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Abstract. In 2011, ISTP SB RAS began to deploy a 

routinely operating network of receivers of global navi-

gation satellite system signals. To date, eight permanent 

and one temporal sites in the Siberian region are operat-

ing on a regular basis. These nine sites are equipped 

with 12 receivers. We use nine multi-frequency multi-

system receivers of Javad manufacturer, and three spe-

cialized receivers NovAtel GPStation-6 designed to 

measure ionospheric phase and amplitude scintillations. 

The deployed network allows a wide range of iono-

spheric studies as well as studies of the navigation sys-

tem positioning quality under various heliogeophysical 

conditions. This article presents general information 

about the network, its technical characteristics, and cur-

rent state, as well as the main research problems that 

can be solved using data from the network. 

Keywords: ionosphere, GNSS, GPS, GLONASS, 

Beidou, total electron content, scintillations, Javad, 

NovAtel. 

 

 

 

 

 

INTRODUCTION 

In the last twenty years, global navigation satellite 

systems (GNSS) have become an essential part of hu-

man economic (sensu lato) activity [Hofmann-

Wellenhof et al., 2008]. In the first stage, there were two 

GNSS: the American Global Positioning System (GPS) 

and the Russian GLObal Navigation Satellite System 

(GLONASS). At present, the deployment of Bei-

dou/Compass GNSS in China is nearly completed, more 

than half of the European Galileo system has been put 

into operation, SBAS (Satellite Based Augmentation 

System) satellites are being deployed. 

On the one hand, GNSS have enabled a fairly au-

tonomous accurate navigation, which is widely used 

in construction, agriculture, aviation, cartography, 

and other fields. On the other hand, GNSS provide 

extensive experimental material on ionospheric, at-

mospheric physics, and geodynamics. A large number 

of ionospheric studies have been carried out using 

GNSS dual-frequency phase measurements. The first 

works were done mostly with GPS due to the pres-

ence of a sufficient number of ground stations and 

stably operating constellation. In recent years, the 

Russian system GLONASS and alternative GNSS 

such as Beidou/Compass [Kunitsyn et al., 2016] and 

SBAS [Kunitsyn et al., 2015] have come into common 

use. In ionospheric research, the main parameter, deter-

mined through GNSS measurements, is the total electron 

content (TEC). The unit of measurement of TEC is 

TECU (Total Electron Content Unit) , 1 TECU=10
16

 m
–2

. 

Most published works on GNSS ionospheric re-

search deal with ionospheric irregularities of different 

scales [Afraimovich, Perevalova, 2006; Jakowski et al., 

2012a; Afraimovich et al., 2013; Otsuka et al., 2013; 

Ding et al., 2014] and ionospheric scintillations 

[Aarons, 1997; Mitchell et al., 2005], with ionospheric 

mapping [Hernández-Pajares et al., 2009], and GNSS 

radio tomography of the ionosphere [Ruffini et al., 

1998; Mitchell, Spencer, 2003; Nesterov, Kunitsyn, 

2011], as well as determine absolute ionospheric param-

eters [Yasyukevich et al., 2017a; Lanyi, Roth, 1988]. 

The data assimilation technique finds expanding appli-

cations. Data assimilative models such as Utah State 

University Global Assimilation of Ionospheric Meas-

urements (USU-GAIM) Model [Schunk et al., 2004] or 

the model of the Central Aerological Observatory of 

Roshydromet [Solomentsev et al., 2012] are used both 

to study physics of processes and to address a number of 

other problems. In practice, GNSS are used to adjust 

radio systems [Afraimovich, Yasukevich, 2008; Ya-

sukevich et al., 2017b], including radar systems 

[Ovodenko et al., 2015], and to improve models [Arikan 

et al., 2016], which is especially important in real-time 

systems [Zolesi et al., 2004].  
Construction of indices of ionospheric conditions and 

near-Earth space based on GNSS data is being developed. 
At present, the ROTI index – Rate-of-TEC index [Pi et al., 
1997] and its improved versions AATR – Along Arc TEC 
Rate [Juan et al., 2018], and DIX – Disturbance Ionosphere 
indeX [Jakowski et al ., 2012b] are widely known. There 
are indices describing ionospheric disturbances locally 
[Voeykov et al., 2016], regionally [Nesterov et al., 2017], 
and globally [Gulyaeva, Stanislawska, 2008]. In addition, a 
technique has been developed which estimates the general 
level of ionospheric plasma (global electron content 
(GEC)) [Afraimovich et al., 2008] from Global Ionosphere 
Maps (GIM) [Mannucci et al., 1998; Schaer et al., 1998].  

