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How the neocortex works is a mystery. In this paper we propose a novel framework for
understanding its function. Grid cells are neurons in the entorhinal cortex that represent
the location of an animal in its environment. Recent evidence suggests that grid cell-
like neurons may also be present in the neocortex. We propose that grid cells exist
throughout the neocortex, in every region and in every cortical column. They define
a location-based framework for how the neocortex functions. Whereas grid cells in the
entorhinal cortex represent the location of one thing, the body relative to its environment,
we propose that cortical grid cells simultaneously represent the location of many things.
Cortical columns in somatosensory cortex track the location of tactile features relative
to the object being touched and cortical columns in visual cortex track the location
of visual features relative to the object being viewed. We propose that mechanisms
in the entorhinal cortex and hippocampus that evolved for learning the structure of
environments are now used by the neocortex to learn the structure of objects. Having
a representation of location in each cortical column suggests mechanisms for how
the neocortex represents object compositionality and object behaviors. It leads to
the hypothesis that every part of the neocortex learns complete models of objects
and that there are many models of each object distributed throughout the neocortex.
The similarity of circuitry observed in all cortical regions is strong evidence that even
high-level cognitive tasks are learned and represented in a location-based framework.

Keywords: neocortex, grid cell, neocortical theory, hierarchy, object recognition, cortical column

INTRODUCTION

The human neocortex learns an incredibly complex and detailed model of the world. Each of us can
recognize 1000s of objects. We know how these objects appear through vision, touch, and audition,
we know how these objects behave and change when we interact with them, and we know their
location in the world. The human neocortex also learns models of abstract objects, structures that
don’t physically exist or that we cannot directly sense. The circuitry of the neocortex is also complex.
Understanding how the complex circuitry of the neocortex learns complex models of the world is
one of the primary goals of neuroscience.

Vernon Mountcastle was the first to propose that all regions of the neocortex are fundamentally
the same. What distinguishes one region from another, he argued, is mostly determined by the
inputs to a region and not by differences in intrinsic circuitry and function. He further proposed
that a small volume of cortex, a cortical column, is the unit of replication (Mountcastle, 1978).
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These are compelling ideas, but it has been difficult to identify
what a column could do that is sufficient to explain all cognitive
abilities. Today, the most common view is that the neocortex
processes sensory input in a series of hierarchical steps, extracting
more and more complex features until objects are recognized
(Fukushima, 1980; Riesenhuber and Poggio, 1999). Although this
view explains some aspects of sensory inference, it fails to explain
the richness of human behavior, how we learn multi-dimensional
models of objects, and how we learn how objects themselves
change and behave when we interact with them. It also fails to
explain what most of the circuitry of the neocortex is doing. In
this paper we propose a new theoretical framework based on
location processing that addresses many of these shortcomings.

Over the past few decades some of the most exciting advances
in neuroscience have been related to “grid cells” and “place
cells.” These neurons exist in the hippocampal complex of
mammals, a set of regions, which, in humans, is roughly the
size and shape of a finger, one on each side of the brain. Grid
cells in combination with place cells learn maps of the world
(O’Keefe and Dostrovsky, 1971; Hafting et al., 2005; Moser et al.,
2008). Grid cells represent the current location of an animal
relative to those maps. Modeling work on the hippocampus
has demonstrated the power of these neural representations for
episodic and spatial memory (Byrne et al., 2007; Hasselmo et al.,
2010; Hasselmo, 2012), and navigation (Erdem and Hasselmo,
2014; Bush et al., 2015). There is also evidence that grid cells play a
role in more abstract cognitive tasks (Constantinescu et al., 2016;
Behrens et al., 2018).

Recent experimental evidence suggests that grid cells may
also be present in the neocortex. Using fMRI (Doeller et al.,
2010; Constantinescu et al., 2016; Julian et al., 2018) have found
signatures of grid cell-like firing patterns in prefrontal and
parietal areas of the neocortex. Using single cell recording in
humans (Jacobs et al., 2013) have found more direct evidence
of grid cells in frontal cortex (Long and Zhang, 2018), using
multiple tetrode recordings, have reported finding cells exhibiting
grid cell, place cell, and conjunctive cell responses in rat S1.
Our team has proposed that prediction of sensory input by the
neocortex requires a representation of an object-centric location
to be present throughout the sensory regions of the neocortex,
which is consistent with grid cell-like mechanisms (Hawkins
et al., 2017).

Here we propose that grid cell-like neurons exist in every
column of the neocortex. Whereas grid cells in the medial
entorhinal cortex (MEC) primarily represent the location of
one thing, the body, we suggest that cortical grid cells
simultaneously represent the location of multiple things.
Columns in somatosensory cortex that receive input from
different parts of the body represent the location of those inputs
in the external reference frames of the objects being touched.
Similarly, cortical columns in visual cortex that receive input
from different patches of the retinas represent the location of
visual input in the external reference frames of the objects
being viewed. Whereas grid cells and place cells learn models of
environments via movement of the body, we propose that cortical
grid cells combined with sensory input learn models of objects via
movement of the sensors.

Although much is known about the receptive field properties
of grid cells in MEC and how these cells encode location
(Rowland et al., 2016), the underlying mechanisms leading to
those properties is not known. Experimental results suggest
that grid cells have unique membrane and dendritic properties
(Domnisoru et al., 2013; Schmidt-Hieber et al., 2017). There are
two leading computational candidates, oscillatory interference
models (O’Keefe and Burgess, 2005; Burgess et al., 2007; Giocomo
et al., 2007, 2011; Burgess, 2008) and continuous attractor
models (Fuhs and Touretzky, 2006; Burak and Fiete, 2009). The
framework proposed in this paper assumes that “cortical grid
cells” exhibit similar physiological properties as grid cells in MEC,
but the framework is not dependent on how those properties
arise.

