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Abstract- Increasing the penetration of variable wind generation in power systems has created some new challenges 

in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of 

facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy 

storages (ESs) are known as two powerful flexible tools that can improve large-scale integration of intermittent wind 

power from technical and economic aspects. Under this perspective, this paper proposes a multi objective stochastic 

framework that schedules conventional generation units, bulk ESs, and DR resources simultaneously with the 

application to wind integration. The proposed formulation is a sophisticated problem which coordinates supply-side 

and demand-side resources in energy and up/down spinning reserve markets so that the cost, emission, and multi 

objective functions are minimized separately. In order to determine the most efficient DR program which can 

potentially coordinate with bulk ESs in the system with a significant amount of wind power, a comprehensive DR 

programs portfolio including time- and incentive-based programs is designed. Afterwards, strategy success index (SSI) 

is employed to prioritize DR programs from independent system operator (ISO) perspective. The IEEE-RTS is used to 

reveal the effectiveness of the proposed method. 
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NOMENCLATURE 

Indices  

,b b   Index of system buses 

i  Index of generating unit 

j  Index of bulk energy storage units 

l  Index of transmission line 

m  Segment index for linearized fuel cost 

Tpeak  Index of peak hours 

s  Index of scenarios 

,t t   Index of hours 

NM  Number of segments for the piecewise 

linearized emission and fuel cost curves 

of units 

NS
 

Number of wind generation scenarios 

NG  Number of generation units 

NES  Number of bulk energy storage units 

NT  Number of studied hours 

NB  Number of network buses 

Parameters  

0

td  Initial electricity demand at hour t (MW) 

bLD  Demand contribution of bus b (MW) 

e

itmC  Slope of segment m in linearized fuel 

cost curve of unit i at hour t ($/MWh) 
2 / xSO NO

itmEC
 

Slope of segment m in linearized 

emission emission curve of unit i at hour 

t (lbs/MWh) 

iMPC
 

Minimum production cost of unit i ($) 

2 / xSO NO

iMPE
 

Minimum produced emission of unit i 

(lbs/h) 
0

t  
Initial electricity price at hour t ($/MWh) 

s  
Probability of scenario s 

UC

itC
 

Offered capacity cost of up-spinning 

reserve provision of unit i at hour t 

($/MW) 
DC

itC
 

Offered capacity cost of down-spinning 

reserve provision of unit i at hour t 

($/MW) 
NSR

itC
 

Offered capacity cost of non-spinning 

reserve provision of unit i at hour t 

($/MW) 
UE

itC
 

Offered energy cost of up-spinning 

reserve provision of unit i at hour t 

($/MWh) 
DE

itC
 

Offered energy cost of down-spinning 

reserve provision of unit i at hour t 

($/MWh) 
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,ES Energy

jtC
 

Offered energy cost of bulk energy 

storage j at hour t ($/MWh) 
,ES U

jtC
 

Offered capacity cost of up-spinning 

reserve provision of bulk ES j at hour t 

($/MW) 
,ES D

jtC
 

Offered capacity cost of down-spinning 

reserve provision of bulk ES j at hour t 

($/MW) 
,ES NSR

jtC
 

Offered capacity cost of non-spinning 

reserve provision of bulk ES j at hour t 

($/MW) 
UE

jtC
 

Offered energy cost of up-spinning 

reserve provision of bulk ES j at hour t 

($/MWh) 
DE

jtC
 

Offered energy cost of down-spinning 

reserve provision of bulk ES j at hour t 

($/MWh) 
spillageC  

Cost of wind power curtailment 

($/MWh) 

btVOLL  Value of lost load in bus b at hour t 

($/MWh) 

tINC  Incentive payment at hour t ($/MWh) 

tIC  Initial contract level of customers at hour 

t (MWh) 

tPEN  Penalty payment at hour t ($/MWh) 

*

btW  Forecasted value of wind generation in 

bus b at hour t ($/MWh) 

/Ch DeCh 
 

Charge/discharge efficiency of bulk ES 

ttE   Price elasticity of demand 

min max

i iP P  Minimum/ maximum output limit of 

generation unit i (MW) 

i iRU RD  Ramp up/down of generation unit i  

(MW/h) 

iSC  Start-up cost of generation unit i ($) 

MUT MDT
i i

 Minimum up/down time of generation 

unit i (h) 
,max ,max/ChES DeES

j jP P  Maximum charging/discharging power 

of bulk ES j (MW) 
,min ,max/ES ES

j jSOE SOE  Minimum/Maximum energy limit of bulk 

ES j (MWh) 

j  Percent of initial energy level of bulk ES 

j 

,

ES

j initialSOE  Initial state of the charge of bulk ES j at 

the beginning of scheduling horizon 

lX  Reactance of line l 

max

lF  Maximum capacity of transmission line l 

(MW) 
  Spinning reserve market lead time (h) 

Variables  
0 /bt bt   Voltage angle in bus b at hour t (rad) 

0 /lt ltF F   Power flow through line l at hour t (MW) 

itU  Binary status indicator of generation unit 

i at hour t 

/DeBatt ChBatt

jt jtI I
 
Binary indicator of net discharge/charge 

status of bulk BES j 

btsLS  Involuntary load shedding in bus b at 

hour t of scenario s (MWh) 

btsWS  Wind power spillage in bus b at hour t of 

scenario s (MWh) 
e

itmP  Generation of segment m in linearized 

fuel cost curve (MW) 

td  Modified demand of hour t after 

simultaneous IBDR and TBRDR 

programs (MW) 

t  
Optimal DR tariffs at hour t in 

TBRDRPs ($/MWh) 
/Incentive Penalty

tC
 
Incentive or penalty payments as a result 

of IBDRPs ($) 

itP
 

Total scheduled power of unit i at hour t 

(MW) 

itSUC
 

Start-up cost of generation unit i at hour t 

($) 

/usr dsr

it itP P
 

Scheduled up- and down-spinning 

reserve capacity of unit i at hour t (MW) 
nsr

itP
 

Scheduled non-spinning reserve capacity 

of unit i at hour t (MW) 

/ChES DeES

jt jtP P
 
Scheduled charge/discharge power of 

bulk ES j at hour t (MW) 

/usr dsr

jt jtP P
 

Scheduled up- and down-spinning 

reserve capacity of bulk ES j at hour t 

(MW) 
nsr

jtP
 

Scheduled non-spinning reserve capacity 

of bulk ES j at hour t (MW) 

/U D

its itssr sr
 

Deployed up- and down spinning reserve 

of unit i at hour t of scenario s (MWh) 
, ,/ES U ES D

jts jtssr sr
 
Deployed up- and down spinning reserve 

of bulk ES j at hour t of scenario s 

(MWh) 
ES

jtSOE
 

Energy stored in bulk ES j at hour t 

(MWh) 

1. INTRODUCTION 

The ongoing deployments of variable renewable energy 

sources (VRESs), particularly wind power, entail new 

challenges in power system operation due to their 

inherent intermittent nature. Traditionally, this variability 

has been compensated for through conventional power 

plants. However, covering the uncertainties of VRESs 

may cause significant wear-and-tear impacts on the fleet 

of conventional power plants and can even decrease their 

expected lifetimes and substantially increase the system 

operation costs [1-2]. Therefore, wind–thermal 

generation scheduling problem plays a key role in 

implementing clean power producers in competitive 

environments [3]. 

