
Journal of Engineering Science and Technology 
Vol. 13, No. 8 (2018) 2299 - 2317 
© School of Engineering, Taylor’s University 
 

2299 

AN ENHANCED SCHEDULING APPROACH WITH CLOUDLET 
MIGRATIONS FOR RESOURCE INTENSIVE APPLICATIONS  

NEELAM PANWAR1,*, SARITA NEGI2, MANMOHAN S. RAUTHAN1, 
MAYANK AGGARWAL3, PRAGYA JAIN4 

1School of Engineering & Technology, HNB Garhwal University 

Srinagar Garhwal Uttarakhand, India 
2Computer Science and Engineering, Uttarakhand Technical University,  

Dehradun, Uttarakahd,India 
3GurukulKangri University, Haridwar, Uttarakhand, India 

4Computer Services Centre, IIT Delhi, India 

*Corresponding Author: neelam.panwar001@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

Cloud computing is one of the most advanced technologies to present 

computerized generation. Scheduling plays a major role in it. The connectivity of 

Virtual Machines (VM) to schedule the assigned tasks (cloudlet) is a most 

attractive field to research. This paper introduces a confined Cloudlet Migration 

based scheduling algorithm using Enhanced-First Come First Serve (CM-

eFCFS). The objective of this work is to minimize the makespan, cost and to 

optimize the resource utilization. The proposed work has been simulated in the 

CloudSim toolkit package. The results have been compared with pre-existing 

scheduling algorithms with same experimental configuration. Important 

parameters like execution time, completion time, cost, makespan and utilization 

of resources are compared to measure the performance of the proposed algorithm. 

Extensive simulation results prove that introduced work has better results than 

existing approaches. 99.8% resource utilization has been achieved by CM-

eFCFS. Plotted graphs and calculated values show that the proposed algorithm is 

very effective for cloudlet scheduling. 

Keywords: Cloud computing, Cloudlet, Cloudlet migration, Resource utilization, 

Virtual machine. 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201391276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:neelam.panwar001@gmail.com


2300       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

1.  Introduction 

Cloud computing technology is emerging as standard advanced computer 

technology where the network functioning knowledge is no longer needed for the 

user. This computing paradigm contributes delivering application based services 

and resources over the web-shared pool as per the user demand. The cloud 

computing characteristics include on-demand services, broad network access, 

resources pooling, measured service, reliability, etc. The user utilizes different 

cloud service models, i.e., Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS) and Software as a Service (SaaS). IaaS especially provides the storage 

resources (e.g., Amazon Elastic Compute Cloud, GoGrid, Nimbula, etc.) whereas 

PaaS allows users to develop the application in the cloud (e.g., Google App Engine, 

Github, Gigaspaces, etc.) and lastly, SaaS enhances user services by providing 

complete software application (e.g., Google App, Facebook, Linkedin, Slideshare, 

etc.). To deploy these cloud service, cloud computing categorizes deployment 

models into Public, Private, Hybrid and Community cloud. Each deployment model 

handover the cloud services to multi-user, single-user and specific-user. Figure 1 

cites the cloud computing architecture with cloud services and deployment model. 

The major components of the cloud are Application, Client, Infrastructure, 

Platform, Service, Storage and Processing Power. 

 

Fig. 1. Cloud computing service model. 

The popularity of cloud computing enhances by taking care of better resource 

utilization, average cost, load balancing factor, completion time, execution time, 

average power consumption, network latency, bandwidth, average energy 

consumption, makespan and response time, etc. Apart from the various outperform 

services delivered by cloud technology, Virtualization; Load Balancing; Fault 

Tolerance; Security and Scheduling (VM and Cloudlets) are the major issues to be 

concerned. There are two main areas to be scheduled, i.e., allocation of the 

processor to VM, which is done by VM scheduler and submission of cloudlet to 

VM, which is done by cloudlet scheduler. Scheduling of cloudlets is one of the 

major challenges in cloud technology to achieve highly efficient computations 

among the machines [1-3].  



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2301 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

The procedure of searching the needed resources is the same as the procedure 

of searching the various VMs, as the needed resources together form VMs. Users 

send requests to the datacenter to execute their cloudlets. A cloudlet may involve 

entering and processing data, accessing software or some storage functions. 

Cloudlets are submitted to the cloudlet scheduler. It is the responsibility of cloudlet 

scheduler to submit cloudlet to appropriate VM. Then the mapping between 

cloudlet and required resources is performed. The cloudlet must execute and a reply 

is conveyed to the user. Cloudlets can either be independent, dependent or the 

combination of both. The selections of types of Cloudlets are vital to introduce an 

efficient Cloudlet scheduler [4]. Research on aperiodic and sporadic types of 

Cloudlets in a cloud environment has been introduced [5]. 

Cloudlet scheduling in a cloud environment can be defined as a process of 

choosing appropriate resources offered for performing cloudlets execution. These 

resources are used to assign cloudlets to the VMs in order to minimize makespan 

and improve resource utilization. Different scheduling algorithms are proposed in 

[3, 6-13]. These algorithms consider different parameters including makespan 

(finish time), priority vector, comparison matrix, load balancing, cost and 

bandwidth. In scheduling algorithm, sorting of cloudlets is performed by assigning 

priority to each cloudlet where priorities are assigned on the basis of numerous 

factors such as cost and deadline. Cloudlets are selected on the basis of their 

priorities and then allocated to the offered resources and VMs, which satisfy 

objective function defined by cloudlets [14]. 