Throughout this paper we refer to “cortical columns.” We use
this term similarly to Mountcastle, to represent a small area of
neocortex that spans all layers in depth and of sufficient lateral
extent to capture all cell types and receptive field responses. For
this paper, a cortical column is not a physically demarked entity.
It is a convenience of nomenclature. We typically think of a
column as being about one square millimeter of cortical area,
although this size is not critical and could vary by species and
region.

HOW GRID CELLS REPRESENT
LOCATION

To understand our proposal, we first review how grid cells
in the entorhinal cortex are believed to represent space and
location, Figure 1. Although many details of grid cell function
remain unknown, general consensus exists on the following
principles. A grid cell is a neuron that becomes active at multiple
locations in an environment, typically in a grid-like, or tiled,
triangular lattice. A “grid cell module” is a set of grid cells
that activate with the same lattice spacing and orientation but
at shifted locations within an environment (Stensola et al.,
2012). As an animal moves, the active grid cells in a grid cell
module change to reflect the animal’s updated location. This
change occurs even if the animal is in the dark, telling us that
grid cells are updated using an internal, or “efference,” copy
of motor commands (Hafting et al., 2005; McNaughton et al.,
2006; Moser et al., 2008; Kropff et al., 2015). This process, called
“path integration,” has the desirable property that regardless of
the path of movement, when the animal returns to the same
physical location, then the same grid cells in a module will be
active.

Due to tiling, a single grid cell module cannot represent a
unique location. To form a representation of a unique location
requires looking at the active cells in multiple grid cell modules
where each grid cell module differs in its tile spacing and/or
orientation relative to the environment, Figures 1C,D. For
example, if a single grid cell module can represent twenty
different locations before repeating, then 10 grid cell modules can
represent approximately 2010 different locations before repeating
(Fiete et al., 2008). This method of representing location has
several desirable properties:
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FIGURE 1 | How grid cells represent location. (A) An individual grid cell becomes active at multiple locations (red circles) as an animal moves about an environment
(rectangle). The locations of activation form a periodic grid-like lattice. The activation locations are always the same for any particular environment. (B) A grid cell
module is a set of grid cells that activate at the same spacing and orientation but at different positions in the environment. The activation locations for two grid cells in
a grid cell module are shown (red and blue dots). Every location in an environment will activate one or more grid cells in a module. Because of the periodic activation
of grid cells, a single grid cell module cannot represent unique locations. (C) Multiple grid cell modules (two shown, top and bottom) tile the same space at different
orientations and/or spacings. (D) Although a single module cannot represent unique locations in an environment, the activity across multiple modules can. This
rectangle shows the superimposed firing fields of the two grid cells from C). Note that when the two cells (red and green) fire together, only one location is possible
(indicated by arrow). The number of locations that can be represented increases exponentially with the number of modules.

(1) Large representational capacity:

The number of locations that can be represented by a set
of grid cell modules is large as it scales exponentially with the
number of modules.

(2) Path integration works from any location:

No matter what location the network starts with, path
integration will work. This is a form of generalization. The path
integration properties have to be learned once for each grid cell
module, but then apply to all locations, even those the animal has
never been in before.

(3) Locations are unique to each environment:

Every learned environment is associated with a set of unique
locations. Experimental recordings suggest that upon entering
a learned environment, entorhinal grid cell modules “anchor”
differently (Rowland and Moser, 2014; Marozzi et al., 2015).
(The term “anchor” refers to selecting which grid cells in each
module should be active at the current location.) This suggests
that the current location and all the locations that the animal
can move to in that environment will, with high certainty, have
representations that are unique to that environment (Fiete et al.,
2008; Sreenivasan and Fiete, 2011).

Combining these properties, we can now broadly describe how
grid cells represent an environment such as a room, Figure 2A.
An environment consists of a set of location representations
that are related to each other via path integration (i.e., the

animal can move between these location representations). Each
location representation in the set is unique to that environment
and will not appear in any other environment. An environment
consists of all the locations that the animal can move among,
including locations that have not been visited, but could be
visited. Associated with some of the location representations are
observable landmarks.

GRID CELLS IN THE NEOCORTEX

Now let us consider a patch of neocortex that receives input
from the tip of a finger, Figure 2B. Our proposal is that some
of the neurons in that patch of cortex represent the location of
the fingertip as it explores an object. When the finger moves,
these cortical grid cells update their representation of location
via a motor efference copy and path integration. Objects, such
as a coffee cup, have an associated set of locations, in the same
way that environments, such as a room, have an associated
set of locations. Associated with some of the object’s locations
are observable features. The cortical area receiving input from
the fingertip tracks the location of the sensory input from the
fingertip in the location space of the object. Through movement
and sensation, the fingertip cortical area learns models of objects
in the same way that grid cells and place cells learn models of
environments. Whereas the entorhinal cortex tracks the location
of the body, different areas of the neocortex independently track
the location of each movable sensory patch. For example, each
area of somatosensory cortex tracks the location of sensory input
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FIGURE 2 | Representing objects as location spaces. We propose that the neocortex learns the structure of objects in the same way that the entorhinal cortex and
hippocampus learn the structure of environments. (A) Two rooms that a rodent has learned. Because of distinct landmarks (suggested by blue and green rectangles)
an animal will perceive these as different rooms. Locations in a room are represented by the activity in a set of grid cell modules in the entorhinal cortex. Three
locations are shown for each room (A,B,C and D,E,F). Representations of location are unique to both the location in a room and the room. Therefore, if an animal can
determine it is in location A, then it knows what room it is in (Room1) and its location in the room. The locations associated with a room are united via movement and
path integration. As an animal moves, the representation of location is updated (red arrows) based on an internal copy of its motor behavior. By exploring a room, the
animal learns the features associated with locations in the room. (B) We propose that objects such as a pen or coffee cup are similarly defined by a set of locations
(four labeled for the pen and three labeled for the cup). Grid cells in the neocortex represent the location of a sensor patch (for example, tip of finger) in the location
space of the object. Locations in an object’s space are unique to the object and the location relative to the object. An object’s space includes locations that can be
moved to but don’t necessarily have an associated feature. For example, location W is part of the pen because a finger can move from V to W to T via path
integration. By moving and exploring the object, the neocortex learns the features associated with locations of the object.

from its associated body part. These areas operate in parallel
and build parallel models of objects. The same basic method
applies to vision. Patches of the retina are analogous to patches
of skin. Different parts of the retina observe different locations
on an object. Each patch of cortex receiving visual input tracks
the location of its visual input in the location space of the object
being observed. As the eyes move, visual cortical columns sense
different locations on an object and learn parallel models of the
observed object.