With the above-mentioned challenges introduced by 

VRESs, the need for flexible resources in power systems 

is higher than ever. Under this perspective, emerging 

utility-scale energy storages (ESs) can play an important 

role to better manage the intermittency as a result of high 

penetration of VRESs. In fact, bulk ESs have fast 

ramping capability and, hence, may become more 

efficient than the conventional generation units in terms 
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of providing additional required flexibility. 

On the other hand, the recent deployment of smart grid 

technologies potentially enables the possibility of 

managing customer’s demand and, therefore, helps 

power systems operate in a more efficient way [4]. 

Nowadays, demand response (DR) is known as a 

powerful tool to increase operational flexibility which 

can facilitate the integration of VRESs [5-6]. It is 

noteworthy that there is a wide spectrum of DR programs 

that are implemented by independent system operators 

(ISOs) with the aim of encouraging customers to alter 

their typical energy usage according to the ISO purposes. 

It should be noticed that, in the presence of such bulk 

ESs in energy and reserve markets, the former supply and 

demand-side scheduling of power systems must be 

changed. In this situation, it is important from the ISO 

perspective to select and implement an appropriate DR 

program in order to achieve an optimal coordinated 

dispatch in power grids with high penetration of VRESs 

in order to minimize total operation cost and air pollutant 

emissions simultaneously. 

1.1. Literature review 

A wide range of previous studies has addressed the wind-

thermal generation scheduling problem. For instance, a 

model was proposed to determine operating reserves in 

the simultaneous market clearing of energy and reserve 

by stochastic programming in Ref. [7]. It is noteworthy 

that this paper scheduled the supply-side resource 

without considering the effect of demand-side resources. 

Demand-side resources were also have been modeled as 

peak clipping and demand shifting units with the aim of 

wind integration [8-9]. However, the mentioned studies 

have used deterministic approaches, while wind power 

has a stochastic nature. In Ref. [10], DR resources were 

incorporated into the unit commitment problem in the 

presence of wind power in order to achieve smoother load 

profile and decrease the need for additional ramp caused 

by wind generation. It is notable that DR resources are 

considered dispatchable units besides other conventional 

units in the market environment. The stochastic nature of 

wind power and pollutant emission issues was not 

addressed in Ref. [10]. A more precise model was 

presented in Ref. [11] that considered load reduction and 

load recovery using price elasticity concept. In fact, the 

authors in Ref. [11] attempted to provide a flexible load 

profile to reduce the need for the ramp services of 

conventional units with the aim of wind integration. 

However, the uncertainty of wind power and also the 

impacts of implementing various DR programs were 

neglected.  

Another set of papers has gone a step further by using 

stochastic programming approaches [12, 13]. In Ref. 

[12], a two-stage stochastic programing was introduced 

considering generation units and responsive loads in 

energy and reserve markets to compensate for the 

uncertainty of wind power. Furthermore, the effects of 

various voluntary DR programs on facilitating the grid 

integration of wind power were investigated using a 

stochastic scheduling framework in Ref. [13]. Although 

the uncertainty of wind power was incorporated into the 

model using stochastic programming approach and the 

effects of various DR programs were considered, the DR 

tariffs and incentives were considered to have fixed 

values that were not optimal. In addition, the bulk ESs 

were not considered. 

Recently, there is a general consensus that bulk ESs 

can enroll in co-optimized energy and reserve markets as 

active market participants, especially at the high 

penetration of VRESs due to their technical features [14-

15]. On this basis, there have been many studies that 

investigate the role of ESs in power grid operation. For 

instance, the role of utility-scale compressed air energy 

storages (CAESs) in co-optimized energy and reserve 

markets was evaluated in Ref. [15]. The paper also 

presented a novel approach to determine the required 

amount of regulation services in the systems with a 

significant amount of wind power. However, the model 

was formulated using a deterministic approach in the 

mentioned work. In addition, a stochastic real-time unit 

commitment was proposed to deal with the uncertainty of 

VRESs considering an ideal and generic model for ESs 

in Ref. [16]. The role of DR programs was neglected in 

the mentioned paper. Plug-in electric vehicles are also a 

flexible option that can be categorized into both demand-

side options and energy storages [17]. The mentioned 

energy storage options can mitigate the wind variability, 

since they can alleviate the differences between the 

electricity supply and demand in the power systems with 

high penetration of wind power [18]. 

1.2. Contributions 

Although previous papers in the literature have studied 

the impacts of bulk ESs or DR programs in the operation 

of power systems with a considerable share of VRESs, 

coordinated operation scheduling of the mentioned 

resources has not been investigated so far. It is worth 

noting that simultaneous scheduling of bulk ESs and DR 

programs portfolio is a key issue for ISOs in the future 

power systems with a high amount of non-dispatchable 

renewable energy resources. In other words, with 

introducing utility-scale ESs that have no uncertainty in 

their response, there may be the possibility that the 

enabled quantity of DR decrease severely. On this basis, 
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the ISO should select and implement an efficient DR 

program from DR portfolio that not only encourages the 

customers more and more to participate in power system 

transactions, but also fulfills the requirements of the 

power system operator. Therefore, the main contributions 

of this paper are highlighted as follows: 

 Optimal tariffs and incentives/penalties of 

different DR programs are obtained based on the 

power system’s operational conditions. 

 Coordinated operation of bulk ESs and a set of 

DR programs are investigated in the power grid 

with high penetration of wind power. 

 The economic and environmental objectives 

from ISO point of view are considered 

separately and simultaneously using a multi 

objective stochastic framework. 

 Prioritizing DR programs include time-based 

rate DR programs (TBRDRPs) and incentive-

based DR programs (IBDRPs). 