In this work, a new cloudlet scheduling method is introduced and its 

performance has been compared with some pre-existing scheduling algorithms 

(FCFS, SJF, RR, and Min-Min). This paper demonstrates the cloudlet scheduling 

by using a method called cloudlet migration. Some cloudlet migration and VM 

migration techniques are introduced in [15-18]. The results clearly prove that the 

proposed algorithm gives better result in terms of execution time, processing cost 

and utilization of resources. The primary objectives of this paper are as follows: 

 Formulation of a method to schedule the cloudlets in a cloud environment to 

reduce the makespan (overall time of execution), cost (processing) and 

increase the resource utilization. 

 Design of CM-eFCFS algorithm (Enhanced- First Come First Serve with Cloudlet 

Migration) for cloudlet scheduling based on the cloudlet migration method. 

The entire work can be described as the development and implementation of a 

new scheduling algorithm CM-e FCFS, which comprises of a concept called 

“Cloudlet Migration”. Previously proposed scheduling algorithms were totally 

based on the type of cloudlets assigned to the VMs but this work focuses on the 

cloudlet migration. Cloudlets are assigned to each VM and the VM, which executes 

its assigned cloudlets early, can lead to the next partially executed cloudlet to be 

migrated, which is assigned to the slower VM in a pre-emptive way. 

This paper is systematized as follows. Section 1 introduces the cloud computing 

model. Section 2 explores definitions and literature review related to the proposed 

work. Section 3 provides the system model for the proposed algorithm. Section 4 

provides research implementation of designed algorithms. Simulation results and 

their comparison are elaborated in section 5. In section 6, we conclude our 

contributions with future scopes to the work. 



2302       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

2.  Definition and Literature Review 

In cloud, scheduling plays a significant role to increase reliability, efficiency and 

flexibility of the system. In a decade, there has been an increasing interest in cloudlet 

scheduling over cloud computing. It has been analysed that the scheduling algorithms 

can be categorized on the basis of objective functions. Objective functions can be 

either application-centric or resource centric. In application-centric, an algorithm 

beneficial for the user is designed to reduce the execution span and cost. In the case 

of resource-centric, an algorithm beneficial for service provider designed to 

maximize resource utilization and profit. Several cloud-based task scheduling 

schemes have been proposed [19] and such related schemes are reviewed in this 

section. The performances of each algorithm measured with the specified metrics to 

describe the processing unit in the resource system are as follows: 

 Makespan: The complete time that passes from the beginning of the 

scheduling process to the end. To maintain the efficiency of the algorithm 

makespan should always as low as possible. 

 Cost: From the user’s perspective the computing cost should be less. Service 

providers spend a huge amount of money in network, storage and compute, 

hence the effective scheduling algorithm must take care of the cost. 

 Execution time: The precise time required to execute cloudlet is known as the 

execution time. An appropriate scheduling algorithm is aimed to diminish the 

execution time. 

 Completion time: The time in which the entire execution of the cloudlet is 

completed is known as completion time. It comprises the delay caused by the 

cloud environment and the total execution time. Many scheduling algorithms 

aim to reduce completion time for the better performance.  

 Resource utilization: The average utilization of resources is defined as the 

percentage of the total time for which the processor is performing some 

operation and is not idle. 

 Delay time: The time duration by which the execution of a cloudlet is delayed 

due to cloudlet migration. 

From the decades, the basic task scheduling algorithms: First Come First Serve 

(FCFS), Shortest Job First (SJF) and Round Robin (RR) have been focused to 

enhance the advancement of scheduling. In this paper, the proposed scheduling 

algorithm is compared with these basic algorithms to find out the benefit of the 

proposed method. FCFS works on the First Come First Serve principle, where the 

cloudlet that arrives first will be assigned to VM first. Although, the algorithm is 

simple to implement but not appropriate for heavy (lengthy) cloudlets as it leads to 

higher makespan. SJF takes up the cloudlet with the shortest length first and assigns 

it to VM.SJF leads to the higher waiting time for long cloudlets if short cloudlets keep 

coming. RR focuses on assigning cloudlets to each VM equally. Using this algorithm, 

the Scheduler allocates one cloudlet to a VM in a cyclic manner. RR works on time 

slice manner so it uses Time-Shared Cloudlet Scheduler. The introduced work has 

overcome the problems and shortcomings of these basic algorithms. 

Tawfeek et al. [3] and Dorigo and Blum [20] introduced an Ant Colony 

Optimization based algorithm (ACO) that exhibits food searching behaviour of ant 

colonies. An army of ants uses pheromone chemical to communicate while 



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2303 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

searching for food. The ACO algorithm initializes pheromone, chooses VM for 

next cloudlet and updates pheromone. The scheduling problem symbolized using a 

graph G = (N, E), where N denotes VMs and cloudlets and E denotes the 

connections between the number of cloudlets and VMs. It was assumed that 

cloudlets were independent of each other, i.e., the execution of one cloudlet has no 

effect on the execution of other cloudlets. Also, cloudlets were considered non-pre-

emptive and non-interruptible. 