For neutral-atmosphere physics, GNSS allow us to 

determine the water vapor content [Lukhneva et al., 
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2016; Bevis et al., 1992] and to perform its tomographic 

reconstruction [Bender et al., 2011; Dong, Jin, 2018]. In 

recent years, studies on the monitoring of rains based on 

such data have been carried out [Priego et al., 2017]. 

For geodynamics, GNSS measurements make it pos-

sible to determine  coseismic and postseismic defor-

mations, lithospheric plate motion, and earth's crustal 

deformation at the boundary of these plates, caused by 

volcanic activity and static ice pressure [Sankov et al., 

2014; Segall, Davis, 1997; Mazzotti et al., 2003; Lu-

khnev et al., 2010; Shestakov et al., 2011]. A number of 

interesting studies deal with seismoionospheric coupling 

[Devi et al., 2014; Jin et al., 2015] and explosive impact 

of space bodies [Perevalova et al., 2015]. We should 

also mention works on the use of GNSS for reflectome-

try observations such as measurements of sea level 

[Larson, Nievinski, 2013; Padokhin et al., 2017] and 

snow depth [Löfgren et al., 2011]. 

All these studies were promoted by the develop-

ment of global and regional GNSS networks with free 

access to their data. One of the major networks, 

providing data for the global community, is the Inter-

national GNSS Service (IGS) – an international union 

that uses equipment of various institutions [Dow et al., 

2009]. There are other fairly large networks such as 

UNAVCO [http://www.unavco.org ]. One of the largest 

regional GSI (Geospatial Information Authority) net-

works in Japan comprises ~1200 stations 

[ftp://terras.gsi.go.jp/data]. In addition, there are fairly 

small networks in areas of higher interest such as Ca-

nadian High Arctic Ionospheric Network CHAIN   

[Jayachandran et al., 2009], Korea Astronomy and 

Space Science Institute Global Data Center (KASI 

GDC) [ftp://nfs.kasi.re.kr/gps/data/daily], Système 

d’Observation du Niveau des Eaux Littorales 

(SONEL) [ftp://ftp.sonel.org/gps/data], TrigNet 

[ftp://ftp.trignet.co.za], etc. Today, the total number of 

receivers is ~ 8000 [Tsugawa et al., 2018]. 

In the Russian Federation, there are a number of con-

tinuously operating GNSS networks such as: HIVE (Indus-

trial geodetic systems, [https://hive.geosystems.aero]), 

SmartNet [http://smartnet-ru.com], EFT-CORS [https:// 

eft-cors.ru], RTKNet «Geodetica» [http://rtknet.ru], as 

well as Roshydromet network [Alpatov et al., 2012] and 

FEB RAS network [Sorokin et al., 2017]. It is worth 

noting that most of these networks are located in Euro-

pean Russia, and their data are not always readily avail-

able. Accordingly, it is important to establish a GNSS 

network in Siberia. This paper describes the current 

state of the Siberian GNSS Network SibNet of continu-

ously operating GNSS receivers, its technical character-

istics and performance potential. 
 

1.  SIBNET COMPOSITION 

AND TECHNICAL 

CHARACTERISTICS OF RECEIVERS 

The Institute of Solar-Terrestrial Physics of Siberian 

Branch of Russian Academy of Sciences (ISTP SB RAS) 

began to deploy SibNet in 2011. The main purpose of 

this network is to monitor the ionosphere and ionospher-

ic disturbances. At the same time, it provides the possi-

bility of using SibNet data for geodynamic research. In 

the first stage of the network deployment (2011–2015), 

JAVAD receivers were bought and installed. In the sec-

ond phase (2015–2018), in addition to the JAVAD re-

ceivers, NovAtel receivers were installed. 

The continuous operation of the network requires an 

infrastructure involving steady electric power supply, 

temperature and humidity control, security, data transfer 

channel (if possible) at the receiver location. The re-

ceivers were therefore placed at the ISTP SB RAS ob-

servatories that are located in the Irkutsk Region, Re-

public of Buryatia, Krasnoyarsk Territory. The locations 

of SibNet receivers are shown in Figure 1. You can see 

that all the stations except one are located around Lake 

Baikal and quite closely grouped in latitude. 

