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fixed input, to distinguish the spiking neurons and this transfer
function, when referring to firing-rate model neurons, it means
the neurons with this firing-rate transfer function (4).

Figure 1 shows two tuning curves of the firing-rate transfer
function where the input current level is swept while either the
leaky resistance R or the membrane time constant τm is held
at a specific value. As shown in Figure 1A, changing R while
fixing τm modifies both the bias and curvature of the tuning
curve. Figure 1B illustrates that τm controls the curvature of the
tuning curve when R is fixed. In the following part, the proposed
SpiKL-IP Rule is based on tuning R and τm. Note that separately
adjusting R and τm requires a neuron to vary its capacitance in
response to its activity while changing capacitance is not observed
in biological neurons to date.

2.3. Proposed SpiKL-IP Rule
Based on the presented firing-rate transfer function (4), we now
take an information-theoretical approach to derive the SpiKL-
IP rule to minimize the KL-divergence from the exponential
distribution to the output firing rate distribution. We will show
how the SpiKL-IP rule can be cast into an online form to adapt R
and τm, and then address one practical issue to ensure the proper
operation and robustness of the proposed online IP rule.

2.3.1. The Basic SpiKL-IP Rule
We consider the information processing of a given spiking
neuron as it receives stimuli from external inputs or other
neurons in the same network over a dataset, mimicking part of
the lifespan of the biological counterpart. We define the input
and output firing rate probability distributions for each spiking
neuron in the following way. As shown in Figure 2, the input
current level X varies across different time points, it forms
an input probability distribution over the course of the entire
process denoted by fx(x). Accordingly, the output firing rate Y
varies over time and forms an output probability distribution
denoted by fy(y).

The goal of the SpiKL-IP rule is to obtain an approximately
exponential distribution of the output firing rate at a fixed
level of metabolic costs. In a biological perspective, exponential
distributions of the output firing rate have been observed in
mammalian visual cortical neurons responding to natural scenes
and allow the neuron to transmit the maximum amount of
information given a fixed level of metabolic costs (Baddeley et al.,
1997).

From an information-theoretic point of view, Bell and
Sejnowski (1995) argued that a neuron might self-adapt to
maximize the mutual information of the input X and the output
Y , a measure for the amount of information about the input
obtained from the output, or vice versa

I(Y ,X) = H(Y)−H(Y|X), (5)

whereH(Y) is the entropy of the output whileH(Y|X) represents
the amount of entropy (uncertainty) of the output which does
not come from the input. Under the assumption that the output
noise N is additive and there is no input noise, the conditional
entropy can be simplified to H(Y|X) = H(N) (Nadal and

Parga, 1994; Bell and Sejnowski, 1995) which does not depend
on the neural parameters. Thus, maximizing I(Y ,X) is equivalent
to maximizing H(Y) (Bell and Sejnowski, 1995). To this end,
it is instrumental to note when the mean of the distribution
is kept constant, the exponential distribution corresponds to
the largest entropy among all probability distributions of a
non-negative random variable. This leads to the conclusion
that the exponential distribution with a targeted mean shall be
the optimal distribution for the output firing rate, where the
mean specifies the practical constraint on energy expenditure. In
addition, in this work, all neurons are implemented using the LIF
model which is noiseless and no noise is added explicitly to the
neuronal dynamics, which means that H(N) = 0 (Gerstner and
Kistler, 2002). The exponential distribution is given by

f (x) = µexp(−µx), x >= 0, (6)

where µ is the mean of the distribution.
Inspired by the IP rule for sigmoid neurons in Triesch

(2005), we derive the SpiKL-IP rule for spiking neurons while
minimizing the KL-divergence from a targeted exponential
distribution to the actual output firing rate distribution, where
Kullback Leibler divergence (KL-divergence) is used as a
difference measure as follows

D = d
(

fy(y)||fexp
)

=

∫

fy(y)log

(

fy(y)

1
µ
exp(

−y
µ
)

)

dy

=

∫

fy(y)log(fy(y))dy+

∫

fy(y)

(

y

µ

)

dy

+

∫

fy(y)logµdy, (7)

where y and fy(y) denote the output, and the output firing rate
distribution, respectively, and µ is the mean value of the targeted
exponential distribution. The smaller the KL-divergence D is, the
closer the exponential distribution is to the output distribution.
In (7), since