Zaa et al. [16] introduced a lightweight task migration technique where 

migration is performed between the mobile device and cloud node. In this process, 

mobile application uses some resources from the cloud. The inputs are provided by 

a mobile device as a remote control. Two different cloud servers are used. When 

the input is provided to the mobile device, it looks for resources to execute a 

particular task. If resources are available, the task is executed on the same cloud, if 

the resources are not available then it migrates that task to another cloud for further 

execution resulting into load balancing.  

Lin et al. [8] introduced Bandwidth Aware Divisible Task Scheduling (BATS). 

Under the bounded multi-port model [9], a nonlinear programming model was 

introduced. The model obtains enhanced allocation scheme to define an appropriate 

set of cloudlets allocated to each resource. On the ground of the enhanced scheme 

of allocation, BATS algorithm was proposed. The algorithm allocates the suitable 

number of cloudlets to all resources according to their CPU capacity, memory, 

network bandwidth and space.  

Santhosh and Manjaiah [21] worked to introduce Improved Max-Min based 

algorithm. In the algorithm, an exceptional variation to the improved max-min [22] 

algorithm was performed, where a task is selected whose CPU time is larger than the 

average execution time. The task allocated to the resource, which completes the task in 

minimum time. The algorithm overcomes some limitations of Max-Min. The foremost 

drawback of the Max-min was that the execution of the smaller jobs was delayed and 

postponed indefinitely, which has been taken care of the proposed algorithm. 

Chawla and Bhonsle [23] proposed dynamically optimized cost based task-

scheduling algorithms, which were based on the priority of user tasks. Greedy 

scheduling from user’s perspective results in wastage of resources whereas from 

service provider’s perspective may result in dissatisfaction of user on QoS 

constraints. The proposed algorithm adds up the two necessities, the first one, cost-

based task scheduling which was advantageous to the user and next dynamically 

improved resource allocation approach to the service provider. The 

computation/communication ratio and utilization of accessible resources are well 

optimized through an assemblage of the user tasks prior resource allocation.  

Chen et al. [24] proposed User-Priority Guided Load-Balanced Min-Min 

Algorithm (PA-LBIMM). The algorithm was introduced to provide satisfactory 

utilization of resources provided by the cloud services. User priority was not 

considered by Yu and Yu [10]. The biggest disadvantage of [10] was it did not 

consider load balancing. An improved load balanced algorithm was further 

introduced which is grounded on the Min-Min algorithm and increases the 

utilization of resources by shifting some load from heavy loaded resources to 

resources having zero load, i.e., LBIMM, but it does not care about the user priority 

necessity of cloudlets. For this reason, the concept of user priority was considered 



2304       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

in User-priority aware load balance improved Min-Min (PA-LBIMM) algorithm, 

so that user’s demand could be fulfilled more completely and satisfactorily. 

Priyadarsini and Arockiam [25] introduced the Min-Min Algorithm, in which 

the least possible completion time is evaluated for all cloudlets on each resource. 

The cloudlet with least possible completion time is picked and assigned to a 

resource that provides it. The recently mapped cloudlet is detached from cloudlet-

list and this procedure is repeated until entire cloudlet list is mapped to resources. 

Min-Min is an unsophisticated and speedy algorithm, which accomplished good 

performance. Min-Min schedules “best case”, cloudlets first producing good 

schedules, but allocating small cloudlet first is its disadvantage. This Min-Min 

approach has been modified in this paper by using enhanced FCFS together with it. 

Awad et al. [26] introduced a mathematical model, which is based on Load 

Balancing Mutation a Particle Swarm Optimization (LBMPSO) based scheduling 

and allocation. The scheduling takes care of makespan, execution time, 

transmission time, round trip time, reliability, transmission cost and load balancing 

between VMand cloudlets. LBMPSO considers the resource availability and 

reschedules cloudlets that failure to allocate hence, can play a major role in 

accomplishing reliability. 

Hassan Ali et al. [27] worked to introduce the Grouped Tasks Scheduling (GTS) 

algorithm that applies QoS to schedule the cloudlets in the cloud-computing 

environment in order to fulfil user’s requirement. GTS algorithm categorizes 

cloudlets into five groups; each group has cloudlets having similar characteristics 

(cloudlet type, length of cloudlet, latency and user type). By adding cloudlets to the 

accurate group, it starts scheduling these cloudlets into available resources. 

Scheduling is performed in two stages: in the first stage, it is decided which group 

will be scheduled first. Which cloudlet inside the chosen group will be scheduled, 

is decided in the second stage and depends on the cloudlet size. 

 

3.  System Model and Proposed Work 

The system model comprises a set of VMs=(VM1, VM2,.VMj) in each host of a 

datacentre. A number of cloudlets=(C1, C2, Ci) are assigned to each VM 

respectively to perform the execution of cloudlets. Each VM runs on its own 

resources in parallel and independently. Figure 2 depicts the system architectural 

model of the simulation. The simulation work has been performed under 

CloudSimtool, which includes various cloud environment configurations such as 

Datacenter Characteristics: architecture, operating system, virtual machine monitor 

(VMM), host-list, time zone, CPU cost, cost per memory, cost per storage, and cost 

per bandwidth. Host Characteristics: RAM, bandwidth, storage, number of 

processing elements, MIPS, and VM scheduler (space-shared and time-shared). 