Table lists parameters of SibNet receivers. Here, φ, 

P, Δf, I/Q, σφ, S4 denote the carrier phase, pseudorange, 

Doppler shift, in-phase/quadrature signal components, 

standard deviation of the carrier phase, and amplitude 

scintillation index respectively. Most JAVAD receivers 

detect GPS, GLONASS, Galileo, and SBAS signals. 
One of the receivers (in the village of Listvianka, LIST) 

records signals from the Chinese Navigation Satellite 

System Compass/Beidou. 

 

Figure 1. Locations of SibNet receivers 

http://www.unavco.org/
ftp://terras.gsi.go.jp/data/
ftp://nfs.kasi.re.kr/gps/data/daily
ftp://ftp.sonel.org/gps/data
ftp://ftp.trignet.co.za/
https://hive.geosystems.aero/
http://smartnet-ru.com/
http://rtknet.ru/
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Receiving equipment parameters 

Station Receiver/Antenna 
Recorded 

signals 
Recorded  

parameters 

Temporal 

resolution 
(regular/ 

maximum), s 

Date of the 

beginning of 
test meas-

urements  

Data 
channel 

Location 

ISTP 

JAVAD Delta-G3T / 

Javad RingAnt-G3T 

GPS L1/L2/L5; 
GLONASS L1/L2; 

Galileo E1/E5A; 

SBAS L1/L5 

φ, P, Δf, I/Q 

 
0.02/0.02 

February 16, 

2012 

+ 

Irkutsk, 

Irkutsk Region, 

52.2° N, 104.3° E 
NovAtel GPStation-6 / 

Javad RingAnt-G3T 

 

GPS L1/L2/L5; 
GLONASS L1/L2 

φ, P, Δf, 

 
S4, σφ 

 

1/0.02 

 

60/60 

August 07, 
2014 

TORY 

JAVAD SigmaQ-G3T 

(with the possibility of 

receiving a signal 

from 4 antennas)/3 
Javad RingAnt-G3T 

antennas  

Antenna 1: GPS L1/L2; 

GLONASS L1/L2; 

Galileo E1/E5A; SBAS 

L1/L5 

Antenna 2: GPS L1/L2 

φ, P, Δf, I/Q 1/0.02 
March 20, 

2012 

+ 

the village of Tory, 

Republic 
of Buryatia, 

51.8° N, 103.1° E 
NovAtel GPStation-6 / 

Javad RingAnt-G3T 

 

GPS L1/L2/L5; 
GLONASS L1/L2 

φ, P, Δf, 

 
S4, σφ 

 

1/0.02 

 

60/60 

July 16, 
2016 

NORI 

JAVAD Delta-G3T / 

Javad RingAnt-G3T 

GPS L1/L2/L5; 
GLONASS L1/L2;  

Galileo E1/E5A; SBAS 

L1/L5 

φ, P, Δf, I/Q 1/1 
October 11, 

2014 

+ 

Norilsk, 

Krasnoyarsk Territo-
ry, 

70.0° N, 88.0° E 
 

NovAtel GPStation-6 / 

Javad RingAnt-G3T 
 

GPS L1/L2/L5; 

GLONASS L1/L2 

φ, P, Δf, 
 

S4, σφ 

 

1/0.02 

 
60/60 

February 14, 

2018 

LIST 

JAVAD Delta-G3T 

 

GPS L1/L2/L5; 

GLONASS L1/L2 

Beidou L2/L7 

φ, P, Δf, I/Q 

1/0.02 
June 15, 

2012 
+ 

the village of 

Listvyanka, Irkutsk 

Region, 
51.8° N, 104.9° E 

MOND 

GPS L1/L2/L5; 
GLONASS L1/L2; 

Galileo E1/E5A; SBAS 

L1/L5 

1/0.02 
September 

11, 2012 
+ 

the village of Mon-

dy 

Republic 
of Buryatia, 

51.6° N, 100.9° E 

ORDA 1/0.02 
June 14, 

2011 
– 

Mishelevka, Irkutsk 
Region, 

52.9° N, 103.3° E 

SARM 1/0.02 
December 

02, 2013 
+ 

the village of Sar-
ma, 

Irkutsk Region, 

53.1° N, 106.8° E 

UZUR 1/0.02 
March 18, 

2013 
+ 

the village of Uzur, 
Irkutsk Region, 

53.3° N, 107.7° E 

MKSM 

Auxiliary 

station 

1/1 
April 27, 

2014 
– 

the village of 
Maksimikha, 

Republic 

of Buryatia 
53.3° N, 108.7° E 

 