∫

fy(y)dy = 1 the third integral evaluates to a fixed
value of logµ. Minimizing KL-Divergence D by adapting R and
τm reduces to minimize the first two integrals, giving rise to the
following loss function

L =

∫

fy(y)log(fy(y))dy+

∫

fy(y)

(

y

µ

)

dy

= E

[

log(fy(Y))+
Y

µ

]

. (8)

Note that (8) is in terms of an expectation over the entire
output distribution. Now, we convert (8) into an online form
that is analogous to the stochastic gradient descent method with
a batch size of one. To make SpiKL-IP amenable for online
training, using a proper stepsize we discretize the entire training
process into multiple small time intervals each in between two
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FIGURE 1 | The firing-rate transfer function (FR-TF). (A) As a function of the leaky resistance R, and (B) as a function of the membrane time constant τm.

FIGURE 2 | The mapping from the input current distribution to the output firing rate distributing of a neuron.

adjacent time points as shown in Figure 3. The input level to the
spiking neuron at each time point is considered as an individual
observation or training example. In this way, the adjustment
of the tunable parameters is not delayed until the output firing
rate distribution is collected after the entire dataset is applied
to the neuron (or neural network). Instead, these parameters
are adjusted as the neuron experiences a given input example at
each time point in an online manner. To do this, the following
loss function that corresponds to the received input example is
minimized at each time point t

L(t) = log(fy(y(t)))+
y(t)

µ
, (9)

where y(t) denotes the output firing rate Y observed at time
t. From now on, we drop the explicit dependency of y(t) and
x(t) (observed input level at t) on t for notational simplicity.
Recognizing that the output probability distribution relates to the
input counterpart by Papoulis and Pillai (2002)

fy(y) =
fx(x)

∂y
∂x

(10)

and substituting it into (9) leads to

L(t) = log(fx(x))− log

(

∂y

∂x

)

+
y

µ
, (11)
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which can be further simplified to

L̂(t) = −log

(

∂y

∂x

)

+
y

µ
, (12)

as log(fx(x)) is a function of the input probability distribution and
does not depend on R and τm.

The online SpiKL-PI rule is based upon the partial derivatives
of (9) with respect to x, R and τm. We first shall compute
the derivatives of the output firing rate y(t) with respect to x,
R, τm. We make use of the firing rate transfer function (4)
whose application at each time point t is justified if the input
x(t) changes slowly with respect to the chosen stepsize and the
averaged output firing rate measure is used, and obtain

∂y

∂x
=

y2τmVth

x(Rx− Vth)
(13)

∂y

∂R
=

y2τmVth

R(Rx− Vth)
(14)

∂y

∂τm
=

try
2 − y

τm
. (15)

Taking (13) into account, the partial derivatives of the loss
function (9) with respect to R and τm are found to be

∂L

∂R
=

∂

∂R

(

−log

(

∂y

∂x

)

+
y

µ

)

=
∂

∂R

(

−(2log(y)− log(Rx− Vth))+
y

µ

)

=

(

y2

µ
− 2y

)

τmVth + Rx

R(Rx− Vth)
(16)

and

∂L

∂τm
=

∂

∂τm

(

−log

(

∂y

∂x

)

+
y

µ

)

=
∂

∂τm

(

−(2log(y)+ logτm)+
y

µ

)

=
1+ 1

µ
(try

2 − y)− 2try

τm
, (17)

respectively, which gives the following online IP rule

R = R− η1
∂L

∂R

= R+ η1

(

2y−
y2

µ

)

τmVth − Rx

R(Rx− Vth)
, Rx > Vth

τm = τm − η2
∂L

∂τm

= τm + η2
2try− 1− 1

µ
(try

2 − y)

τm
, Rx > Vth. (18)

where η1 and η2 are learning rates, µ the constant value
depending on the desired mean of the output firing rate. The
condition that Rx > Vth comes from the transfer] function (4).