We have now covered the most basic aspects of our proposal:

(1) Every cortical column has neurons that perform a function
similar to grid cells. The activation pattern of these
cortical grid cells represents the location of the column’s
input relative to an external reference frame. The location
representation is updated via a motor efference copy and
path integration.

(2) Cortical columns learn models of objects in the world
similarly to how grid cells and place cells learn models
of environments. The models learned by cortical columns
consist of a set of location representations that are unique
to each object, and where some of the locations have
observable features.

A LOCATION-BASED FRAMEWORK FOR
CORTICAL COMPUTATION

Our proposal suggests that cortical columns are more powerful
than previously assumed. By pairing input with a grid cell-derived
representation of location, individual columns can learn complex
models of structure in the world (see also Lewis et al., 2018).
In this section we show how a location-based framework allows
neurons to learn the rich models that we know the neocortex is
capable of.

Object Compositionality
Objects are composed of other objects arranged in a particular
way. For example, it would be inefficient to learn the morphology
of a coffee cup by remembering the sensory sensation at each
location on the cup. It is far more efficient to learn the cup as
the composition of previously learned objects, such as a cylinder
and a handle. Consider a coffee cup with a logo on it, Figure 3A.
The logo exists in multiple places in the world and is itself a
learned “object.” To represent the cup with the logo we need a
way of associating one object, “the logo,” at a relative position
to another object, “the cup.” Compositional structure is present
in almost all objects in the world, therefore cortical columns
must have a neural mechanism that represents a new object
as an arrangement of previously-learned objects. How can this
functionality be achieved?

We have proposed that each object is associated with a set of
locations which are unique to the object and comprise a space
around the object. If a finger is touching the coffee cup with
the logo, then the cortical grid cells representing the location
of the finger can at one moment represent the location of the
finger in the space of the coffee cup and at another moment,
after re-anchoring, represent the location of the finger in the
space of the logo. If the logo is attached to the cup, then there
is a fixed, one-to-one, relationship between any point in the
space of the logo and the equivalent point in the space of
the cup, Figure 3B. The task of representing the logo on the
cup can be achieved by creating a “displacement” vector that
converts any point in cup space to the equivalent point in logo
space.

Determining the displacement between two objects is similar
to a previously-studied navigation problem, specifically, how an
animal knows how to get from point a to point b within an
environment, Figure 3C. Mechanisms that solve the navigation
problem (determining the displacement between two points in
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FIGURE 3 | Representing objects as compositions of other objects. (A) The neocortex can learn an object, such as a “coffee cup with logo,” as a composition of
two previously learned objects, “cup” and “logo.” The goal is to represent this relationship efficiently, without any relearning. (B) The cup and the logo each have their
own unique set of locations. Three locations are shown in cup space (a, b, c) and three locations are shown in logo space (x, y, z). When the logo is placed on the
cup there is a fixed one-to-one mapping between locations in cup space and locations in logo space. This relationship can be represented as a displacement vector
between the two spaces (blue arrows). (C) Animals exploring an environment can determine the direction and distance from their current location, a, to a previously
visited target location, b, even if they have never taken this path before. Determining the displacement between two locations in the same space (e.g., a to b in C) is
equivalent to determining the displacement between two locations in separate spaces (e.g., a to x in B). (D) A method to determine the displacement between two
locations. Each grid cell module is paired with a displacement cell module. Cells in a displacement cell module (blue dots) respond to a particular displacement
between pairs of grid cells (green dots). Any two pairs of grid cells with the same displacement in physical space will activate the same displacement cell.
Displacement cells cannot represent a unique displacement in the same way that grid cells cannot represent a unique location. However, the set of active cells in
multiple displacement cell modules (three shown) will represent a unique displacement. Because the set of active grid cells in multiple grid cell modules is unique to
objects (cup and logo), the set of active displacement cells will also be unique (to both the cup and logo). Thus, a set of active displacement cells can represent the
relative placement of two specific objects (location of logo on cup).

the same space) can also solve the object composition problem
(determining the displacement between two points in two
different spaces).

Displacement Cells
Several solutions have been proposed for solving the point-
to-point navigation problem using grid cells. One class of
solutions detects the difference between two sets of active grid
cells across multiple grid cell modules (Bush et al., 2015)
and another uses linear look-ahead probes using grid cells for
planning and computing trajectories (Erdem and Hasselmo,
2014). We suggest an alternate but related solution. Our proposal
also relies on detecting differences between two sets of active
grid cells, however, we propose this is done on a grid cell
module by grid cell module basis. We refer to these cells as
“displacement cells” (see Supplementary Material for a more
thorough description). Displacement cells are similar to grid cells
in that they can’t on their own represent a unique displacement.
(In the Supplementary Material example, a displacement cell
that represents a displacement of “two to the right and one up,”
would also be active for “five over and four up.”) However, the
cell activity in multiple displacement cell modules represents a

unique displacement in much the same way as the cell activity
in multiple grid cell modules represents a unique location,
Figure 3D. Hence, a single displacement vector can represent
the logo on the coffee cup at a specific relative position.
Note, a displacement vector not only represents the relative
position of two objects, it also is unique to the two objects.
Complex objects can be represented by a set of displacement
vectors which define the components of an object and how
they are arranged relative to each other. This is a highly
efficient means of representing and storing the structure of
objects.