1.3. Paper organization 

The rest of this paper is organized as follows. Section 2 

presents the role of DR and bulk ESs in the grid 

integration of VRESs. Moreover, the formulation of DR 

programs and bulk ESs is given in this section. The 

proposed two-stage stochastic network-constrained unit 

commitment formulation is presented in Section 3. 

Numerical studies are discussed in Section 4 and the 

conclusions are reported in Section 5. 

2. DR PROGRAMS AND BULK ESS 

Demand-side management programs, especially DR and 

emerging utility-scale ESs, are known as key options for 

providing additional required flexibility as a consequence 

of huge penetration of VRESs. For instance, as claimed 

in Ref. [19], DR is sufficient to meet nearly all the 

fluctuations of VRESs. Moreover, the detailed 

descriptions of DR as a possible way for handling the 

intermittency of VRESs were investigated in Ref. [20]. 

Emerging bulk ESs are also known as a solution for 

facilitating VRESs integration into power grid due to 

their capability to be both demand and generation in over- 

and under-supply situations from VRESs. In this context, 

the state of the art of three different kinds of ESs 

technologies including pump hydro storages, batteries, 

and fuel cells was reviewed in Ref. [21]. Furthermore, the 

state of the art of ES that can be used for mitigating wind 

uncertainty was discussed from different aspects in Ref. 

[22]. 

Below, the mathematical formulation and relevant 

descriptions of DR programs as well as a typical bulk ES 

is presented in detail. 

2.1. Basic model of DR programs 

Generally, DR refers to the change in the typical 

consumption pattern of customers in response to the 

change in electricity tariffs or the specified given 

incentives for achieving economic and reliability goals. 

On this basis, DR programs are categorized into two main 

groups: TBRDRPs and IBDRPs. In TBRDRPs, 

customers are encouraged to change their consumption 

according to the electricity tariffs that are notified by ISO, 

while in IBDRPs, a specified given incentive persuades 

customers to change their usual consumption. It is 

noteworthy that there is also a penalty scheme in a certain 

number of IBDRPs depending on the program type and 

condition. The classification of DR programs is shown in 

Fig. 1. More details are discussed in [23-25]. 

Here, customer’s sensitivity to the change in electricity 

tariffs is considered through the concept of price 

elasticity of demand, as in [23]. The price elasticity of 

demand in the t-th period versus the t'-th period can be 

defined as can be seen in Eqs. (1) and (2) [23]. 

Demand Response Programs (DRPs)

Time-Based Rate DR 

Programs (TBRDRPs)

Incentive-Based DR 

Programs (IBDRPs)

Interruptible/Curtailable

 (I/C) Services

Emergency DR Program (EDRP)

Direct Load Control (DLC)

Ancillary Services (A/S) Market

Demand Bidding (DB)

Capacity Market Program (CAP)

Critical Peak Pricing (CPP) 

Real Time Pricing (RTP) 

Time of Use (TOU) 

Fig. 1. Classification of DR programs 
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
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(2) 

0

0

, 1,2,...,24
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t

t

E if t t
and

E if t t

d
constont for t t









 


 


 



 

If ( )tB d is assumed to be the value of electricity from 

customers’ viewpoint for using td  during hour t, the 

customer net benefit can be calculated as can be seen in 

Eq. (3): 

(3) 
 

 

0

0

( ) . .t t t t t t

t t t t

NB B d d INC d d

PEN IC d d

   

     
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It is notable that the second and third terms on the right 

of the equality in the above equation are related to the 

cost of electricity consumption and revenue from 

incentive at hour t, respectively. Also, the forth term is 

associated to the penalties for the customers that 

participate in DR, but do not reduce their load according 

to their initial contract level (i.e. tIC ) in the needed time. 

It should be noted that the calculation of ( )tB d  is 

beyond the scope of the current paper and more details 

were provided in Ref. [25]. To maximize the customer’s 

net benefit, the derivative of Eq. (3) should be equal to 

zero:  

(4) 
( )

0t
t t t

t t

B dNB
INC PEN

d d



    

 
 

 

As a consequence: 

(5) 
( )t

t t t

t

B d
INC PEN

d



  


 

Usually, it is presumed that the customer’s net benefit 

is a quadratic function of customer consumption as 

follows Refs. [23-25]: 

(6) 

0
0 0 0

0
( ) 1

2

t t
t t t t t

tt t

d d
B d B d d

E d


 
      

 
 

By differentiating Eq. (6) and replacing the results in 

Eq. (5), the “single period model” of responsive loads is 

obtained as shown in Eq. (7): 

(7) 

0

0

0
1

tt t t t t

t t

t

E INC PEN
d d

 



      
  

  

 

Since a change in the electricity price at hour tmay 

cause the load variation at hour t, by expanding Eq. (7), 

we will have the “multi period model” of responsive 

loads including TBRDRPs as well as IBDRPs, as can be 

seen in Eq. (8). More detailed explanations can be found 

in [23-25]. 

(8) 

024
0 0

0
1

t
t t tt t t t t

t t
t t

d
d d E INC PEN 


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 


        

By combining Eqs. (7) and (8), the “composite period 

economic model” of responsive loads can be obtained as 

follows [23-25]: 

(9) 

0

0

0

0
24

0
1

1
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t t tt

t
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d d E
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
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
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
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2.2. Calculating optimal DR tariffs and incentives  

When DR programs are optimally combined by other 

operational problems, the main aim of the coordinated 

decision making problem is to determine the optimal 

incentives or optimal tariffs in the DR programs. This 

subject is addressed in this section for a typical TBRDRP 

as well as IBDRP. For the sake of simplicity and without 

loss of generality, time of use (TOU) and emergency DR 

program (EDRP) are selected here as TBRDRP and 

IBDRP, respectively. It is noteworthy that the same 

procedure can be performed for other DR programs. 

 Optimal TOU program 

By dividing the hourly load profile into three time periods 

including low load, off-peak, and peak time periods, the 

TOU program model will be obtained using Eq. (9), as 

shown in Eq. (10) [26]. 

(10) 

0
0

0

0 0

0 0

[ ]
1 .

[ ] [ ]
. .

LTP

t
t t tt

t LTP t

OTP PTP

t t
tt tt

t OTP t PTPt t

d d E

E E

 


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 




 

 
 

   

 
 



 
  





 

 

Eq. (10) indicates the optimum amount of customer 

consumption in a 24-h period while participating in the 

TOU program. In order to have an appropriate TOU 

pricing scheme, inequalities (11-13) must be considered 

to specify the reasonable range of price in three time 

periods [26]. 

(11) 
0LTP

t   

(12) 
0PTP

t   

(13) 
LTP OTP PTP     

The maximum response potential of customers is also 

modelled through Eq. (14). This equation determines the 

maximum possible amount of load level that can be 

decreased in peak periods and recovered in other periods 

at each hour. 