VM Characteristics: RAM, bandwidth, storage, number of processing elements, 

MIPS, and cloudlet scheduler (space-shared and time-shared). Cloudlet 

Characteristics: Length, input file size, output file size, number of required 

processing elements, utilization model. Datacenter-Broker Methods: VM creation, 

Cloudlet submission to VM, and VM destruction. 



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2305 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

CLOUD INFORMATION SERVICES

DataCenter

HOST HOST

VM1....VMi VM1....VMi

-----

Datacenter

Characteristics
DatacenterBroker

Characteristics

DatacenterBroker

SubmitCloudletList()

SubmitVmList()

CreateVmInDatacenter()

bindCloudletToVm()

processEvent()

processCloudletReturn()

Cloudlet1 Cloudlet2 Cloudleti
------------------------

 

Fig. 2. System architecture. 

3.1.  Algorithm description for proposed approach 

Cloudlets are assigned to VMs in the same order as they arrive in the system. 

ECT of first cloudlet is calculated for each VM and that cloudlet is assigned to 

VM, which gives minimum ECT. This procedure is repeated for rest of the 

cloudlets. Figure 3 shows the basic working mechanism of the algorithm, which 

is explained as: 

The ECTij is calculated using RTj, which is the clock time of the system 

(CLKsys=0.1 ms) and EETij. Equations (1) to (3) formulate the RTj, EETij and ECTij 

respectively [25]. 

𝑅𝑇𝑗 =  𝐶𝐿𝐾𝑠𝑦𝑠                          (1) 

𝐸𝐸𝑇𝑖𝑗 =
𝐿𝑐𝑖

∑ 𝑀𝐼𝑃𝑆𝑘

𝑃𝐸𝑗

𝑘=1

⁄                  (2) 

𝐸𝐶𝑇𝑖𝑗 = 𝑅𝑇𝑗 + 𝐸𝐸𝑇𝑖𝑗                  (3) 

where j=1, 2, 3,…and i=1, 2, 3,…. symbolized the set of VMs and number of 

cloudlets respectively. The calculated values of EETij with four VMs shown in Fig. 

4 where each cloudlet with subsequent length ranges from 2000 to 5000 (Million 

Instructions) is presented. Figure 5 shows the EETij with eight number of VMs. 

These outputs are used to compute ECTij in order to achieve ERCTi, which is 

calculated using Eq. (4). 

𝐸𝑅𝐶𝑇𝑖 = 𝑀𝑖𝑛[𝐸𝐶𝑇𝑖1, 𝐸𝐶𝑇𝑖2, 𝐸𝐶𝑇𝑖3 … … 𝐸𝐶𝑇𝑖𝑗]              (4) 

Now, Ci is assigned to VMie and hence ready time of VMie is updated using Eq. (5). 



2306       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

𝑅𝑇𝑉𝑀𝑖𝑒
= 𝐸𝑅𝐶𝑇𝑖                  (5) 

This procedure is repeated until all the cloudlets are mapped to VMs, then all 

VMs start processing cloudlets. The VM, which processes its assigned cloudlets 

early, can make any partially executed or unprocessed cloudlet to be migrated, 

which is assigned to the slower VM in a pre-emptive way. 

START

Compute Ready time of each VM

CloudLet List
Empty?

Select first Cloudlet in CloudletList, compute
Expected Execution Time and Expected

Completion Time on each  VM.

       NO

      YES

Assign Cloudlet to the VM that gives Earliest
Completion Time.

Remove selected Cloudlet from CloudletList.

Update Ready Time of VM.

END

 

Fig. 3. Flow chart of CM-eFCFS. 

 

 



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2307 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

 

 

Fig. 4. Calculated expected execution time for 4 VMs. 

 

Fig. 5. Calculated expected execution time for 8 VMs. 

3.2.  Cloudlet migration 

The cloudlets are assigned to the number of VMs. The VM has the highest capacity 

(MIPS of processing element) [14] executes its assigned cloudlets early, and hence 

a cloudlet which is partially executed or waiting for execution on any slower VM 

can be migrated to the faster VM in a pre-emptive way. The Expected completion 

time of cloudlet after migration can be evaluated by Eq. (6). 

𝐸𝐶𝑇𝑚 = 𝑅𝑇𝑗 +
𝑅𝐿𝑚

∑ 𝑀𝐼𝑃𝑆𝑘

𝑃𝐸𝑗

𝑘=1

⁄                 (6) 

where CLKsys is the current time of the system, RLm is the remaining length to be 

executed of the cloudlet, which has to be migrated. Figure 6 shows the cloudlet 



2308       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

migration from lowest processing VM to the highest processing VM. The algorithm 

of CM-eFCFS and cloudlet migration is showing in below section. 

 

Fig. 6. Cloudlet migration. 

3.3.  Makespan 

The complete time that elapsed from the starting of the scheduling process until the 

end is called makespan and is calculated as: 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max(𝐶𝑇𝑗)                 𝑗 ∈ 𝑉𝑀𝑠               (7) 

The jth VM that has maximum completion time consider as makespan. 