2.3.2. Practical Considerations
While (18) has the critical elements of the proposed online IP
rule, its direct implementation, however, has been experimentally
shown to be unsuccessful, i.e., it can neither train spiking
neurons to generate output firing rates following the exponential
distribution nor improve SNN learning performance for real-
world classification tasks. The problem has to do with the fact
that one underlying assumption behind the firing rate transfer
function (FR-TF) (4) and hence the IP rule (18) is that the
input current is constant or changes over a sufficiently slow
timescale. However, in a practical setting, the total postsynaptic
input received by a spiking neuron does vary in time, and the
rate of change depends on the frequency of firing activities
of its presynaptic neurons. With the internal dynamics, the
output firing level of a spiking neuron cannot immediately
follow the instantaneous current input, e.g., it is possible that
the output firing rate is still low while the input current has
increased to a high level. As a result, the assumption on the input
current is somewhat constraining, and its violation leads to the
ineffectiveness of IP tuning.

On the other hand, it is worth noting that the FR-TF captures
the correlation between the average input current and the output
firing rate over a long timescale. In the meantime, the proposed
IP rule aims to adapt spiking neurons to produce a desired
probability distribution of the output firing rate. In other words,
the objective is not to tune each instance of the output firing
rate. Instead, it is to achieve a desirable collective characteristic
of the output firing rate measured by an exponential distribution.
In some sense, the FR-TF correlates the input and output
correspondence in a way that is meaningful for the objective of
online IP tuning.

To find a solution to the above difficulty, we remove the
dependency on the instantaneous input current from the IP rule
of (18) by substituting the input x using the output firing rate y
using the transfer function (4). More specifically, a new variable
W is defined by W = Rx − Vth, which can be expressed using y
based on (4) as

W =
Vth

e

(

1
τm

(

1
y−tr

))

− 1

. (19)

Making use of (19), (18) is converted to a form which only
depends on y

R = R+ η1
2yτmVth −W − Vth −

1
µ
τmVthy

2

RW
, y > 0.

τm = τm + η2
2try− 1− 1

µ
(try

2 − y)

τm
. (20)

As can be seen, the rule in (20) adjusts the two parameters only
based on the output firing rate y. Substituting the instantaneous
value of x by the firing rate y based on the firing rate transfer
function effectively operates the IP rule based on the averaged
input/output characteristics over a longer timescale.
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FIGURE 3 | Online SpiKL-IP learning: minimization of the KL divergence at each time point during the training process.

Note that the condition that Rx > Vth in (18) is changed
to an equivalent form of y > 0 in (20). A closer examination
of Figure 1 shows that the firing rate transfer functions are
not differentiable around y = 0 (Rx = Vth). Interpreting
differently, the proposed IP tuning can operate only when the
output firing rate is nonzero. To further improve the robustness
of the proposed IP rule, the tuning in (20) is only activated when
y > δ with δ being small such as 1 Hz. When y ≤ δ, R and τm are
increased and decreased respectively to bring up the output firing
activity.

Putting everything together, the final SpiKL-IP rule is

R = { R+ η1
2yτmVth−W−Vth−

1
µ

τmVthy
2

RW , y > δ

R+ η1α1, y ≤ δ

τm = { τm + η2
2try−1− 1

µ
(try

2−y)

τm
, y > δ

τm − η2α2, y ≤ δ

(21)

where α1 and α2 are chosen to be small.
To provide an intuitive understanding of the proposed SpiKL-

IP rule, Figure 4 shows how R and τm are altered by one-time
application of SpiKL-IP at different output firing rate levels
starting from a chosen combination of R and τm values.

3. RESULTS

To demonstrate the mechanisms and performances of the
proposed SpiKL-IP rule, we conduct three types of experiments
by applying SpiKL-IP to single neuron as well as a group of
spiking neurons as part of a neural network. First, we show that
when applied to a single neuron whose behavior is governed by
the firing-rate transfer function (4) the proposed rule can tune
the neuron to produce the targeted exponential distribution of
the output firing rate even under a time-varying input. Then,
we apply SpiKL-IP to a single spiking neuron as well as a group
of spiking neurons to demonstrate that our rule can robustly
produce the desired output firing distribution in all tested
situations even although it is derived from the FR-TF which
is based on the assumption that the input is constant. Finally,
we demonstrate the significant performance boosts achieved

by SpiKL-IP when applied to real-world speech and image
classification tasks. Furthermore, we compare SpiKL-IP with two
existing IP rules for spiking neurons (Lazar et al., 2007; Li and Li,
2013). In this article, we name the IP rule in Lazar et al. (2007) as
the Voltage-Threshold IP rule and one in Li and Li (2013) as the
RC IP rule.