(14) 
max 0 max 0

t t tDR d d DR d       

In order to guarantee the comfort level of customers, 

Eq. (15) lets the total energy consumption over the 

scheduling horizon remain unchanged. However, if the 

customers have load reduction potential, the equation 

should be modified based on their load reduction 

capability. 

(15) 
1

0
NT

t

t

d


   

 Optimal EDRP program 

Unlike TBRDRPs, the implementation of EDRP imposes 

some costs on ISOs. This cost is related to the incentive 

payments to customers for their load reduction at specific 

hours and is formulated as shown below at each hour: 

(16)  0EDRP

t t t tC INC d d    

Through the similar procedure explained in subsection 
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2.1 in detail, the final EDRP model will be achieved: 

(17) 

24
0

0
1

1 . t
t t tt

t t

INC
d d E






 

 
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 
  

By substituting the above equation in Eq. (16), the cost 

of customer's participation in EDRP from the ISO 

perspective can be formulated as Eq. (18) [27]. 

(18) 
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0
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  
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From Eq. (18), it can be concluded that EDRP

tC is a 

quadratic function of incentive as shown in Fig. 2. The 

function can be accurately approximated by a piecewise 

linear model as represented in Eq. (19) [27]. 
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Fig. 2. Piecewise linear total incentive for a typical hour [27]. 

2.3. Utility-scale ESs formulation 

This paper considers a generic model for bulk ESs based 

on the assumption that the bulk ES is an active market 

player in the electricity market. In this regard, the bulk 

ES can participate in day-ahead energy, spinning reserve, 

and non-spinning reserve markets besides other 

conventional units. The model of bulk ES is presented by 

Eqs. (20)-(28). 

(20) 
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jt jtsr P 
 

(26) 
   

 
1

ES ES ChES dsr

jt Ch jt jtj t

DeES usr nsr

DeCh jt jt jt

SOE SOE P P

P P P






  

  
 

(27) 
,min ,maxES ES ES

j jt jSOE SOE SOE 
 

(28) 
,max

,

ES ES

j initial j jSOE SOE
 

The limits on the capacity of ES while getting charged 

and discharged are considered in Eqs. (20) and (21), 

respectively. Note that Eqs. (20) and (21) have two terms 

including day-ahead energy and up/down spinning 

reserve capacity markets and also Eq. (22) deals with the 

non-spinning reserve capacity provided by the bulk ES. 

Moreover, Eq. (23) prevents simultaneous charge and 

discharge operations of ES. Eqs. (24) and (25) restrict the 

actual deployed real-time reserves for corrective actions 

in the worst case according to the scheduled reserve 

capacity in the day-ahead market. The amount of stored 

energy within the reservoir of bulk ES j at hour t as a 

function of energy stored until hour t-1, participation in 

energy, and up/down spinning reserve markets is 

represented by Eq. (26). The maximum and minimum 

levels of storages at hour t are also considered through 

Eq. (27). Finally, Eq. (28) shows the initial stored energy 

level of the bulk ES as a function of its maximum 

reservoir capacity. 

3. PROBLEM FORMULATION 

In this section, a two-stage stochastic programming 

approach is used to model the simultaneous operation 

scheduling of supply- and demand-side resources for 

mitigating wind power uncertainty. The conventional 

generation units and utility-scale ESs are considered the 

supply-side resources, while DR programs enable the 

demand-side ones. The schematic view of the proposed 

model is shown in Fig. 3. The first-stage problem 

corresponds to the market clearing regardless of any 

scenario realization, while the second-stage is associated 

to the actual operation of power system considering wind 

power scenario realizations.  

The main objective of the proposed formulation is to 

determine an optimal wind-thermal generation 

scheduling in the presence of two flexible resources, 

namely DR programs and utility-scale ESs, with the 

application to facilitating wind power integration. In fact, 

the proposed model is a sophisticated decision making 

problem with an objective function including the total 

operation costs as well as the emission level of generating 

units that should be minimized while satisfying a number 

of equality and inequality constraints. 

3.1. Objective function 

The objective function has two main terms as can be seen 

in Eq. (29): 

(29)  cost emission

C EMin W F W F    
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Fig. 3. Simultaneous scheduling of supply- and demand-side 

resources 

In Eq. (29), weighting factors CW  and EW  represent 

the significance of cost and emission from the ISO point 

of view in the decision making problem. Therefore, 

different weighting can be considered to assign different 

shares of cost and emission in the objective function. 

Moreover, the operating cost and emission levels of 

generation units are formulated as shown in Eq. (30) and 

Eq. (31), respectively. 

In Eq. (30), the first line is related to the costs of 

providing energy and spinning/non-spinning capacity 

reserve through conventional generation units in the day-

ahead market. The second line of Eq. (30) represents the 

same costs for bulk ESs. The third line contains two terms 

which express the cost paid to customers as the incentive 

for their load reduction at peak hours and the income of 

ISO from penalizing the consumers they do not respond 

to when needed, respectively. These costs have been 

transformed into their linear forms as depicted through 

Eq. (19). It is noteworthy that, since the implementation 

of TBRDRPs changes the consumption pattern, the 

generation cost is affected as well. The second part of Eq. 

(30) which involves the wind power scenario realizations 

includes the costs as a result of activated reserves by 

generation units, bulk ESs, load shedding, and wind 

power spillage. 

It is noteworthy that emissions produced by generation 

units are usually expressed based on their power 

production [28]. Here, two most popular generating unit 

emissions, namely SO2 and NOx, are considered through 

a linear emission function in order to preserve the mixed 

integer linear programming (MILP) nature of the model, 

as in [28]. 