3.4.  Delay time of migrated cloudlet 

The delay time can be evaluated as: 

𝐷𝑒𝑙𝑎𝑦 𝑡𝑖𝑚𝑒 =
𝑆𝑖𝑧𝑒𝑖

𝐵𝑊𝑗
=  𝑡2 –  𝑡1                (8) 

where t2 is the time when cloudlet starts on the destination VM and t1 is the time when 

cloudlet execution is stopped on slower VM, Sizei is the remaining length of Ci to be 

executed and BWj is the bandwidth of VMj. The delay time of each migrated cloudlet 

for four VMs and six cloudlets as shown in Table 1. The table depicts that cloudlets 

0,1,2,3 and 4 does not perform any migration hence no delay. But in case of cloudlet 

5, Sizei=339.52 and BWj =1000. Hence using Eq. (8), the delay calculated 0.339 ms. 

3.5. Processing cost 

The processing cost is the cost of processing in the current resource. To minimize 

the processing cost is a major problem in cloud computing environment. The 

overall processing cost of an algorithm can be evaluated as: 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = ∑ 𝐶𝑜𝑠𝑡 ∗𝑚
𝑗=1 𝐸𝑉𝑀𝑗               (9) 

where m symbolizes the number of VMs. 



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2309 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

Table 1. Calculated delay time of migrated cloudlet. 

Cloudlet 

Id 

Length Source 

VM Id 

Destination 

VM Id 

Size BWj Delay 

(ms) 

0 2000 1 No migration - - No 

1 2000 0 No migration - - No 

2 2000 2 No migration - - No 

3 1980 3 No migration - - No 

4 1960 1 No migration - - No 

5 1940 0 VM 1 339.52 1000 0.339 

 

ALGORITHM 1: CM-eFCFS Scheduler 

(1) Identify the Ready Time of VMs, when cloudlets are submitted to 

broker for mapping. 

(a) For j from 0 by 1 to get Vms Created List. Size-1 do  

 {Set Ready Time of Vm [j] = CloudSim.Clock} 

 

(2) Identify the Earliest Completion time of each cloudlet by 

calculating the Expected Execution Time and Expected Completion 

Time of cloudlets on each VM. Assign cloudlet to VM which gives 

Earliest Completion time. 

For i from 0 by 1 to get CloudletList. Size-1 do  { 

For j from 1 by 1 to get Vms Created List. Size-1 do { 

(a) Set Expected Execution Time ofCi on VMj=Length of Ci/ 

capacity of VMj 

(b) Set Expected Completion Timeo f Ci on VMj= Ready Time of 

Vm [j] + Expected Execution Time of Ci on VMj 

(c) To find Earliest Completion Time of Ci: 

Set Earliest Completion Time of Ci = 0 

If (j equals 1) 

Set Earliest Completion Time of Ci = Expected Completion 

Time of Ci on VM1 

End If 

If (Expected Completion Time of Ci on VMj <Earliest 

Completion Time of Ci) 

Set Earliest Completion Time of Ci= Expected Completion 

Time of Ci on VMj 

Set vmid = j 

End If } 

Set vm = get Vms created list.get (vmid) 

Set Cloudlet.set VmId (vm.getId) 

Send Now(get Vms to datacenters Map.get (vm.getId), 

CloudSim Tags. CLOUDLET_SUBMIT, Cloudlet) 

 //Assign Cloudlet to the VM that gives Earliest Completion  

 Time for that cloudle 

 Increase cloudlets Submitted List by 1 

Update Ready Time of Vm [vmid] = Earliest Completion Time 

of Ci } 

3. Remove all the assigned Cloudlets from the cloudletList. 



2310       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

 

3.6.  Resource utilization 

One of the major challenges in a cloud environment is to achieve high resource 

utilization. It is the percentage of total time for which the processor performs some 

operation and is not idle. The average utilization of an algorithm can be evaluated 

as [28]: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
∑ 𝐶𝑇𝑗𝑗∈𝑉𝑀𝑠

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠
⁄           (10) 

4.  Implementation 

The implementation is sub-categorized into two sections. The first section shows 

the configuration details of the simulation environment, whereas the second section 

describes the obtained results using CloudSim simulator. 

ALGORITHM 2: Cloudlet Migration 

Identify the VM which has highest capacity. 

Set highest Capacityvm = get Vm List. get(0).get Mips 

(a) Set vm Index = 0 

(b) For vm Number from 1 by 1 to total number of VMs do { 

If (get VmList.get (vmNumber).get Mips greater than highest Capacity vm) 

Set highest Capacityvm = get Vm List.get (vmNumber).getMips 

Set vm Index = j 

End If } 

(c) Set Vm fastest VM = get Vm List.get(VmIndex) 

(Identify, if VM with highest capacity has executed all the cloudlets assigned to 

it. 

If (fastest VM.get Cloudlet Scheduler.running cloudlets = 0 ) 

Find Cloudlet to be migrated and store related data in an array.  