This method of representing objects allows for hierarchical
composition. For example, the logo on the cup is also composed
of sub-objects, such as letters and a graphic. A displacement
vector placing the logo on the cup implicitly carries with it
all the sub-objects of the logo. The method also allows for
recursive structures. For example, the logo could contain a
picture of a coffee cup with a logo. Hierarchical and recursive
composition are fundamental elements of not only physical
objects but language, mathematics, and other manifestations
of intelligent thought. The key idea is that the identity and
relative position of two previously-learned objects, even complex
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objects, can be represented efficiently by a single displacement
vector.

Grid Cells and Displacement Cells
Perform Complementary Operations
Grid cells and displacement cells perform complementary
operations. Grid cells determine a new location based on a
current location and a displacement vector (i.e., movement).
Displacement cells determine what displacement is required to
reach a new location from a current location.

Grid cells : (Location1 + Displacement => Location2)

Displacement cells : (Location2 – Location1 => Displacement)

If the two locations are in the same space, then grid cells and
displacement cells are useful for navigation. In this case, grid cells
predict a new location based on a starting location and a given
movement. Displacement cells would represent what movement
is needed to get from Location1 to Location2.

If the two locations are in different spaces (that is the same
physical location relative to two different objects) then grid cells
and displacement cells are useful for representing the relative
position of two objects. Grid cells convert a location in one object
space to the equivalent location in a second object space based on
a given displacement. In this case, displacement cells represent
the relative position of two objects.

We propose that grid cells and displacement cells exist
in all cortical columns. They perform two fundamental and
complementary operations in a location-based framework of
cortical processing. By alternating between representations of
locations in a single object space and representations of locations
in two different object spaces, the neocortex can use grid cells
and displacement cells to learn both the structure of objects and
generate behaviors to manipulate those objects.

The existence of grid cells in the entorhinal cortex is
well-documented. We propose they also exist in all regions
of the neocortex. The existence of displacement cells is a
prediction introduced in this paper. We propose displacement
cells are also present in all regions of the neocortex. Given
their complementary role to grid cells, it is possible that
displacement cells are also present in the hippocampal
complex.

Object Behaviors
Objects may exhibit behaviors. For example, consider the
stapler in Figure 4. The top of the stapler can be lifted and
rotated. This action changes the stapler’s morphology but not
its identity. We don’t perceive the open and closed stapler
as two different objects even though the overall shape has
changed. The movement of a part of an object relative to
other parts of an object is a “behavior” of the object. The
behaviors of an object can be learned, and therefore they must
be represented in the neural tissue of cortical columns. We
can represent behaviors in a location-based framework, again
using displacement vectors. The top half and bottom half of the
stapler are two components of the stapler. The relative position

of the top and bottom is represented by a displacement vector
in the same way as the relative position of the logo and the
coffee cup. However, unlike the logo on the coffee cup, the
two halves of the stapler can move relative to each other. As
the stapler top rotates upward, the displacement of the stapler
top to bottom changes. Thus, the rotation of the stapler top is
represented by a sequence of displacement vectors. By learning
this sequence, the system will have learned this behavior of the
object.

Opening and closing the stapler are different behaviors yet
they are composed of the same displacement elements, just
in reverse order. These are sometimes referred to as “high-
order” sequences. Previously we described a neural mechanism
for learning high-order sequences in a layer of neurons
(Hawkins and Ahmad, 2016). This mechanism, if applied to the
displacement modules, would allow the learning, inference, and
recall of complex behavioral sequences of objects.

“What” and “Where” Processing
Sensory processing occurs in two parallel sets of neocortical
regions, often referred to as “what” and “where” pathways. In
vision, damage to the “what,” or ventral, pathway is associated
with the loss of ability to visually recognize objects whereas
damage to the “where,” or dorsal, pathway is associated with the
loss of ability to reach for an object even if it has been visually
identified. Equivalent “what” and “where” pathways have been
observed in other sensory modalities, thus it appears to be general
principle of cortical organization (Goodale and Milner, 1992;
Ungerleider and Haxby, 1994; Rauschecker, 2015). “What” and
“where” cortical regions have similar anatomy and therefore we
can assume they operate on similar principles.

A location-based framework for cortical function is applicable
to both “what” and “where” processing. Briefly, we propose
that the primary difference between “what” regions and “where”
regions is that in “what” regions cortical grid cells represent
locations that are allocentric, in the location space of objects,
and in “where” regions cortical grid cells represent locations
that are egocentric, in the location space of the body. Figure 5
shows how a displacement vector representing movement could
be generated in “what” and “where” regions. The basic operation,
common to all, is that a region first attends to one location
and then to a second location. The displacement cells will
determine the movement vector needed to move from the first
location to the second location. In a “what” region, Figure 5C,
the two locations are in the space of an object, therefore, the
displacement vector will represent the movement needed to move
the finger from the first location on the object to the second
location on the object. In this example, the “what” region needs
to know where the finger is relative to the cup, but it does
not need to know where the cup or finger is relative to the
body. In a “where” region, Figure 5B, the two locations are
in the space of the body, therefore, the displacement vector
will represent how to move from one egocentric location to
a second egocentric location. The “where” region can perform
this calculation not knowing what object may or may not be at
the second location. A more detailed discussion of processing
in “where” regions is beyond the scope of this paper. We only
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FIGURE 4 | Representing behaviors of objects. Objects have “behaviors,” they can change their shape and features over time. The neocortex can learn these
changes, but how? For example, a stapler has several behaviors, one is rotating the top relative to the base. If the top of the stapler is a component object of the
stapler, with its own location space, then its position relative to the stapler base is represented by a displacement vector as illustrated in Figure 3. (The top and base
of the stapler are analogous to the logo and the cup. Unlike the logo on the cup, the location of the stapler top relative to the base can change.) The closed position
is represented by displacement A and the fully open position is represented by displacement E. As the stapler top hinges from the closed to open position, the
displacement vector will continually change. (Five positions, A to E, and corresponding displacement vectors are shown.) To learn this behavior, the neocortex only
needs to learn the sequence of displacement vectors as the top rotates.