(30) 
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(31) 2 2/ /

1 1 1

( )x x

NT NG NM
SO NO SO NOemission e

i it itm itm
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F MPE U P EC
  
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3.2. First-stage constraints 

 DC power flow  

(32)    * 0

b b b

DeES ChES

it jt jt bt b t lt

i G j ES l L

P P P W LD d F
  

        

(33)  0 0 0

lt bt b t lF X   
 

 Transmission line flow limits  

(34) 
max 0 max

l lt lF F F  
 

 Generation units start-up cost constraint  

(35) ( 1)( )it i it i tSUC SC U U  
 

 Power generation constraints  

(36) 
1

NM
e

it itm

m

P P



 

(37) 
max0 e

itm imP P 

 
(38) 

min max

i it it i itP U P P U 

 
(39) 

maxusr nsr

it it it iP P P P  
 

(40) 
maxusr

it it i itP P P U 
 

(41) 
mindsr

it it i itP P P U 
 

 Up-, down-, and non-spinning reserve limits  

(42) 0 usr nsr

it it iP P RU   
 

(43) 0 dsr

it iP RD  
 

(44)  0 1nsr

it it iP U RU   
 

 Minimum up and down time constraints 

(45)    , 1

2

1
it MUT

it i it i t i

t t

U MUT U U MUT


 
 

   
 

(46)  , 1

2

it MDT

it i i t it i

t t

U MDT U U MDT


 
 
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 Ramp up and down rate limits 
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(47)  min

, 1 , 11it i t i it i i tP P RU U P U    
 

(48)  min

, 1 , 1 1i t it i i t i itP P RD U P U    
 

 

3.2. Second-stage constraints 

 DC power flow equation in scenarios 

(49) 

   
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(50)  lts bts b ts lF X   
 

 Transmission line flow limits in scenarios 

(51) 
max max

l lts lF F F  
 

 Deployed up- and down-spinning reserve limits 

 (52) 0 GU usr

its itsr P 
 

(53) 0 GD dsr

its itsr P 
 

 Involuntary load shedding limit 

(54) 0 bts b tLS LD d 
 

 Wind spillage limit 

(55) 0 bts btsWS w 
 

3.3. Prioritizing DR programs portfolio 

 The entry of bulk ESs into energy and reserve markets 

will change the wind-thermal generation scheduling. In 

this situation, it is very important for the ISO to select and 

implement an appropriate DR program which has more 

coordination with ESs and other conventional power 

plants. In this regard, in order to compare the 

effectiveness of different DR strategies in the presence of 

utility-scale ESs for wind power integration, geometric 

average utility function (GAUF) as in Ref. [27] is 

applied. Under this perspective, strategy index (SI) and 

strategy success index (SSI) are used as can be seen in 

Eqs. (56)-(57) [27]. 
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In Eq. (56), ( )kSt t indicates the performance value of 

the k-th attribute for each alternative in the t-th period. 

Also, M represents the studied time horizon which is one 

day here. In Eq. (56), kW shows the weight of the k-th 

attribute. The SSI which is represented by Eq. (57) is in 

fact the normalized value of the SI factor. In short, higher 

SSI shows the better performance of a DR program. On 

this basis, the ISO can prioritize different DR programs 

due to its preferences which can include economic or 

environmental objectives.  

4. SIMULATION RESULTS AND DISCUSSION 

Several numerical studies have been conducted on the 

modified IEEE 24-bus RTS. In this respect, it is assumed 

that six hydro units are excluded. Also, two 400 MW 

wind farms (nearly 20% of total installed generation 

capacity) and two 20MW bulk ES units are located in 

buses 2 and 22, respectively. The required data of the 

mentioned test system including generation units and 

network parameters are taken from [29]. 

The hourly load corresponds to a weekend day in 

winter as given in Ref. [29], while the peak of the day is 

assumed 2850 MW. The generation units offer energy 

based on four linear segments between their minimum 

and maximum generation limits, as stated 

in Ref. [16]. The emission function slopes and the initial 

emission of generating units are the same as those for the 

corresponding unit fuel cost curves, all multiplied  by the 

conversion factors of 0.2 and 0.5 for SO2 and NOx 

emission, respectively [28]. 

Moreover, it is presumed that generation units offer 

capacity cost for up-, down-, and non-spinning reserves 

at the rates of 40%, 40%, and 20% of their highest 

incremental cost of producing energy, respectively. 

Moreover, the cost of deployed reserves at the re-dispatch 

stage is considered to be at the rate of the highest 

incremental cost of energy production as well. The 

spinning reserve market’s lead time is assumed to be 10 

min. 

The ES is assumed to have 1:1 charge to discharge 

ratio and 4:1 reservoir energy capacity to discharge ratio 

with the charging/discharging efficiency of 80%. 

Moreover, the bulk ES energy and up- and down-

spinning reserve offers are considered 12.5 $/MWh, 5 

$/MWh, and 5 $/MWh, respectively. Also, the offered 

cost of ES for providing non-spinning reserve is assumed 

to be 2.5 $/MWh. The state of charge of ESs is assumed 

to be between 10% and 90% according to the suggestion 

by some manufacturers and the initial state of the charge 

of both ESs is considered 20%. The load curve is divided 

into three periods: low-load period (1:00-8:00), off-peak 

period (9:00-16:00), and peak period (17:00-24:00). 

Moreover, the participation level of customers in DR 

programs is considered 20%. It is notable that the initial 

electricity price is assumed to be 12.5 $/MWh which is 

the mean value of electricity prices before DR 

implementation in 24-h scheduling horizon. In addition, 

the values of self and cross price elasticity of demand are 

extracted directly from [23]. 
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Table 1. Optimal DR programs portfolio statement 

Group 

no. 

Scenario 

no. 
Programs Electricity price ($/MWh) 

Incentive 

value at 

peak 

($/MWh) 

Penalty 

value at 

peak 

($/MWh) 

Base - Initial load 12.5 flat rate 0 0 

1 

1 TOU 9.7, 12.5, 14.3 at low-load, off-peak, and peak periods, respectively 0 0 

2 RTP 
8.3,8.3,8.3,8.3,8.3,8.3,8.3,8.3,10.7,13.1,13.8,14,13.8,13.2,13.4,13.3,14.8,16.5,16.5,15.8,15.2, 

14.7,13.6,12 at 1-24h 
0 0 

3 CPP 21.7 at 18 and 19 h; otherwise, 11.53 0 0 

2 

4 DLC 12.5 flat rate 2.35 0 

5 EDRP 12.5 flat rate 3.125 0 

6 I/C 12.5 flat rate 3.125 0.875 

3 

7 TOU+DLC 9.7, 12.5, 14.3 at low-load, off-peak, and peak periods, respectively 2.35 0 

8 TOU+EDRP 9.7, 12.5, 14.3 at low-load, off-peak, and peak periods, respectively 3.125 0 

9 TOU+I/C 9.7, 12.5, 14.3 at low-load, off-peak, and peak periods, respectively 3.125 0.875 

The DR portfolio contains three groups of DR 

programs. Group #1 is the TBRDRPs including TOU, 

real-time pricing (RTP) and critical peak pricing (CPP). 

Group #2 is the IBDRPs which include direct load control 

(DLC), EDRP, and interruptible/curtailable (I/C) 

programs. Group #3 is the combination of TBRDRPs and 

IBDRPs. In order to evaluate the economic and 

environmental potentials of different DR programs in 

coordination with bulk ESs for facilitating wind power 

integration, three case studies are conducted. In this 

respect, case 1 and case 2 deal with economic- and 

environmental-driven scheduling, respectively. 