Set cloudlet to migrate = 0 

(a) For Cloudlet cloudlet in get Cloudlet Submitted List do { 

If (cloudlet. Get Cloudlet Status = (QUEUED or INEXEC) and cloudlet to 

migrate equals 0) 

Set old VmId = cloudlet.get Vm Id 

End If } 

(b) Set cloudlet To Migrate = cloudlet.get Cloudlet Id 

(c) Set User Id = cloudlet.get User Id 

(d) Set intarr [] = new int [5] 

(e) Set arr [0] = cloudlet to migrate 

(f) Set arr [1] = UserId  

(g) Set arr [2] = old VmId 

(h) Set arr [3] = fastest VM getId 

(i) Set arr [4] = datacentre Id 

Migrate Cloudlet to new VM. 

Send now (datacenterId, CloudSim Tags.CLOUDLET_MOVE, arr) 

Start cloudlet execution on new VM with highest capacity. 



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2311 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

CloudSim simulation environment  

The CloudSim [29] toolkit has been used to simulate the proposed scheduling 

algorithm. The overview of cloud setup configuration for four and eight number of 

VMs is shown in Table 2. 

Table 2. Cloud setup configuration details. 

Tool configuration No. of VM=4 No. of VM=8 

System architecture: X86 X86 

Operating system: Linux Linux 

VMM: Xen Xen 

Host description 

RAM: 2048 (MB) 4096(MB) 

Storage: 1000000 1000000 

Bandwidth: 10000 10000 

No. of PE: 4 8 

VM description 

RAM: 512 512 

Size (amount of storage): 10000 (MB) 10000 

MIPS: 1000 1000 

1100 1100 

700 700 

600 600 

- 900 

- 1200 

- 1300 

- 950 

 

5.  Results and Discussion 

This section elaborates the comparison of CM-eFCFS with other scheduling 

algorithms. The comparative analysis has been done with four pre-existing 

cloudlet-scheduling algorithms under the same cloud computing system 

configuration. The four pre-existing scheduling algorithms are FCFS, SJF, RR and 

Min-Min. For the purpose of analysing the performance of the proposed algorithm, 

the work is simulated for two different scenarios considering three vital parameters, 

i.e., Makespan, Resource Utilization and Cost. 

 

5.1.  Comparison of makespan 

In the first scenario, four VMs are taken, whereas in the second scenario, eight VMs 

are taken and comparisons are performed for 600 to 1000 number of cloudlets. The 

makespan is calculated using Eq. (7). Figure 7 illustrates the makespan of 

algorithms having four VMs with a different range of cloudlet length. It can be 

analysed that with an increased set of cloudlets CM-eFCFS achieves less 

makespan. Comparison of akespan using eight VMs is shown in Fig. 8 and it is 

clearly depicted that CM-eFCFS is more efficient than other algorithms. 



2312       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

 

Fig. 7. Calculated makespan for four number of VMs by algorithms. 

 

Fig. 8. Calculated makespan for eight number of VMs by algorithms. 

5.2.  Comparison of processing cost 

Figure 9 illustrates the processing cost of algorithms with four number of VMs, 

which is derived from Eq. (9) where the cost of using the current resource is taken 

as 0.2 per ms. Figure 10 shows the processing cost for eight number of VMs. The 

cost of processing increases linearly with respect to an increase in the number of 

cloudlets. It can be observed that CM-eFCFS achieves less processing cost than the 

FCFS, SJF, RR and Min-Min. 

0

50

100

150

200

250

300

350

400

450

500

600 700 800 900 1000

T
im

e 
(m

s)

Number of Cloudlets

FCFS

SJF

RR

Min-Min

CM-eFCFS



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2313 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

 

Fig. 9. Calculated processing cost for four numbers of VMs by algorithms. 

 

Fig. 10. Calculated processing cost for eight numbers of VMs by algorithms. 

5.3.  Comparison of resource utilization 

The utilization of resources must be maximum so that a maximum number of 

users can be served in a better way. The average utilization of resources is 

calculated using Eq. (10).Here we compare resource utilization performance of 

the CM-eFCFS algorithm with Min-Min, RR, SJF and FCFS algorithm. High 

resource utilization reduces wastage of cloud resources. This metric also shows 

the efficiency of the system to utilize the allocation of cloud resources such as 

CPU, memory, and bandwidth. Figure 11 shows the comparative analysis of 

resource utilization with respect to time. The figure depicts that resource 

wastage in the CM-eFCFS method is low, i.e., resource utilization is high due 

0

50

100

150

200

250

300

600 700 800 900 1000

C
o

st
 (

C
P

U
 P

ro
ce

ss
in

g
)

Number of Cloudlets

FCFS

SJF

RR

Min-Min

CM-

eFCFS

1
2

0
7

7
.5

5

2
1

3
6

3
.4

3

3
3

2
8

4
.5

4

1
2

0
5

5
.7

1

2
1

3
0

0
.2

9

3
3

2
0

0
.0

1

1
2

0
7

5
.3

3

2
1

3
6

2
.6

1

3
3

2
8

1
.3

4

1
1

3
6

5
.3

1 2
0

1
2

5
.0

8

3
1

3
3

1
.7

6

1
1

3
5

4
.4

1 2
0

1
1

8
.4

1

3
1

3
2

0
.6

6

6 0 0 8 0 0 1 0 0 0

C
o

st
 (

C
P

U
 P

ro
ce

ss
in

g
)

Number of Cloudlets

FCFS

SJF

RR

Min-Min

CM-eFCFS



2314       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

to efficient cloudlet assignment process. Table 3 shows the calculated 

percentage of the duration for which the resources are busy. The table shows 

that the resources in CM-eFCFS are less ideal, i.e., resource utilization is high. 