FIGURE 5 | Location processing in different areas of the brain. Grid cells and displacement cells (see text) can be applied to different tasks in different areas of the
brain. (A) If grid cell modules in the hippocampal complex are anchored by cues in an environment, then grid cell activation patterns will represent locations relative
to that environment. Given two locations, a and b, displacement cells will calculate the movement vector needed to move the body from point a to point b. (B) If
cortical grid cell modules are anchored relative to the body, then they will represent locations in body space. Given two locations, displacement cells will calculate the
movement vector needed to move a body part from its current location to a desired new location relative to the body. (C) If cortical grid cell modules are anchored by
cues relative to an object, then they will represent locations in the object’s space. Displacement cells will calculate the movement vector needed to move a limb or
sensory organ from its current location to a new location relative to the object. Operations performed in (B,C) are associated with “where” and “what” regions in the
neocortex.

want to point out that it is possible to understand both “what”
and “where” processing using similar mechanisms by assuming
different location spaces.

Rethinking Hierarchy, the Thousand
Brains Theory of Intelligence
Regions of the neocortex are organized in a hierarchy (Felleman
and Van Essen, 1991; Riesenhuber and Poggio, 1999; Markov
et al., 2014). It is commonly believed that when sensory input
enters the neocortex the first region detects simple features. The
output of this region is passed to a second region that combines
simple features into more complex features. This process is
repeated until, several levels up in the hierarchy, cells respond
to complete objects (Figure 6A). This view of the neocortex as

a hierarchy of feature extractors also underlies many artificial
neural networks (LeCun et al., 2015).

We propose that cortical columns are more powerful than
currently believed. Every cortical column learns models of
complete objects. They achieve this by combining input with a
grid cell-derived location, and then integrating over movements
(see Hawkins et al., 2017; Lewis et al., 2018 for details). This
suggests a modified interpretation of the cortical hierarchy, where
complete models of objects are learned at every hierarchical level,
and every region contains multiple models of objects (Figure 6B).

Feedforward and feedback projections between regions
typically connect to multiple levels of the hierarchy (only one
level of connection is shown in Figure 6). For example, the
retina projects to thalamic relay cells in LGN, which then project
to cortical regions V1, V2, and V4, not just V1. This form of
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FIGURE 6 | Rethinking cortical hierarchy. (A) Commonly held view of cortical hierarchy. Sensory input is processed in a hierarchy of cortical regions. The first region
detects simple features. The next region combines simple features into more complex features. This is repeated until a region at the top of the hierarchy forms
representations of complete objects. (B) Modified view of cortical hierarchy. Every column in every region learns complete models of objects. (Columns learn
complete models by combining sensory input with an object-centric location of that input and integrating over movements of the sensor.). Shown are two sensory
hierarchies, one for vision and one for touch, both sensing the same object, a cup. There are multiple models of an object within each region, in different regions
within a sensory modality, and in different sensory modalities. Although there are many models of the same object (suggested by the small cup images), the models
are not identical, as each model is learned via a different subset of the sensory arrays. The green arrows denote the numerically-large cortical-cortical connections
that are not hierarchical in nature. The non-hierarchical connections project within the region of origin, across hierarchical levels, across modalities, and between
hemispheres. Typically, many columns will be simultaneously observing the same object. The non-hierarchical connections between columns allow them to rapidly
infer the correct object (see text). Although learning objects requires movement of the sensors, inference often occurs without movement due to the non-hierarchical
connections.

“level skipping” is the rule, not the exception. Therefore, V1
and V2 are both, to some extent, operating on retinal input.
The connections from LGN to V2 are more divergent suggesting
that V2 is learning models at a different spatial scale than V1.
We predict that the spatial scale of cortical grid cells in V2 will
similarly be larger than those in V1. The level of convergence
of input to a region, paired with the spatial scale of its grid
cells, determines the range of object sizes the region can learn.
For example, imagine recognizing printed letters of the alphabet.
Letters at the smallest discernable size will be recognized in
V1 and only V1. The direct input to V2 will lack the feature
resolution needed. However, larger printed letters would be
recognized in both V1 and V2, and even larger letters may be
too large for V1 but recognizable in V2. Hierarchical processing
still occurs. All we are proposing is that when a region such as
V1 passes information to another region such as V2, it is not
passing representations of unclassified features but, if it can, it
passes representations of complete objects. This would be difficult
to observe empirically if objects are represented by population
codes as proposed in Hawkins et al. (2017). Individual neurons
would participate in many different object representations and if
observed in isolation will appear to represent sensory features,
not objects. The number of objects that a cortical column can
learn is large but limited (Hawkins et al., 2017). Not every column
can learn every object. Analysis of system capacity requires a
more thorough understanding of hierarchical flow and is beyond
the scope of this paper.

There are many cortical-cortical projections that are
inconsistent with pure hierarchical processing (Figure 6B,
green arrows). For example, there are long range projections

between regions in the left and right hemispheres (Clarke and
Zaidel, 1994), and there are numerous connections between
regions in different sensory modalities, even at the lowest
levels of the hierarchy (Schroeder and Foxe, 2005; Driver and
Noesselt, 2008; Suter and Shepherd, 2015). These connections
may not be hierarchical as their axons terminate on cells
located outside of cellular layers associated with feedforward or
feedback input. It has been estimated that 40% of all possible
region-to-region connections actually exist which is much
larger than a pure hierarchy would suggest (Felleman and
Van Essen, 1991). What is the purpose of these long-range
non-hierarchical connections? In Hawkins et al. (2017) we
proposed that cell activity in some layers (e.g., L4 and L6) of a
column changes with each new sensation, whereas, cell activity
in other layers (e.g., L2/3), representing the observed “object,”
are stable over changing input. We showed how long-range
associative connections in the “object” layer allow multiple
columns to vote on what object they are currently observing.
For example, if we see and touch a coffee cup there will be
many columns simultaneously observing different parts of the
cup. These columns will be in multiple levels of both the visual
and somatosensory hierarchies. Every one of these columns has
a unique sensory input and a unique location, and therefore,
long-range connections between the cells representing location
and input do not make sense. However, if the columns are
observing the same object, then connections between cells in the
object layer allow the columns to rapidly settle on the correct
object. Thus, non-hierarchical connections between any two
regions, even primary and secondary sensory regions in different
sensory modalities, make sense if the two regions often observe
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the same object at the same time (see Hawkins et al., 2017 for
details).