Moreover, a trade-off between economic and 

environmental objectives is studied in case 3. The 

proposed model is solved using the MILP solver CPLEX 

12.5.0 under GAMS software. The optimal DR rates are 

calculated for each program, as can be seen in Table 1. It 

is noteworthy that these are the most popular and widely 

used DR programs in the power market [30]. 

4.1. Case 1: Economic-based scheduling 

In order to evaluate the effectiveness of different DR 

strategies in the presence of bulk ESs for wind-thermal 

generation scheduling problem from the economic 

perspective, a cost-based optimization is done here. To 

this end, in the first case, CW and EW  are assumed to be 

1 and 0, respectively. Tables 2-4 represent different terms 

of operation cost in the 24-h scheduling horizon for 

different DR program groups in detail. It can be 

obviously concluded from Tables 2-4 that the total 

operation cost is decreased considerably in comparison 

with the base case. According to the obtained results, I/C 

program is the most effective DR program in the field of 

operation cost reduction due to the fact that this program 

applies a punishment mechanism besides incentivizing 

customers. 

Table 2. Terms of operation cost in Group #1 in case 1($) 

Cost term 

Group #1: TBRDRPs 

Scenario No. 

Base 1 2 3 

Generation unit 

production  
510837 494307 481919 516314 

Up/down reserve 

capacity  
51998 49280 47865 54173 

ES energy  386 2009 1803 300 

ES capacity reserve  3635 3552 3309 3760 

Incentive  0 0 0 0 

Penalty  0 0 0 0 

Wind spillage  2257 1990 1871 2120 

Deployed-reserve  -20099 -17534 -14934 -40041 

Total  549014 533604 521833 536626 

Table 3. Terms of operation cost in Group #2 in case 1($) 

Cost term 

Group #2: IBRDRPs 

Scenario No. 

Base 4 5 6 

Generation unit 

production 
510837 474485 466096 458321 

Up/down reserve 

capacity 
51998 47988 47320 46793 

ES energy 386 2086 1722 1836 

ES capacity reserve 3635 3303 3133 3086 

Incentive 0 5374 7146 9147 

Penalty 0 0 0 -3058 

Wind spillage 2257 2780 3200 3428 

Deployed-reserve -20099 -17176 -17121 -18256 

Total 549014 518840 511496 501297 

On this basis, the customers that do not decrease their 

consumption based on the contract amount should be 

penalized. Afterwards, DR strategies of Group #3 can 

bring remarkable economic benefits, since these DR 

programs motivate the customers to change their typical 

consumption using both tariff schemes and incentive 

mechanisms. 
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Table 4. Terms of operation cost in Group #3 in case 1($) 

Cost term 

Group #3: TBRDRPs+IBRDRPs 

Scenario No. 

Base 7 8 9 

Generation unit 

production 
510837 469658 462428 455047 

Up/down reserve 

capacity 
51998 47141 46888 46047 

ES energy 386 2206 2252 1836 

ES capacity reserve 3635 3424 3435 3392 

Incentive 0 9490 11262 13264 

Penalty 0 0 0 -2119 

Wind spillage 2257 2770 2910 3536 

Deployed-reserve -20099 -18699 -18706 -18225 

Total 549014 515990 510469 502778 

From wind power integration point of view, the RTP 

and TOU programs have positive impacts on the 

facilitation of wind integration. For instance, the optimal 

RTP and TOU pricing schemes can reduce wind spillage 

by 17% and 12%, respectively. It should be noticed that 

nearly in all the scenarios, DR implementation changes 

the scheduling of the bulk ESs in energy and reserve 

markets so that the participation of bulk ESs in energy 

market is increased. It is notable that the expected costs 

for deploying reserves are negative due to the fact that the 

down reserves account for the negative cost in the 

objective function. In other words, it is the cost which has 

been avoided. Moreover, the penalty costs get negative 

values according to the fact that this term is considered 

the revenue in the objective function from ISO view 

point. In Fig. 4, the impacts of implementing different 

types of DR programs on the system load profile are 

investigated. Almost all types of the programs try to 

decrease the load level in the peak period while 

increasing the load level at low-load hours and, 

consequently, providing a flatter load profile. This issue 

will not only remove the strain on the conventional 

generation units, but also support the integration of wind 

power into the power system. 

4.2. Case 2: Environmental-based scheduling 

In order to evaluate the coordinated operation of bulk 

ESs and DR programs portfolio at high penetration of 

wind power from the environmental perspective, in the 

second case, CW and EW  coefficients are assumed to be 

0 and 1, respectively. It should be emphasized that the 

amount of pollutant emissions in case 1 without 

implementing DR is equal to 193879 lbs. The 

environmental-based decision making decreases the 

value of pollutant emissions to 160578 lbs. In order to 

investigate the effectiveness of different DR programs in 

the case of emission reduction, Table 5 provides a 

comprehensive comparison in detail. 

 

 

 

Fig. 4. Effect of various DR programs on load curve in case 1. 

Table 5. Total emission comparison of different scenarios in case 2 

Group no. Scenario no. Emission (lbs) 
Emission 

reduction (%) 

Base-case - 160578 0 

1 

1 160374 0.13 

2 158388 1.36 

3 160384 0.12 

2 

4 145705 9.26 

5 141256 12.03 

6 135567 15.57 

3 

7 146837 8.56 

8 142243 11.42 

9 137121 14.61 

As can be seen in Table 5, a remarkable emission 

reduction is achieved as a consequence of implementing 

DR in most scenarios. The minimum level of decreasing 

emission (0.12%) is related to scenario no. 3, namely 

CPP. Moreover, the most effective DR program from the 

environmental viewpoint is devoted to scenario no. 6, 

which is I/C program. It can be concluded that DR 

programs related to Group #2 and Group #3 have better 

performance in the field of mitigating pollutant 

emissions. In order to represent the impressions of ISO 

set target including economic and environmental 

objectives in the scheduling of bulk ESs, the total stored 

energy of bulk ESs in the base case (without considering 
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DR programs) are compared in case 1 and case 2, as can 

be seen in Fig. 5.  

 

Fig. 5. Total level of stored energy in the ESs in case 1 and case 2 

As can be observed, the total energy level of bulk ESs 

in case 1 (i.e. cost-based scheduling) is less than the total 

energy level of bulk ESs in case 2 (i.e. emission-based 

scheduling). Therefore, the ISO prefers to dispatch ESs 

for economic objectives in comparison with the 

environmental applications in electricity market. 