The detection of SBAS and Beidou signals allows 

geostationary measurements by almost motionless lines 

of sight (LOS) [Kunitsyn et al., 2015, 2016]. The 

JAVAD receivers is presented in Figure 2, a, b. the 

JAVAD Delta-G3T receivers (Figure 2, a) placed in 

ISTP, NORI, LIST, MOND, ORDA, SARM, UZUR, 

MKSM, and the JAVAD SimgaQ-G3T receiver (Figure 

2, b) in TORY are equipped with RingAnt-G3T anten-

nas (Figure 2, e) with multipath reduction. The light 

weight antenna GrAnt-G3T (Figure 2, d) is utilized for 

field measurements. 

Most SibNet JAVAD receivers can make meas-

urements with 50 Hz cadence. For the main problems of  

 

ionospheric physics and near-Earth space monitoring, 

such resolution is unreasonably high. The daily data 

volume at one station in the recording mode of 50 Hz is 

about 10 GB, which considerably complicates data 

transfer and storage and makes it inappropriate to record 

such data across the network in a regular measurement 

mode. Hence, only one of the receivers makes a perma-

nent recording at 50 Hz. To reduce costs for data trans-

fer, the ISTP station located in the ISTP SB RAS build-

ing has been selected as such a receiver.  
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Figure 2. Equipment used in SibNet. Upper row: GNSS re-

ceivers JAVAD Delta (a), JAVAD SigmaQ (b), NovAtel 

GPStation-6 (c). Bottom row: GNSS antennas GrAnt-G3T (d), 

RingAnt-G3T (e), GNSS-750 (f) 
 

NovAtel GPStation-6 receivers are specialized 

equipment for measuring amplitude and phase scintilla-

tions [Shanmugam et al., 2012]. Such measurements ena-

ble us to analyze the small-scale structure of ionospheric 

disturbances [Yeh, Liu, 1982]. 

The NovAtel GPStation-6 receiver measures the am-

plitude scintillation index S4 and the standard deviation 

of the carrier phase σφ at GPS L1/L2/L5 and GLONASS 

L1/L2 frequencies. Temporal resolution of these meas-

urements is 1 min. The NovAtel receiver with GNSS-750 

antenna is shown in Figure 2, c, f. These receivers are 

currently installed in ISTP, TORY, and NORI. 

At present, ISTP, TORY, NORI, LIST, MOND, 

UZUR, and SARM have data transfer channels. Measure-

ment data from these stations can be quite readily trans-

ferred to ISTP SB RAS and processed. Data from other 

stations are sent by courier at intervals of one month to six 

months. At MKSM, equipment is operating in a test mode. 

 
2. FEATURES OF MEASUREMENTS 

AT THE GEOPHYSICAL 
OBSERVATORY (TORY) 

The ISTP SB RAS Geophysical Observatory (Tory) 

is currently equipped with two receivers – JAVAD 

SigmaQ-G3T and NovAtel GPStation-6. The JAVAD 

SigmaQ-G3T receiver can record GPS satellite signals 

with four spaced antennas simultaneously and 

GLONASS signals with the main antenna. This enabled 

us to deploy an ~20 m small-base interferometer for 

making measurements with three antennas (TORY-A – 

the main antenna, TORY-B, TORY-C; see Figure 3). It 

can be used to determine velocities and directions of 

small-scale irregularities by methods analogous to those 

developed in [Afraimovich, 1982; Afraimovich, 

Perevalova, 2006]. To complement these small-base 

measurements, a NovAtel GPStation-6 receiver analo-

gous to that placed in ISTP was installed in 2016. 
The complex to detect small-scale irregularities is 

placed in Tory due to the presence of additional optical 
and radio physical facilities there [Afraimovich et al., 
2012] as well as due to the state-of-the-art observation 
equipment that is planned to be installed in the near fu-
ture under the project “RAS National Heliogeophysical 
Complex” [Olemskoy, 2017]. 

 

3. DATA BANK 

SibNet GNSS measurements are stored on the server in 
ISTP SB RAS. Figure 4 presents the statistics of data cov-
erage with 50 Hz cadence at the ISTP site (ISTP SB RAS 
building in Irkutsk), whose data have the highest coverage. 
Each bar in Figure 4 corresponds to an observation month. 
The beginning of the diagram is January 2012. 