The following simulation setups are adopted in each
experiment. We simulate the continuous-time LIF model in
section 2.2 using a fixed discretization time step of 1ms according
to which all neuronal activities are evaluated in lockstep. To
measure the firing rate of each spiking neuron as a continuous-
valued quantity over time under a constant of varying input,
we use the intracellular calcium concentration Ccal(t) as a good
indicator of the averaged firing activity over a chosen timescale

dCcal(t)

dt
= −

Ccal(t)

τcal
+
∑

i

δ(t − ti), (22)

where τcal is the time constant, and the output firing spikes
are presented by a series of Dirac delta functions. According to
(22), the calcium concentration increases by one unit when an
output spike is generated and decays with a time constant τcal
(Dayan and Abbott, 2001). The time-varying output firing rate is
measured using the normalized calcium concentration

y(t) =
Ccal(t)

τcal
. (23)

3.1. Single Neurons Modeled by FR-TF
We apply the proposed SpiKL-IP rule to a single neuron modeled
based on the firing-rate transfer function (4). The parameters
of the neuron and SpiKL-IP are set as follows: Vth = 20mV ,
tr = 2ms, and µ = 0.2KHz. In addition, the tuning ranges for
R and τm are set to [1�, 1024�] and [1ms, 1, 024ms] with R and
τm initialized to 64� and 64ms, respectively. The input current
level at each time point is randomly generated according to a
Gaussian distribution with the mean of 7mA and variance of
1mA as well as a uniform distribution between [0.5mA, 5.5mA]
in a way that is similar to the setups in Triesch (2005); Li and
Li (2013). For both cases, a total of 10, 000 time points are
considered.
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FIGURE 4 | Tuning characteristics of one-time application of SpiKL-IP at different output firing rate levels starting from a chosen combination of R and τm values R

and τm. (A) Tuning of the leaky resistance R, and (B) tuning of the membrane time constant τm.

In Figure 5, we compare the recorded output firing rate
distribution when no IP tuning is used with the one that is
produced by the proposed SpiKL-IP rule under two random
input distributions. In each plot of Figure 5, we fit the actual
firing histogram with to a closest exponential distribution (red
curve). It is evident from Figures 5A,C that without IP tuning
the output firing distribution is far from the targeted optimal
exponential distribution with the maximum entropy. With the
application of SpiKL-IP, however, the output distribution can
be trained to almost converge to the desirable exponential
distribution under two dramatically different input distributions.
Note that since the simulation time stepsize is 1ms, the output
firing rate is bound by 1KHz. This creates a subtle difference
between the actual and the exponential distribution at the tails
of the two distributions, which is negligible in practice. These
results indicate that the proposed IP rule can robustly maximize
the information contained in the output firing rate distribution
by tuning it toward the exponential distribution regardless of the
input distribution.

3.2. Leaky Integrate-and-Fire Spiking
Neurons
Since SpiKL-IP is based on the firing-rate transfer function which
only characterizes the behavior of LIF neurons over a large
timescale, it is interesting to test SpiKL-IP using LIF neurons.
The parameters for the spiking neurons and SpiKL-IP are set as
follow: Vth = 20mV , tr = 2ms, µ = 0.2KHz, τc = 64ms
with R and τm initialized to 64� and 64ms, respectively. The
tuning ranges for R and τm are again set to [1�, 1, 024�] and
[1ms, 1, 024ms], respectively.

First, we apply SpiKL-IP to a single LIF neuron whose input
is a spike (Dirac delta) train randomly generated according to a
Poisson process with a mean firing rate of 160 Hz for a duration
of 1,000 ms. The details of input generation are described in
Legenstein and Maass (2007). The output firing rate is evaluated
by the normalized intracellular calcium concentration in (23).
Figure 6 compares the output firing distributions generated with
no IP and with the three IP rules. Clearly, the proposed rule
produces an output distribution close to the desired exponential
distribution while without IP tuning the neuron is unable

to generate an exponentially distributed output. As shown in
Figure 6C, the Voltage Threshold IP rule (Lazar et al., 2007) can
only alter the average output firing rate rather than tuning the
shape of the output firing rate distribution toward that of an
exponential distribution. Figure 6D shows that it is also tricky for
the RC IP rule (Li and Li, 2013) to train the neuron to generate an
output whose distribution is close to the exponential distribution.