One of the classic questions about perception is how does the
neocortex fuse different sensory inputs into a unified model of
a perceived object. We propose that the neocortex implements
a decentralized model of sensor fusion. For example, there is no
single model of a coffee cup that includes what a cup feels like and
looks like. Instead there are 100s of models of a cup. Each model is
based on a unique subset of sensory input within different sensory
modalities. There will be multiple models based on visual input
and multiple models based on somatosensory input. Each model
can infer the cup on its own by observing input over movements
of its associated sensors. However, long-range non-hierarchical
connections allow the models to rapidly reach a consensus of the
identity of the underlying object, often in a single sensation.

Just because each region learns complete models of objects
does not preclude hierarchical flow. The main idea is that the
neocortex has 100s, likely 1000s, of models of each object in the
world. The integration of observed features does not just occur
at the top of the hierarchy, it occurs in every column at all levels
of the hierarchy. We call this “The Thousand Brains Theory of
Intelligence.”

DISCUSSION

Crick (1979) wrote an essay titled, “Thinking about the Brain.”
In it he wrote, “In spite of the steady accumulation of detailed
knowledge, how the human brain works is still profoundly
mysterious.” He posited that over the coming years we would
undoubtedly accumulate much more data about the brain, but
it may not matter, as “our entire way of thinking about such
problems may be incorrect.” He concluded that we lacked a
“theoretical framework,” a framework in which we can interpret
experimental findings and to which detailed theories can be
applied. Nearly 40 years after Crick wrote his essay, his
observations are still largely valid.

Arguably, the most progress we have made toward establishing
a theoretical framework is based on the discovery of place cells
and grid cells in the hippocampal complex. These discoveries
have suggested a framework for how animals learn maps of
environments, and how they navigate through the world using
these maps. The success of this framework has led to an explosion
of interest in studying the entorhinal cortex and hippocampus.

In this paper we are proposing a theoretical framework for
understanding the neocortex. Our proposed cortical framework
is a derivative of the framework established by grid cells and
place cells. Mechanisms that evolved for learning the structure
of environments are now applied to learning the structure of
objects. Mechanisms that evolved for tracking the location of
an animal in its environments are now applied to tracking the
location of limbs and sensory organs relative to objects in the
world. How far this analogy can be taken is uncertain. Within the
circuits formed by the hippocampus, subiculum, and entorhinal
cortex are grid cells (Hafting et al., 2005), place cells (O’Keefe and
Dostrovsky, 1971; O’Keefe and Burgess, 2005), head direction
cells (Taube et al., 1990; Giocomo et al., 2014; Winter et al., 2015),

border cells (Lever et al., 2009), object vector cells (Deshmukh
and Knierim, 2013), and others, plus many conjunctive cells that
exhibit properties that are combinations of these (Sargolini et al.,
2006; Brandon et al., 2011; Stensola et al., 2012; Hardcastle et al.,
2017). We are currently exploring the idea that the neocortex
contains cells that perform equivalent functions to the variety
of cells found in the hippocampal complex. The properties of
these cells would only be detectable in an awake animal actively
sensing learned objects. The recent work of Long and Zhang
(2018) suggests this might be true.

Orientation
In the entorhinal cortex, and elsewhere in the brain, are found
head direction cells (Taube et al., 1990; Sargolini et al., 2006;
Brandon et al., 2011; Giocomo et al., 2014; Winter et al.,
2015; Raudies et al., 2016). These cells represent the allocentric
orientation of an animal relative to its environment. Inferring
where you are via sensation, predicting what you will sense
after moving, and determining how to move to get to a new
location all require knowing your current orientation relative to
your environment. In the models reviewed in Hasselmo (2009)
and Hasselmo et al. (2010) head direction cells are critical for
accurately transitioning between spatial locations. The same need
for orientation exists throughout the neocortex. For example,
knowing that a finger is at a particular location on a coffee
cup is not sufficient. The finger also has an orientation relative
to the cup (which way it is rotated and its angle at contact).
Predicting what the finger will sense when it contacts the cup
or what movement is required to reach a new location on the
cup requires knowing the finger’s orientation relative to the cup
in addition to its location. Therefore, we predict that within
each cortical column there will be a representation of orientation
that performs an analogous function to head direction cells in
the hippocampal complex. How orientation is represented in
the cortex is unknown. There could be a set of orientation
cells each with a preferred orientation, similar to head direction
cells, but we are not aware of any evidence for this. Alternately,
orientation could be represented via a population code, which
would be more difficult to detect. For example, in somatosensory
regions orientation could be represented by activating a sparse
subset of egocentric orientation detectors (Hsiao et al., 2002;
Bensmaia et al., 2008; Pruszynski and Johansson, 2014). How
orientation is represented and interacts with cortical grid cells
and displacement cells is largely unknown. It is an area we are
actively studying.

Prediction
A long standing principle behind many theories of cortical
function is prediction (Lashley, 1951; Rao and Ballard, 1999;
Hawkins and Blakeslee, 2004; Lotter et al., 2018). By representing
the location of a sensor, a cortical column can associate sensory
information within the location space of each object, similar to
the way place cells associate sensory information with locations
(O’Keefe and Nadel, 1978; Komorowski et al., 2009). This enables
a column to build powerful predictive models. For example, when
moving your finger from the bottom of a cup to the top, it
can predict the sensation regardless of how the cup is rotated
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with respect to the sensor. Representing composite objects using
displacement cells enables a column to generalize and predict
sensations even when encountering a novel object. For example,
suppose we see a cup with a familiar logo (Figure 3A) and that
portions of the logo are obscured. Once a column has recognized
the logo and the cup, it can make predictions regarding the
entire logo in relation to the cup even if that combined object
is new. Building such predictive models would be much harder
without an explicit representation of location. In previous papers
we proposed dendritic mechanisms that could serve as the
neural basis for predictive networks (Hawkins and Ahmad, 2016;
Hawkins et al., 2017). Overall, prediction underlies much of the
framework discussed in this paper.