 

Figure 3. Location of receiving facilities in the Geophysical Observatory (Tory). Marks indicate locations of NovAtel receiv-

er's antenna and three antennas of the JAVAD SigmaQ-G3T receiver (Tory-A, Tory-B, Tory-C) 
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Figure 4. Amount of recorded data with 50 Hz cadence at ISTP. The Figure shows the total amount of data as a percentage of 

the theoretical monthly one 

 

Figure 5 presents the statistics of data coverage with 

1 Hz cadence at SibNet sites (LIST, MKSM, MOND, 

NORI, ORDA, SARM, UZUR, TORY). The lack of 

data for 2017–2018 at ORDA, SARM, MKSM is due to 

the absence of data transfer channel. As can be seen, 

there occur fairly frequent failures in the operation of 

the receivers, which are caused by various reasons. 

Gaps in NORI measurements are associated with poor 

quality of power supply and with emergency shutdowns 

of the equipment. The problem with the power supply in 

LIST leads to constant UPS battery failures and hence 

to a decrease in the reliability of control computer. In 

LIST and UZUR there were breaks in antenna cable. In 

TORY in 2016–2017 there was a software failure. The 

remoteness of the observation stations causes additional 

difficulties in restoring the equipment operation. 

 

Figure 5. Amount of recorded data with 1 Hz cadence at SibNet receivers. Names of stations are given on panels. The Figure 

shows the total amount of data as a percentage of the theoretical monthly one 
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4. EXAMPLES OF 

EXPERIMENTAL OBSERVATIONS 

This section gives examples of the use of SibNet 

measurements. As an example, we have chosen the June 

22–23, 2015 magnetic storm [Astafyeva et al., 2017]. 

4.1. TEC variations 

One of the main ionospheric parameters determined 

by GNSS is the total electron content (TEC) and its var-

iations. Figure 6 shows the dynamics of geostationary 

TEC along the ORDA–SBAS S27 LOS (a), as well as 

GNSS-TEC along the NORI–GPS G01 LOS (b). Geo-

stationary data provide diurnal TEC variation. During the 

main phase of the June 22–23, 2015 storm, the diurnal 

variation exhibits a pronounced increase in the intensity of 

TEC variations at 0–5 UT on June 23 (Figure 6, a).  

NORI data (Figure 6, b) made it possible to detect an 

intense localized TEC disturbance with an amplitude of ~5 

TECU on June 22, 2015, as well as a long-lived quasiperi-

odic structure with an amplitude of ~1 TECU and a period 

of ~30 min on June 23, 2015 

4.2. Ionospheric disturbance 

As mentioned above, methods of estimating iono-

spheric disturbances have been developed quite exten-

sively in recent years. Voeykov et al. [2016] have pro-

posed an ionospheric disturbance index representing the 

mean intensity of TEC variations in a given spectral 

window at a single station. Figure 7 shows the dynamics 

of the disturbance index WTEC (blue curve) for varia-

tions with periods up to 10 min as derived from ORDA 

data. We can see that after the onset of the magnetic 

storm at ~18:30 UT on June 22, 2015 there is a signifi-

cant increase in the ionospheric disturbance index ~8–9 

times compared to the background level. Maximum 

WTEC coincides in time with minimum SYM-H (black 

curve), recorded on June 22, 2015. 

 

Figure 6. Dynamics of TEC along ORDA – S27 (a) and 
NORI – G01 LOS (b) on June 21–23, 2015. On panel a, dashed 

lines are 18:30 UT on June 22 and 06:00 UT on June 23; the 
gray curve indicates SYM-H variations (right scale). On panel b, 

the black line shows measurements made on June 21; the blue 

line, on June 22; the red line, on June 23 

 

Figure 7. Dynamics of WTEC (blue curve) and SYM-H 
(black curve) during the June 22–23, 2015 magnetic storm 

Then, WTEC gradually returns to the undisturbed level. 

After the beginning of the second storm intensification, 

which is characterized by a SYM-H decrease on July 23, 

2015 and a global minimum, such a high level of iono-

spheric disturbance is not observed, although in general 

there is a 1.5–2-fold increase in WTEC compared to the 

background level. 

4.3. Maps of TEC variations 

SibNet can provide information about the spatial 

structure of ionospheric disturbances through simulta-

neous observations at different GNSS stations located in 

different regions. As a result, there is a considerable 

number of satellite–receiver LOS with different geome-

tries, which simultaneously penetrate the ionosphere. 