Next, more interestingly, we examine the behavior of IP
tuning in a spiking neural network. In this case, we set up a
fully connected recurrent network of 100 LIF neurons. There are
30 external inputs with each being a Poisson spike train with
a mean rate of 80Hz and a duration of 1, 000ms as shown in
Figure 7. Each input is connected to 30 neurons through synaptic
whose weights are set to -8 or 8 with equal probability. The
synaptic weights between the reservoir neurons in the network
are uniformly distributed between -1 and 1. This neural network
is similar to the reservoir network used in Schrauwen et al.
(2008).

We randomly choose one neuron and record its output firing
rate for a demonstration. As can be seen in Figure 8A, without
IP tuning the output distribution is quite different from any
exponential distributions. As shown in Figures 8C,D, neither the
Voltage Threshold IP rule nor the RC IP rule can produce an
output distribution that is reasonably close to an exponential
distribution. In contrast, Figure 8B shows that the proposed
SpiKL-IP rule leads to excellent results, generating an output
distribution that is very close to an exponential distribution.
These experiments demonstrate that SpiKL-IP maintains its
effectiveness in the more complex network setting where spiking
neurons interact with each other while receiving external spike
inputs.

3.3. Real World Classification Tasks For
LSM
Although intrinsic plasticity has been studied for a very long time
with many different IP rules proposed, rarely any rule is tested on
real-world learning tasks. As a result, it is not clear whether IP
tuning is capable of improving the performance for these more
meaningful tasks. In this paper, we realize several spiking neural
networks based on the bio-inspired Liquid State Machine (LSM)
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FIGURE 5 | The output firing-rate distributions of a single neuron

characterized using the firing-rate transfer function and driven by randomly

generated current input following a Gaussian or Uniform distribution.

(A) Gaussian input without IP tuning, (B) Gaussian input with the SpiKL-IP

rule, (C) uniform input without IP tuning, and (D) uniform input with the

SpiKL-IP rule. The red curve in each plot represents the exponential

distribution that best fits the actual output firing rate data.

network model and evaluate the performance of IP tuning using
realistic speech and image recognition datasets.

LSM is a biologically plausible spiking neural network model
with embedded recurrent connections (Maass et al., 2002). As
shown in Figure 9, the LSM has an input layer, a recurrent
reservoir, and a readout layer. The reservoir has a recurrent
structure with a group of excitatory and inhibitory spiking
neurons randomly connected in a way approximating the spatial
distribution of biological neurons (Maass et al., 2002). Typically,
the synaptic weights between the reservoir neurons are fixed.
The input spike trains generate spatiotemporal firing patterns
in the reservoir, which are projected onto the readout layer

FIGURE 6 | Output firing rate distributions of a single spiking neuron:

(A) without IP tuning, (B) with proposed SpiKL-IP rule, (C) with the Voltage

Threshold IP rule, and (D) with the RC IP rule. The red curve in each plot

represents the exponential distribution that best fits the actual output firing rate

data.

through full connectivity. In this paper, the feedforward plastic
synapses between the reservoir neurons and readout are adjusted
according to a bio-inspired spike-based online learning rule
(Zhang et al., 2015). Several LSMs with different sizes are set up
to evaluate the potential impact of an IP rule on classification
performance.