Attention
One of the key elements of a location-based framework for
cortical processing is the ability of an area of cortex to rapidly
switch between object spaces. To learn there is a logo on the coffee
cup we need to alternate our attention between the cup and the
logo. With each shift of attention, the cortical grid cells re-anchor
to the location space of the newly attended object. This shift to
a new object space is necessary to represent the displacement
between two objects, such as the logo and the cup. It is normal to
continuously shift our attention between the objects around us.
With each newly attended object the cortical grid cells re-anchor
in the space of the new object, and displacement cells represent
where the new object is relative to the previously attended object.
Changing attention is intimately tied to movement of the sensor,
re-anchoring of grid cells, and, as widely believed, feedback
signals to the thalamus (Crick, 1984; McAlonan et al., 2006),
presumably to select a subset of input for processing. How these
elements work together is poorly understood and represents an
area for further study.

Uniqueness of Location Code
Our proposal is based on the idea that a set of grid cell modules
can encode a very large number of unique locations. There are
some observations that suggest that grid cells, on their own, may
not be capable of forming enough unique codes. For example,
because each grid cell exhibits activity over a fairly large area of
physical space (Hafting et al., 2005), the activation of the cells
in a grid cell module is not very sparse. Sparsity is helpful for
creating easily discernable unique codes. The lack of sparsity
can be overcome by sampling the activity over more grid cell
modules, but not enough is known about the size of grid cell
modules and how many can be realistically sampled (Gu et al.,
2018) have shown that grid cell modules are composed of smaller
sub-units that activate independently, which would also increase
the representation capacity of grid cells. Another factor impacting
capacity is conjunctive cells. In the entorhinal cortex there are
more conjunctive cells than pure grid cells. Conjunctive cells
exhibit some combination of “gridness” plus orientation and/or
other factors (Sargolini et al., 2006). Conjunctive cells may have
a sparser activation than pure grid cells and therefore would be
a better basis for forming a set of unique location codes. If the
neocortex has cells similar to conjunctive cells, they also might
play a role in location coding. Not enough is known about how

grid cells, orientation cells, and conjunctive cells work together to
suggest exactly how locations are encoded in the neocortex. As we
learn more about location coding in the neocortex, it is important
to keep these possibilities in mind.

Where Are Grid Cells and Displacement
Cells in the Neocortex?
The neocortex is commonly divided into six layers that run
parallel to the surface. There are dozens of different cell types,
therefore, each layer contains multiple cell types. Several lines
of evidence suggest that cortical grid cells are located in L6
[specifically L6 cortical-cortical neurons (Thomson, 2010)] and
displacement cells are located in L5 (specifically L5 thick-tufted
neurons) (Figure 7).

One piece of evidence suggesting cortical grid cells are in
L6 is the unusual connectivity between L4 and L6. L4 is the
primary input layer. However, feed forward input forms less
than 10% of the synapses on L4 cells (Ahmed et al., 1994,
1997; Sherman and Guillery, 2013), whereas approximately 45%
of the synapses on L4 cells come from L6a cortical-cortical
neurons (Ahmed et al., 1994; Binzegger et al., 2004). Similarly,
L4 cells make large numbers of synapses onto those same L6 cells
(McGuire et al., 1984; Binzegger et al., 2004; Kim et al., 2014).
Also, the connections between L6 and L4 are relatively narrow
in spread (Binzegger et al., 2004). The narrow connectivity
between L6 and L4 is reminiscent of the topologically-aligned
bidirectional connectivity between grid cells in MEC and place
cells in hippocampus (Rowland et al., 2013; Zhang et al., 2013).
We previously showed how the reciprocal connections between
L6 and L4 can learn the structure of objects by movement of
sensors if L6 represents a location in the space of the object
(Lewis et al., 2018). For a column to learn the structure of objects
in this fashion requires bidirectional connections between cells
receiving sensory input and cells representing location. L6a is
the only known set of cells that meet this requirement. Also,
grid cells use motor input to update their representations for
path integration. Experiments show significant motor projections
to L6 (Nelson et al., 2013; Leinweber et al., 2017). The current
experimental evidence for the presence of grid cells in the
neocortex is unfortunately mute on what cortical layers contain
grid cells. It should be possible to experimentally determine this
in the near future. Our prediction is they will be in L6.

The main evidence for displacement cells being in L5 is again
connectivity. A subset of L5 cells (known as “L5 thick-tufted
cells”) that, as far as we know exists in all cortical regions, projects
sub-cortically to brain regions involved with motor behavior.
(For example, L5 cells in the visual cortex project to the superior
colliculus which controls eye movements.) These L5 cells are
the motor output cells of the neocortex. However, the same L5
cells send a branch of their axon to thalamic relay nuclei, which
then project to hierarchically higher cortical regions (Douglas
and Martin, 2004; Guillery and Sherman, 2011; Sherman and
Guillery, 2011). It is difficult to understand how the same L5
cells can be both the motor output and the feedforward input
to other regions. One interpretation put forth by Guillery and
Sherman is that L5 cells represent a motor command and that
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FIGURE 7 | Location of grid cells and displacement cells in the neocortex.
The neocortex contains dozens of cell types commonly organized into six
cellular layers. Here, we show a simple drawing of a cortical column. We
propose cortical grid cells are located in layer 6 and displacement cells are in
layer 5. A requirement of our proposal is that cortical grid cells make bi-lateral
connections with displacement cells (solid blue line). Another requirement is
that, when combined with a representation of orientation, they make bi-lateral
connections with cells in layer 4 (dashed blue line). This is how the column
predicts the next input into layer 4. Displacement cells match the unusual
connectivity of layer 5 “thick tufted” neurons, which are the motor output cells
of the neocortex. These neurons send their axon down into the white matter
where the axon splits (green arrows). One branch terminates in sub-cortical
structures responsible for motor behavior. The second axon branch
terminates on relay cells in the thalamus which become the feedforward input
to a hierarchically-higher cortical region. As explained in the text, displacement
cells can alternate between representing movements and representing the
composition of multiple objects. We propose that L5 thick tufted cells alternate
between these two functions which aligns with their unusual connectivity.

the feedforward L5 projection can be interpreted as an efference
copy of the motor command (Guillery and Sherman, 2002, 2011).