 

Fig. 11. Illustration of calculated resource utilization by algorithms. 

Hence, these simulation results show that CM-eFCFS is better than other 

algorithms. Since load balancing, cloudlet assignment and cloudlet migration 

processes consider resources such as CPU, bandwidth and memory, it is obvious 

that CM-eFCFS method achieves better resource utilization in order to minimize 

resource wastage. 

Table 3. Calculated values for resource utilization by algorithms. 

 FCFS SJF RR MIN-MIN CM-eFCFS 

CT0 (ms) 287.61 280.76 275.54 331.15 327.82 

CT1 (ms) 261.84 258.29 250.03 326.13 327.93 

CT2(ms) 404.51 400.49 392.1 342.86 327.16 

CT3 (ms) 469.09 460.52 456.58 348.69 326.28 

Resource  

utilization (%) 

75.84 74.38 75.2 96.7 99.8 

 

6.  Conclusion 

This paper proposed and formulated a new approach of cloudlet scheduling. 

Cloudlets are arranged and assigned to VM depending on their expected completion 

time. Migration is performed from one VM to another in case a better VM is 

available. The calculation of expected completion time and cloudlet migration gave 

a new algorithm, which is known as CM-eFCFS. The results have shown 

remarkable improvement in Execution time, Execution cost and Resource 

utilization over the traditional scheduling algorithms. The results make CM-eFCFS 

as one of the finest algorithms to be used in cloud computing. The resource 

utilization achieves 99.8 %, which makes the introduced approach most suited to 

cloud computing. In future, we wish to extend introduced work by making the 

approach run on a live machine built by Libvirt and Qemu and also compare CM-

eFCFS with other existing approaches. 



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2315 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

 
 

Nomenclatures 
 

Ci ith Cloudlet  

Cost The processing costing current resource 

CTj Completion time of VMj 

ECTij Expected completion time of Ci on VMj 

ECTm Expected completion time of cloudlet after migration  

to fastest VM 

EETij Expected execution time of Ci on VMj 

ERCTi Earliest completion time of Ci 

EVMj Time taken by VMj to execute all assigned cloudlets 

EVMj Time taken by VMj to execute all assigned cloudlets 

Lci Total length of Ci 

Lci Total length of Ci 

MIPSj Processing speed or capacity of PEj  

(Million Instructions Per Second) 

PEj Number of processing elements allocated to VMj 

RLm Remaining length to be executed of cloudlet 

RTj Ready time of VMj 

VMie VM that gives ERCTi 

VMj jth VM 
 

Abbreviations 

FCFS First Come First Serve 

SJF Shortest Job First 

RR Round Robin 

VM Virtual Machine 

 

References 

1. Li, Q.; Hao, Q.; Xiao, L.; and Li, Z. (2009). Adaptive management of 

virtualized resources in cloud computing using feedback control. Proceedings 

of the IEEE 1st International Conference on Information Science and 

Engineering. Nanjing, China, 99-102. 

2. Parikh, K.; Hawanna, N.; Haleema, P.K.; Jayasubalakshmi, R.; and Iyengar, 

S.N. (2015). Virtual machine allocation policy in cloud computing using 

cloudsim in Java. International Journal of Grid and Distributed Computing, 

8(1), 145-158. 

3. Tawfeek, M.; El-Sisi, A.; Keshk, A.; and Torkey, F. (2015). Cloud task 

scheduling based on ant colony optimization. The International Arab Journal 

of Information Technology, 12(2), 129-137. 

4. Gao, K.; Wang, Q.; and Xi, L. (2014). Reduct algorithm based execution times 

prediction in knowledge discovery cloud computing environment. The 

International Arab Journal of Information Technology, 11(3), 268-275. 

5. Pop, F.; Dobre, C.; Cristea, V.; and Bessis, N. (2013). Scheduling of sporadic 

tasks with deadline constrains in cloud environments. Proceedings of the IEEE 



2316       N. Panwar et al. 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

27th International Conference on Advanced Information Networking and 

Applications (AINA). Barcelona, Spain, 764-771. 

6. Guo, L.; Zhao, S.; Shen, S.; and Jiang, C. (2012). Task scheduling 

optimization in cloud computing based on heuristic algorithm. Journal of 

Networks, 7(3), 547-553. 

7. Yuan, H.; Bi, J.; Tan, W.; Zhou, M.; Li, B.H.; and Li, J. (2017). TTSA: An 

effective scheduling approach for delay bounded tasks in hybrid clouds. IEEE 

Transactions on Cybernetics, 47(11), 3658-3668. 

8. Lin, W.; Liang, C.; Wang, J.Z.; and Buyya, R. (2014). Bandwidth-aware 

divisible task scheduling for cloud computing. Journal of Software: Practice 

and Experience, 44(2), 163-174. 