For the networks evaluated using TI46, the input layer has
78 neurons. These networks have 135 (3*3*5), 270 (3*3*30),
540 (6*6*15) reservoir neurons, respectively, where each input
neuron is randomly connected to 16, 24, 32 reservoir neurons
with the weights set to 2 or -2 with equal probability, respectively.
Among the reservoir neurons, 80% are excitatory, and 20% are
inhibitory. The reservoir is composed of all types of synaptic
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FIGURE 7 | 30 Poisson spike trains as input to a fully connected spiking

neural network of 100 LIF neurons.

connections depending on the pre-neuron and post-neuron types
including EE, EI, IE, II, where the first letter indicates the type
of the pre-synaptic neuron, and the second letter the type of the
post-synaptic neuron, and E and Imean excitatory and inhibitory
neurons, respectively. The probability of a synaptic connection
from neuron a to neuron b in the reservoir is defined as C ·

e−(D(a,b)/λ)2 , where λ is 3, C is 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1
(II), and D (a, b) is the Euclidean distance between neurons a
and b (Maass et al., 2002). The synaptic weights in the reservoir
are fixed to 1(EE, EI) or -1(IE, II). For the readout layer, the
reservoir neurons are fully connected to 26 readout neurons
with the weights randomly generated from -8 to 8 following the
Gaussian distribution. All the readout synapses are plastic and
trained according to Zhang et al. (2015). When testing an IP rule,
it is only applied to the reservoir neurons. The parameters of each
neuron are: Vth = 20mV , tr = 2ms, µ = 0.2KHz, τc = 64ms,
η1 = η2 = 5, and α1 = α2 = 0.1. R and τm are initialized
to 64� and 64ms, respectively. The tuning ranges for R and τm
are again set to [32�, 512�] and [32ms, 512ms], respectively. A
5-fold cross-validation scheme is adopted to obtain classification
performances. Five hundred epochs are simulated, and the best
results are reported.

For the networks evaluated using CityScape, the input
layer has 225 neurons. These networks have 27 (3*3*3),
45 (3*3*5), 72 (3*3*8), 135 (3*3*15) reservoir neurons,
each input neuron is randomly connected to 1, 4, 4, 64
reservoir neurons with the weights set to 2 or -2 with equal
probability, respectively. Other settings of the networks are
the same as those used for the ones evaluated based on
TI46.

We also have made our implementation of SpiKL-IP rule for
LSM available online1.

1https://github.com/stonezwr/SpiKL-IP

FIGURE 8 | Output firing rate distributions of one spiking neuron in a fully

connected network. (A) without IP tuning, (B) with proposed SpiKL-IP rule,

(C) with the Voltage Threshold IP rule, and (D) with the RC IP rule. The red

curve in each plot represents the exponential distribution that best fits the

actual output firing rate data.

3.3.1. Speech Recognition Using the TI46 Speech

Corpus
The speech recognition task is evaluated on several subsets of
the TI46 speech corpus (Liberman et al., 1991). This corpus
contains spoken utterances from 16 speakers (eight males and
eight females), each speaking 10 utterances of English letters from
"A" to "Z". Before applying to the reservoir, each input sample
is first preprocessed by the Lyon ear model (Lyon, 1982), then
encoded into 78 spike trains with the BSA algorithm (Schrauwen
and Van Campenhout, 2003).

Table 1 demonstrates the classification accuracy for a number
of LSMs of different amounts of reservoir neurons with and
without the proposed SpiKL-IP rule based on different subsets
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FIGURE 9 | The structure of Liquid State Machine (LSM).

TABLE 1 | The performances of LSM-based speech recognition with and without

the proposed SpiKL-IP rule evaluated using the single and multi-speaker subsets

of the TI46 Speech Corpus.

Dataset size Reservoir size Without IP (%) With IP (%)

260 (1 Speaker) 90 88.46 97.31

135 92.30 98.46

520 (2 Speakers) 135 86.15 92.31

270 89.04 95.58

1,040 (4 Speakers) 135 79.04 87.69

270 84.62 93.37

2,080 (8 Speakers) 270 72.69 86.95

540 76.59 91.96

3,120 (12 Speakers) 270 72.17 84.25

540 77.49 90.64

4,160 (16 Speakers) 270 70.76 83.98

540 76.19 88.58

of the TI46 speech corpus. The 260-samples subset is a single
speaker subset while ones with 520, 1,040, 2,080, 3,120, 4,160
samples contain 2, 4, 8, 12, and 16 speakers, respectively. It
shall be noted that as the number of speakers increases, the
recognition task becomes increasingly challenging. To the best
knowledge of the authors, there exists no prior reported success
on recognizing multiple-speaker subsets using spiking neural
networks. As shown in Table 1, the recognition performs drops
rapidly as the number of speakers increases without SpiKL-IP.
In comparison, the use of SpiKL-IP can significantly boost the
recognition accuracy by up to more than 16%. Moreover, SpiKL-
IP leads to higher performance boosts as it is applied to smaller
networks or more challenging subsets of greater numbers of
speakers and samples.