For automatic processing of large amount of GNSS data 

and mapping TEC, ISTP SB RAS has developed the 

SIMuRG system – the System for the Ionosphere Moni-

toring and Researching from GNSS 

[https://simurg.iszf.irk.ru; Yasyukevich et al., 2018]. 

Figure 8 presents maps of 2–10 min TEC variations 

obtained with SIMuRG for June 22, 2015. The maps are 

based on GPS/GLONASS/Galileo/SBAS GNSS data. 

It can be seen (Figure 8) that after the storm onset at 

~18:45 UT in the high-latitude region there occurs a 

negative disturbance, which propagates to midlati-

tudes. By 20:00 UT (LT daylight hours), the disturb-

ance reaches the latitudes of Lake Baikal and is de-

tected there as intense negative TEC variations. The 

maps show that the negative disturbance does not 

propagate below 50°. 

4.4. Positioning 

For highly accurate positioning of an individual sta-
tion, we have used the PPP software (Precise Point Posi-
tion) [Zhou et al., 2018]. Figure 9 exemplifies the dy-
namics of the geomagnetic index SYM-H (solid gray 
curve) and the dynamic of deviations from a randomly 
chosen value of the coordinate Y in the WGS84 system, 
which are determined in the dual-frequency PPP-GPS 
mode at NORI and ORDA. For the mid-latitude station 
ORDA, in spite of disturbed geomagnetic conditions, 
there are no sudden changes in the coordinate with time. 
For the high-latitude station NORI on June 22, 2015 
during the first recorded minimum of SYM-H, there is a 
sharp increase in the positioning error. Moreover, there 
is a sharp increase in the error for this station during the 
recovery phase on June 23, 2015. Thus, for high lati-
tudes the precise point positioning can be characterized 
by an increase in errors during magnetic storms. 

 

WORK DIRECTIONS 

AND MEASUREMENT FEATURES 

SibNet can solve the following key problems: 
1) to monitor medium and large-scale traveling ion-

ospheric disturbances, determination of their velocity 
and direction; 

2) small-base study of small-scale irregularities and 
their dynamics; 

3) to study phase and amplitude scintillations at 
GNSS frequencies; 

https://simurg.iszf.irk.ru/
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4) to monitor and study ionospheric disturbances 

associated with magnetospheric activity; 

5) to study mid-latitude auroral disturbances; 

6) to study space weather effects on characteristics 

of radio facilitates; 

7) GNSS data integrity and positioning accuracy 

control; 

8) geodynamic studies in the Baikal Rift Zone. 
 

Features of SibNet are 

1) high temporal resolution (measurement frequen-

cy up to 50 Hz); 
 

2) measurement of signals from independent sys-

tems including GPS, GLONASS, Galileo (Beidou with 

one of the receivers), as well as SBAS signals; 

3) combined joint measurements of phase, pseudor-

ange, quadrature components, as well as amplitude and 

phase scintillations at individual points; 

4) extensive experimental facilities in the region, 

which significantly supplements the measurements 

[Afraimovich et al., 2012; Olemskoy, 2017]. 

 

 

 

   

   

   

   

Figure 8. Maps of the spatial distribution of 2–10 min TEC variations for June 22, 2015. Red and blue lines mark sunrise and 

sunset solar terminators at a height of 300 km 
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Figure 9. Dynamics of Y deviations at NORI (black dots) 

and ORDA (orange dots) on June 22–23, 2015. For compari-

son, the gray curve shows the dynamics of the magnetic 

disturbance index SYM-H (right scale) 

 

CONCLUSION 

The network of dual-frequency GNSS receivers 

SibNet presented in this paper can be used for a wide 

range of research and applied problems. The network 

was created at ISTP SB RAS. It is located in the Siberi-

an region. At present there are eight continuously oper-

ating stations and one auxiliary station in SibNet. These 

stations are equipped with JAVAD GNSS receivers 

enabling us to monitor ionospheric conditions. In addi-

tion, there are three NovAtel GPStation-6 receivers 

providing data on ionospheric scintillations. 

SibNet is included in Center for Common Use “Angara” 

[http://ckp-rf.ru/ckp/3056] and can be used by external 

users. A key problem is currently to achieve consistency 

of unattended operation of the entire network. A new 
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