4.3. Case 3: Economic-environmental based 

scheduling 

In the third case, a trade-off is established between 

economic and environmental objectives. To this end, CW

and EW coefficients are assumed to be 0.5 and 0.5, 

respectively. The optimal values of operation cost and 

emissions are reported for different scenarios in Table 6. 

According to Table 6, the operation cost as well as 

pollutant emissions is reduced as a result of DR 

implementation. In Group #1, the minimum values of 

operation cost (526128$) and emission (167559 lbs) are 

related to scenario no. 2 (i.e. RTP). The same procedure 

can be applied for the programs of Group #2 and Group 

#3. 

Table 6. Comparison of different scenarios in case 3 

Group no. Scenario no. Operation Cost ($) Emission (lbs) 

Base-case - 557490 180570 

1 

1 540838 172279 

2 526128 167559 

3 555406 179730 

2 

4 525963 166327 

5 516537 159892 

6 507130 155177 

3 

7 524345 159517 

8 517184 153634 

9 510090 151066 

Since the determination of the most efficient DR 

program is crucial from the ISO viewpoint, as mentioned 

earlier, in this paper, SSI coefficient is used to compare 

the performance of DR programs portfolio in facilitating 

wind power integration. On this basis, the predefined DR 

programs portfolio is prioritized in different case studies, 

as can be seen in Table 7. 

Table 7. Prioritizing of DR programs portfolio in different case 

studies 

Case 1 

Economic-based 

Case 2 

Environmental-based 

Case 3 

Economic-

environmental based 

Priorities (1-10) Priorities (1-10) Priorities (1-10) 

Scenario no. SSI (%) Scenario no. SSI (%) Scenario no. SSI (%) 

6 100 6 100 6 100 

9 99.70 9 98.87 9 99.28 

8 98.20 5 95.97 5 96.98 

5 98.00 8 95.31 8 96.74 

7 97.15 4 93.04 4 94.81 

4 96.62 7 92.32 7 94.71 

2 96.06 2 85.59 2 90.68 

1 93.94 1 84.53 1 89.11 

3 93.42 3 84.52 3 88.86 

Base-case 91.31 Base-case 84.42 Base-case 87.80 

It is noteworthy that the operating cost and emission 

are considered the attributes. In addition, different 

scenarios of Table 1 are considered the alternatives. As 

can be seen in Table 7, the highest priority is achieved by 

implementing scenario no. 6, which is related to the 

implementation of I/C program. It seems reasonable due 

to the fact that I/C is an obligatory DR program 

implemented by ISO so that a punishment mechanism 

that penalizes the customers if they do not respond in the 

required time is applied. Therefore, it seems that the 

customers are forced to participate in DR program and, 

as a result, the maximum benefit is attained from the ISO 

perspective. Furthermore, it can be concluded that the 

implementation of only TBRDRPs is not a favourable 

option for ISO in the systems with a significant amount 

of wind generation. It is also seen that implementing a 

combination of TBRDRPs and IBDRPs can be desirable 

for the ISO most of the times. In order to represent the 

coordinated operation of bulk ESs and DR programs, the 

energy level of ESs in electricity market environment 

under the implementation of the most effective DR 

program (i.e. scenario no. 6) is shown for case 3 as given 

in Fig. 6. According to Fig. 6, the energy level of bulk 

ESs is high in low-load period due to the fact that the 

electricity price is low in this period. Therefore, the ESs 

do not participate in energy and reserve markets.  

 

Fig. 6. Level of stored energy in the ESs in scenario no. 9 and 

case 3 
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In addition, the level of stored energy in ESs reaches 

its minimum value, since the electricity price is high in 

the mentioned period and, hence, the ESs are preferred to 

participate in the market and sell their stored energy. It is 

noteworthy that the ESs begin to charge, particularly 

from hour 22 onward when the electricity tariff is high. 

This issue is the consequence of the constraint expressed 

through Eq. (17). Based on Eq. (17), the level of stored 

energy of bulk ESs should be equal to 20% of their 

maximum energy capacity at the early hour of the day 

(i.e. hour 1). 

5. CONCLUSIONS 

In this paper, a two-stage stochastic programming 

approach was proposed to schedule the conventional 

units, bulk ESs, and DR programs with the application to 

wind power integration such that the total operation cost 

as well as emission was minimized. Numerical results 

indicated that implementing optimal TBRDRPs and 

IBDRPs could reduce both the operation cost and 

emission. In addition, the obtained results revealed that 

the TBRDRPs were better options in the field of 

mitigating wind power spillage although the mentioned 

programs were not suitable for economic purposes in 

comparison with other DR programs. According to the 

simulation results, the maximum SSI index was 

associated with the I/C program for both economic- and 

environmental-based scheduling. Furthermore, it can be 

concluded that the implementation of optimal DR 

programs could change the scheduling of ESs in energy 

and reserve markets such that the bulk ESs could be 

charged in low-loads and off-peak periods and inject 

power back into the grid, particularly at peak hours as 

energy or reserve services. 

REFERENCES 
[1]  N. Troy, E. Denny, M. O'Malley, “Base-load cycling on a 

system with significant wind penetration,” IEEE Trans. 

Power Syst., vol. 25, no. 2, pp. 1088-1097, 2010.  

[2] J. D. Maddaloni, A. M. Rowe, G. C. van Kooten, “Wind 

integration into various generation mixtures,” Renewable 

Energy, vol. 34, no. 3, pp. 807-814, 2009. 

[3] H. Khorramdel, B. Khorramdel, M. T. Khorrami, H. 

Rastegar, “A multi-objective economic load dispatch 

considering accessibility of wind power with here-and-

now (HN) approach”, J. Oper. Autom. Power Eng., vol. 2 

no. 1, pp. 49-59, 2014. 

[4] P. Siano, “Demand response and smart grids-A 

survey,” Renewable Sustainable Energy Rev., vol. 30, pp. 

461-478, 2014. 

[5]  H. Holttinen, A. Tuohy, M. Milligan, E. Lannoye, V. Silva, 

S. Muller, “The flexibility workout: managing variable 

resources and assessing the need for power system 

modification,” IEEE Power Energy Mag., vol. 11, no. 6, 

pp. 53-62, 2013.   

[6] G. Papaefthymiou, K. Grave, K. Dragoon, “Flexibility 

options in electricity systems,” 2014. Report. Available 

at: http://www.ecofys.com/en/pub-lication/ flexibility-

options-in-electricity-systems/.       