From the LSM with 135 reservoir neurons, we randomly
choose six neurons and record their firing responses on one

of the speech samples after a few initial training iterations.
Figure 10 shows that most neurons’ responses can follow
the exponential distribution, demonstrating that the proposed
SpiKL-IP rule can tune neurons to generate outputs with
a distribution close to the exponential distribution in a
complicated network. Figure 11 shows the learning curves of
R and τm for a reservoir neuron when one speech sample is
repeatedly applied to the network for 15 iterations. Figure 11B
shows that the value of R monotonically increases over time
and finally converges under the proposed IP rule. However,
Figure 11A shows that the value of τm fluctuates in every
iteration without converging to a fixed value, but its trajectory
exhibits a stable periodic pattern toward later iterations. This
may be understood by the fact that to produce the desired
exponential firing rate distribution, at least one of the two
intrinsic neural parameters shall be dynamically adapted in
response to the received time-varying input. Figure 11C shows
the adaptation of the output firing rate y, which has also reached
to a stable periodic pattern toward the end of the training
process.

Figure 12 compares the recognition performances of several
LSMs all with 135 reservoir neurons reported in related
works. The performances are evaluated based upon the single-
speaker subset with 260 samples. We adopt the LSM in
Zhang et al. (2015) which makes use of a spike-based
supervised learning rule for training the readout synapses and
has no IP tuning as a baseline. The LSM in Jin and Li
(2016) adds spike-timing-dependent plasticity (STDP) rule to
the baseline to train the synaptic weights between reservoir
neurons. On top of the baseline, we further implement the
Voltage Threshold IP rule (Lazar et al., 2007), the RC IP
rule (Li and Li, 2013), or the SpiKL-IP rule to tune the
reservoir neurons. The proposed rule produces the highest
recognition accuracy improvement of more than 6% over the
baseline LSM.
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FIGURE 10 | The output firing distributions of six reservoir neurons in an LSM after the reservoir is trained by SpiKL-IP. The red curve in each plot represents the

exponential distribution the best fits the actual output firing rate data. (A) Firing rate distribution of Neuron #5, (B) Firing rate distribution of Neuron #7, (C) Firing rate

distribution of Neuron #16, (D) Firing rate distribution of Neuron #36, (E) Firing rate distribution of Neuron #65, and (F) Firing rate distribution of Neuron #101.

3.3.2. Image Classification Using the CityScape

Dataset
The image classification task is based on the CityScape dataset
(Cordts et al., 2016) which contains 18 classes of images of
semantic urban scenes taken in several European cities. Each
image is segmented and remapped into a size of 15×15, and then
encoded into 225 input Poisson spike trains with the mean firing
rate proportional to the corresponding pixel intensity. There are
1, 080 images in total.

Table 2 summarizes the classification accuracy of four LSMs
of different sizes with or without the SpiKL-IP rule. For each
comparison, an LSM which is set up according to Zhang
et al. (2015) and incorporates the same spike-based supervised
learning rule of Zhang et al. (2015) for training the readout
synapses without IP tuning is used as a baseline. It can be
observed that the application of SpiKL-IP leads to noticeable
performance improvements. For example, in the case of LSM

with 45 reservoir neurons, the performance is improved from
91.74% to 94.44%.

4. DISCUSSION

While intrinsic plasticity (IP) was attempted for spiking neurons
in the past, the prior IP rules lacked a rigorous treatment in
their development, and the efficacy of these rules was not verified
using practical learning tasks. This work aims to address the
theoretical and practical limitations of the existing works by
proposing the SpiKL-IP rule. SpiKL-IP is based upon a rigorous
information-theoretic perspective where the target of IP tuning is
to produce the maximum entropy in the resulting output firing
rate distribution of each spiking neuron. The maximization of
output entropy, or information transfer from the input to the
output, is realized by producing a targeted optimal exponential
distribution of the output firing rate.
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FIGURE 11 | The parameter tuning and firing rate adaption by SpiKL-IP for a

reservoir neuron in an LSM during 15 iterations of training over a single speech

example. (A) Tuning of the membrane time constant τm, (B) tuning of the leaky

resistance R, and (C) adaptation of the Output firing rate.