9. Hong, B.; and Prasanna, V.K. (2004). Distributed adaptive task allocation in 

heterogeneous computing environments to maximize throughput. Proceedings 

of the IEEE 18th International Symposium on Parallel and Distributed 

Processing. Santa Fe, United States of America, 52-60. 

10. Yu, X.; and Yu, X. (2009). A new grid computation-based min-min algorithm. 

Proceedings of the IEEE 6th International Conference on Fuzzy Systems and 

Knowledge Discovery. Tianjin, China, 43-45. 

11. Chen, W.; Xie, G.; Li, R.; Bai, Y.; Fan, C.; and Li, K. (2017). Efficient task 

scheduling for budget constrained parallel applications on heterogeneous cloud 

computing systems. Future Generation Computer Systems, 74(C), 1-11. 

12. Mosleh, M.A.S.; Radhamani, G.; Hazber, M.A.G.; and Hasan, S.H. (2016). 

Adaptive cost-based task scheduling in cloud environment. Article ID. 

8239239. Scientific Programming, 1-9. 

13. Li, Y.; Chen, M.; Dai, W.; and Qiu, M. (2017). Energy optimization with 

dynamic task scheduling mobile cloud computing. IEEE Systems Journal, 

11(1), 96-105. 

14. Radulescu, A.; and van Gemund, A.J.C. (2000). Fast and effective task 

scheduling in heterogeneous systems. Proceedings of the 9th Heterogeneous 

Computing Workshop (HCW 2000). Cancun, Mexico, 229-238. 

15. Tsakalozos, K.; Verroios, V.; Roussopoulos, M.; and Delis, A. (2017). Live 

VM migration under time-constraints in share-nothing IaaS-clouds. IEEE 

Transactions on Parallel and Distributed Systems, 28(8), 2285-2298. 

16. Zaa, M.; Gabhane, J.P.; and Dehankar, A.V. (2014). Task based migration 

using mobile cloud computing. International Journal of Advances in Computer 

Science and Cloud Computing, 2(2), 98-101. 

17. Xie, R.; Wen, Y.; Jia, X.; and Xie, H. (2015). Supporting seamless virtual 

machine migration via named data networking in cloud data center. IEEE 

Transactions on Parallel and Distributed Systems, 26(12), 3485-3497. 

18. Kansal, N.J.; and Chana, I. (2016). Energy-aware virtual machine migration 

for cloud computing - A firefly optimization approach. Journal of Grid 

Computing, 14(2), 327-345. 

19. Panwar, N.; and Rauthan, M.S. (2017). Analysis of various task scheduling 

algorithms in cloud environment: Review. Proceedings of the 7th 



An Enhanced Scheduling Approach with Cloudlet Migrations for . . . . 2317 

 
 
Journal of Engineering Science and Technology           August 2018, Vol. 13(8) 

 

International Conference on Cloud Computing, Data Science & 

Engineering. Noida, India, 255-261. 

20. Dorigo, M.; and Blum, C. (2005). Ant colony optimization theory: A survey. 

Theoretical Computer Science, 344 (2-3), 243-278. 

21. Santhosh, B.; and Manjaiah, D.H. (2014). An improved task scheduling 

algorithm based on max-min for cloud computing. International Journal of 

Innovative Research in Computer and Communication Engineering, 2(2), 84-88. 

22. Elzeki, O.M.; Reshad, M.Z.; and Elsoud, M.A. (2012). Improved max-min 

algorithm in cloud computing. International Journal of Computer 

Applications, 50(12), 22-27. 

23. Chawla, Y.; and Bhonsle, M. (2013). Dynamically optimized cost based task 

scheduling in cloud computing. International Journal of Emerging Trends & 

Technology in Computer Science (IJETTCS), 2(3), 38-42. 

24. Chen, H.; Wang, F.; Helian, N.; and Akanmu, G. (2013). User-priority guided 

min-min scheduling algorithm for load balancing in cloud computing. 

Proceedings of the IEEE National Conference on Parallel Computing 

Technologies (PARCOMPTECH). Bangalore, India, 1-8. 

25. Priyadarsini, R.J.; and Arockiam, L. (2014). Performance evaluation of min-

min and max-min algorithms for job scheduling in federated cloud. 

International Journal of Computer Applications, 99(18), 47-54. 

26. Awad, A.I.; El-Hefnawy, N.A.; and Abdel_kader, H.M. (2015). Enhanced 

particle swarm optimization for task scheduling in cloud computing 

environments. Procedia Computer Science, 65, 920-929. 

27. Hassan Ali, H.G.E.D.; Saroit, I.A.; and Kotb, A.M. (2017). Grouped tasks 

scheduling algorithm based on QoS in cloud computing network. Egyptian 

Informatics Journal, 18(1), 11-19. 

28. Devi, D.C.; and Uthariaraj, V.R. (2016). Load balancing in cloud computing 

environment using improved weighted round robin algorithm for non-

preemptive dependent tasks. Article ID 3896065. The Scientific World 

Journal, 14 pages. 

29. Buyya, R.; Ranjan, R.; and Calheiros, R.N. (2009). Modeling and simulation 

of scalable cloud computing environments and the cloudsim toolkit: 

Challenges and opportunities. Proceedings of the International Conference on 

High Performance Computing and Simulation. Leipzig, Germany, 1-11. 

 