We offer a possible alternate interpretation. The L5
cells in question are displacement cells and they alternately
represent movements (sent sub-cortically) and then represent
compositional objects (sent to higher regions via thalamic relay
cells). As described above, displacement cells will represent a
movement vector when comparing two locations in the same
space and will represent composite objects when comparing two
locations in two different spaces. These two rapidly-changing
representations could be disambiguated at their destination
either by phase of an oscillatory cycle or by physiological firing
patterns (Burgess et al., 2007; Hasselmo, 2008; Hasselmo and
Brandon, 2012). Although we are far from having a complete
understanding of what the different cellular layers do and how
they work together, a location-based framework offers the
opportunity of looking anew at the vast body of literature on

cortical anatomy and physiology and making progress on this
problem.

Location-Based Framework for
High-Level Thought and Intelligence
We have described our location-based framework using examples
from sensory inference. Given that the anatomy in all cortical
regions is remarkably similar, it is highly likely that everything the
neocortex does, including language and other forms of high-level
thought, will be built upon the same location-based framework.
In support of this idea, the current empirical evidence that
grid cells exist in the neocortex was collected from humans
performing what might be called “cognitive tasks,” and it was
detected in cortical regions that are far from direct sensory input
(Doeller et al., 2010; Jacobs et al., 2013; Constantinescu et al.,
2016).

The location-based framework can be applied to physical
structures, such as a cup, and to abstract concepts, such as
mathematics and language. A cortical column is fundamentally
a system for learning predictive models. The models are learned
from inputs and movements that lead to changes in the input.
Successful models are ones that can predict the next input given
the current state and an anticipated movement. However, the
“inputs” and “movements” of a cortical column do not have to
correspond to physical entities. The “input” to a column can
originate from the retina or it can originate from other regions
of the neocortex that have already recognized a visual object
such as a word or a mathematical expression. A “movement” can
represent the movement of the eyes or it can represent an abstract
movement, such as a verb or a mathematical operator.

Success in learning a predictive model requires discovering
the correct dimensionality of the space of the object, learning
how movements update locations in that space, and associating
input features with specific locations in the space of the object.
These attributes apply to both sensory perception and high-level
thought. Imagine a column trying to learn a model of a cup using
visual input from the retina and movement input from a finger.
This would fail, as the location spaced traversed by the finger
would not map onto the feature space of the object as evidenced
by the changing inputs from the eyes. Similarly, when trying to
understand a mathematical problem you might fail when using
one operator to manipulate an equation but succeed by switching
to a different operator.

Grid cells in the neocortex suggests that all knowledge is
learned and stored in the context of locations and location spaces
and that “thinking” is movement through those location spaces.
We have a long way to go before we understand the details of how
the neocortex performs cognitive functions, however, we believe
that the location-based framework will not only be at the core of
the solutions to these problems, but will suggest solutions.

CONCLUSION

It is sometimes said that neuroscience is “data rich and theory
poor.” This notion is especially true for the neocortex. We are not
lacking empirical data as much as lacking a theoretical framework
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that can bridge the gap between the heterogeneous capabilities
of perception, cognition, and intelligence and the homogeneous
circuitry observed in the neocortex. The closest we have to such
a framework today is hierarchical feature extraction, which is
widely recognized as insufficient.

One approach to developing a theory of neocortical function
is to build in-silico models of a cortical column based on detailed
anatomical data (Helmstaedter et al., 2007; Markram et al.,
2015). This approach starts with anatomy and hopes to discover
theoretical principles via simulation of a cortical column. We
have used a different method. We start with a detailed function
that we know the neocortex performs (such as sensory-motor
learning and inference), we deduce neural mechanisms that are
needed to perform those functions (such as cells that represent
location), and then map those neural mechanisms onto detailed
biological data.

Based on this method, this paper proposes a new framework
for understanding how the neocortex works. We propose that
grid cells are present everywhere in the neocortex. Cortical
grid cells track the location of inputs to the neocortex in the
reference frames of the objects being observed. We propose
the existence of a new type of neuron, displacement cells, that
complement grid cells, and are similarly present throughout
the neocortex. The framework shows how it is possible that a
small patch of cortex can represent and learn the morphology
of objects, how objects are composed of other objects, and
the behaviors of objects. The framework also leads to a new
interpretation of how the neocortex works overall. Instead of
processing input in a series of feature extraction steps leading
to object recognition at the top of the hierarchy, the neocortex
consists of 1000s of models operating in parallel as well as
hierarchically.

Introspection can sometimes reveal basic truths that are
missed by more objective experimental techniques. As we go
about our day we perceive 1000s of objects, such as trees, printed
and spoken words, buildings, and people. Everything is perceived
at a location. As we attend to each object we perceive the
distance and direction from ourselves to these objects, and we
perceive where they are relative to each other. The sense of
location and distance is inherent to perception, it occurs without

effort or delay. It is self-evident that the brain must have neural
representations for the locations of objects and for the distances
between the objects as we attend to them in succession. The
novelty of our claim is that these locations and distances are
calculated everywhere in the neocortex, they are the principal
data types of cortical function, perception, and intelligence.
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