More specifically, SpiKL-IP aims to tune the intrinsic
parameters of a spiking neuron while minimizing the KL-
divergence from the targeted exponential distribution to the
actual output firing rate distribution. However, several challenges
must be addressed as we work toward achieving the above
goal. First, we rigorously relate the output firing rate with the
static input current by deriving the firing-rate transfer function
(FR-TF). FR-TF provides a basis for allowing the derivation of the
SpiKL-IP rule that minimizes the KL-divergence. Furthermore,
we cast SpiKL-IP in a suitable form to enable online application
of IP tuning. Finally, we address one major challenge associated
with applying SpiKL-IP under realistic contexts where the input
current to each spiking neuron may be time-varying, which leads
to the final IP rule that has no dependency on the instantaneous
input level and effectively tuning the neural model parameters
based upon averaged firing activities.

In the simulation studies, it is shown that SpiKL-IP can
produce excellent performances. Under various settings, the
application of SpiKL-IP to individual neurons in isolation or as
part of a larger network robustly creates the desired exponential
distribution for the output firing rate even when the input current
is time varying. The evaluation of the learning performance of

FIGURE 12 | Speech recognition performances of various learning rules when

applied to a LSM with 135 reservoir neurons. The performance evaluation is

based on the single-speaker subset of the TI46 Speech Corpus. (1) LSM

(Baseline): with the settings and supervised readout learning rule in Zhang

et al. (2015) and no reservoir tuning. All other compared networks add

additional mechanisms to the baseline. (2) LSM+Proposed IP Rule: with

additional reservoir neurons tuning using SpiKL-IP. (3) LSM+STDP: with

additional reservoir neurons tuning using the STDP rule in Jin and Li (2016); (4)

LSM+Voltage Threshold IP Rule: with additional reservoir neurons tuning using

the IP rule in Lazar et al. (2007). (5) LSM+RC IP Rule: with additional reservoir

neurons tuning using the IP rule in Li and Li (2013).

TABLE 2 | The performances of LSM-based image classification with and without

the proposed SpiKL-IP rule evaluated using the CityScape image dataset.

Reservoir size Without IP (%) With IP (%)

135 96.60 97.78

72 94.90 96.48

45 91.74 94.44

27 87.33 90.19

SpiKL-IP for real-world classification tasks also confirms the
potential of the proposed IP rule. When applied to the reservoir
neurons of LSM networks, SpiKL-IP produces significant
performance boosts based on the TI46 Speech Corpus (Liberman
et al., 1991) and the CityScape image dataset (Cordts et al., 2016).

Our future work will explore the potential of integrating
IP tuning with Hebbian unsupervised learning mechanisms,
particularly spike-timing-dependent plasticity (STDP). Jin and
Li (2017) and this work respectively demonstrate that STDP
and IP are effective in tuning recurrent spiking neural networks,
i.e., reservoirs, and boosting the overall learning performance.
Moreover, it has been suggested by Lazar et al. (2007) and Li et al.
(2018) that STDP and IP may be complementary to each other.
On the other hand, Watt and Desai (2010) and other related
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works reveal one limitation of STDP, i.e., the application of
STDP can lead to network instability due to the positive feedback
mechanisms created. Nevertheless, concerning the potential
instability caused by STDP, it may be argued that the joint
application of STDP and IP could be beneficial. This is because
IP is intrinsically self-stabilizing, which may contribute to the
prevention of runaway potentiation caused by STDP. We will
also implement the SpiKL-IP rule on noisy leaky-integrate and
fire neuron model (Brunel and Sergi, 1998) to evaluate the ability
of the SpiKL-IP rule standing against noise. Moreover, since
non-Hebbian plasticity and IP are supposed to work together
in biological neurons (Watt and Desai, 2010), we can further
explore the effects of combining Hebbian unsupervised plasticity,
non-Hebbian plasticity, and intrinsic plasticity to maintain the
homeostasis of networks.
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