[7] K. Afshar, A. S. Gazafroudi, “Application of stochastic 

programming to determine operating reserves with 

considering wind and load uncertainties,” J. Oper. Autom. 

Power Eng., vol. 1, no, 2, pp. 96-109, 2013. 

[8] K. Dietrich, J. M. Latorre, L. Olmos, A. Ramos, “Demand 

response in an isolated system with high wind integration,” 

IEEE Trans. Power Syst., vol. 27, no. 1, pp. 20-29, 2012.  

[9] A. Keane, A. Tuohy, P. Meibom, E. Denny, D. Flynn, A. 

Mullane, M.  O'Malley, “Demand side resource operation 

on the Irish power system with high wind power 

penetration,” Energy Policy, vol. 39, no. 5, pp. 2925-2934, 

2011.  

[10] M. Parvani, M. Fotuhi-Firuzabad, “Integrating load 

reduction into wholesale energy market with application 

to wind power integration,” IEEE Syst. J., vol. 6, no. 1, 

pp. 35-45, 2012. 

[11]  A. Yousefi, H. C. Iu, T. Fernand, H. Trinh, “An approach 

for wind power integration using demand side resources,” 

IEEE Trans. Sustainable Energy, vol. 4, no. 4, pp. 917-

924, 2013. 

[12]  H. Falsafi, A. Zakariazadeh, S. Jadid, “The role of 

demand response in single and multi-objective wind-

thermal generation scheduling: A stochastic programm-

ing,” Energy, vol. 64, pp. 853-867, 2014. 

[13] E. Heydarian-Forushani, M.P. Moghaddam, M.K. 

Sheikh-El-Eslami, M. Shafie-khah, J.P.S. Catalao, “A 

stochastic framework for the grid integration of wind 

power using flexible load approach,” Energy Convers. 

Manage., vol. 88, pp. 985-998, 2014. 

[14] CAES dispatch modeling. Available online: 

http://www.smartgrid.gov/sites/default/files/doc/files/Exh

%2013.13%20Energy%20Market%20Report%20CES%

20Part%203.pdf. 

[15]  T. Das, V. Krishnan, J. D. McCalley, “Assessing the 

benefits and economics of bulk energy storage 

technologies in the power grid,” Appl. Energy, vol. 139, 

no. 1, pp. 104-118, 2015. 

[16]  D. Pozo, J. Contreras, EE. Sauma, “Unit commitment 

with ideal and generic energy storage units,” IEEE Trans.  

Power Syst., vol. 29, no. 6, pp. 2974-2984, 2014.  

[17] M. Shafie-khah, M. P. Moghaddam, M. K. Sheikh-El-

Eslami, J. P. S. Catalao, “Optimised performance of a 

plug-in electric vehicle aggregator in energy and reserve 

markets”, Energy Convers. Manage., vol. 97, pp. 393-408, 

2015. 

[18] A. El-Zonkoly, “Intelligent energy management of 

optimally located renewable energy systems 

incorporating PHEV”, Energy Convers. Manage., vol. 84, 

pp. 427-435, 2014.  

[19]  P. Pinson, H. Madsen, “Benefits and challenges of 

electrical demand response: A critical 

review,” Renewable Sustainable Energy Rev., vol. 39, pp. 

686-699, 2014. 

http://www.ecofys.com/en/pub-lication/
http://www.smartgrid.gov/sites/


Journal of Operation and Automation in Power Engineering, Vol. 4, No. 2, Dec. 2016                                                                    116 

[20] J. Aghaei, M. I. Alizadeh, “Demand response in smart 

electricity grids equipped with renewable energy sources: 

A review,” Renewable Sustainable Energy Rev., vol. 18, 

pp. 64-72, 2013. 

[21]  M. Y. Suberu, M. W. Mustafa, N. Bashir, “Energy storage 

systems for renewable energy power sector integration 

and mitigation of intermittency,” Renewable Sustainable 

Energy Rev., vol. 35, pp. 499-514, 2014. 

[22]  H. Zhao, Q. Wu, S. Hu, H. Xu, C. N. Rasmussen, “Review 

of energy storage system for wind power integration 

support,” Appl. Energy, vol. 137, pp. 545-553, 2015. 

[23]  H. A. Aalami, M. P. Moghaddam, G. R. Yousefi, 

“Modeling and prioritizing demand response programs in 

power markets,” Electr. Power Syst. Res., vol. 80, no. 4, 

pp. 426-435, 2010. 

[24] H. A. Aalami, M. P. Moghaddam, G. R. Yousefi, 

“Demand response modelling considering interruptib-

le/curtailable loads and capacity market programs,” Appl. 

Energy, vol. 87, no. 1, pp. 243-250, 2010.    

[25] H. A. Aalami, M. P. Moghaddam, G. R. Yousefi, 

“Evaluation of nonlinear models for time-based rates 

demand response programs,” Int. J. Electric. Power 

Energy Syst., vol. 65, pp. 282-290, 2015. 

[26] M. Nikzad, B. Mozafari, M. Bashirvand, S. Solaymani, A. 

M. Ranjbar, “Designing time-of-use program based on 

stochastic security constrained unit commitment 

considering reliability index”, Energy, vol. 41, no. 1, pp. 

541-548, 2012.  

[27] A. Abdollahi, M. P. Moghaddam, M. Rashidinejad, M. K. 

Sheikh-El-Eslami, “Investigation of economic and 

environmental-driven demand response measures 

incorporating UC,” IEEE Trans. Smart Grid, vol. 3, no. 1, 

pp. 12-25, 2012. 

[28]  M. Parvania, M. Fotuhi-Firuzabad, M. Shahidehpour, 

“Assessing impact of demand response in emission-

constrained environments,” Proc. of the IEEE Power and 

Energy Society General Meeting, pp. 1-6, 2011. 

[29]  The IEEE reliability test system-1996. IEEE Trans. 

Power Syst., vol. 14, pp. 1010-1020, 1999. 

[30]  H. A. Aalami, S. Nojavan, “Energy storage system and 

demand response program effects on stochastic energy 

procurement of large consumers considering renewable 

generation,” IET Gener. Transm. Distrib., vol. 10, no. 1, 

pp. 107-114, 2016. 

 

 

 

 

 

 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LyovnIEAAAAJ&citation_for_view=LyovnIEAAAAJ:0EnyYjriUFMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LyovnIEAAAAJ&citation_for_view=LyovnIEAAAAJ:0EnyYjriUFMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LyovnIEAAAAJ&citation_for_view=LyovnIEAAAAJ:0EnyYjriUFMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=LyovnIEAAAAJ&citation_for_view=LyovnIEAAAAJ:0EnyYjriUFMC

