Database search strategy- Mitophagy links oxidative stress conditions and neurodegenerative diseases

Serial No.	Article title	Eligibility criteria	Keywords/ Key terms	Publication date/Year	Database	Publishing language
1.	Getting ready for building: signaling and autophagosome biogenesis	A review that discusses recent progress in our understanding of autophagosome biogenesis	Atgs, autophagosome, biogenesis, autophagy, MTOR signaling	July 15, 2014	Google scholar	English
2.	Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease	A report that discusses age-dependent onset and progressive course of these neurodegenerative diseases	Neurodegenerative diseases, Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and progressive supranuclear palsy (PSP), oxidative damage, superoxide dismutase (SOD1)	2000	Google scholar	English
3.	Cannabinoids for treatment of Alzheimer's disease: Moving toward the clinic	A review that discusses the polyvalent properties of cannabinoid compounds for the treatment of AD, which together encourage progress toward a clinical trial.	Alzheimer's disease (AD), cannabinoid, β- amyloid peptide, oxidative stress	March 5, 2014	Google scholar	English
4.	Nitric oxide - induced mitochondrial fission is regulated by dynamin - related GTPases in neurons	An article that discusses persistent mitochondrial fission may play a causal role in NO-mediated neurotoxicity	Mitochondria, nitric oxide (NO), autophagy, Dynamin related protein 1, mitochondrial fission	July 27, 2006	Google scholar	English
5.	Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases	An article that discusses positive modulation of protein degradation processes represents a strategy to promote clearance of toxic accumulations and to slow the synaptopathogenesis	Protein degradation, protein accumulation, age- related neurodegenerative disorders, synaptopathogenesis	March 22, 2006	Google scholar	English
6.	Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid β- peptide-associated free radical oxidative	A review summarizes current knowledge on phospholipid peroxidation and protein oxidation in AD brain, one potential cause of this oxidative stress, and consequences of $A\beta$ - induced lipid peroxidation and protein oxidation in AD brain.	Amyloid β-peptide (Aβ), Alzheimer's disease (AD), free radical oxidative stress, phospholipid peroxidation , oxidation, lipid peroxidation	June 1, 2002	Google scholar	English

	stress 1, 2					
7.	Pathways to mitochondrial dysfunction in ALS pathogenesis	An article that describes the genetic and mechanistic evidence that make dysfunction of mitochondria a candidate major player in this process.	Mitochondria, Amyotrophic Lateral Sclerosis, upper and lower motor neurons, neurodegenerative disease	February 19, 2017	Google scholar	English
8.	Multiple pathways for mitophagy: a neurodegenerative conundrum for Parkinson's disease	An review that discusses role of mitophagy in modulating neuronal vulnerability in Parkinson's spectrum (PD/PDD/DLB) and other neurodegenerative diseases.	Mitochondria, autophagy, neurodegeneration, mitophagy, Parkinson's disease, dementia, dementia with Lewy bodies, Parkinson's disease	2018	Google scholar	English
9.	LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease	An article that discusses fine-tune the mitochondrial recycling response	Mitophagy, Parkinson, cardiolipin, rotenone, MAP1-LC3, neurons, 6- hydroxydopamine, cargo recognition, autophagy, neurodegenerative diseases	November 26, 2013	Google scholar	English
10.	Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells	This article discusses redistribution of cardiolipin serves as an 'eat-me' signal for the elimination of damaged mitochondria from neuronal cells.	Mitochondria, macroautophagy, cardiolipin, mitophagy, neuronal cells	September 15,2013	Google scholar	English
11.	Beclin 1-independent pathway of damage- induced mitophagy and autophagic stress: implications for neuro- degeneration and cell death	Discusses about Beclin 1 may serve to prevent harmful overactivation of autophagy	Macroautophagy, neuronal cell death, neurodegeneration, autophagy, autophagy proteins, Lewy body diseases, autophagic stress	November 1, 2007	Google scholar	English
12.	Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission	Discusses about PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis	Mitochondrial dysregulation, Parkinson's disease, PTEN-induced kinase 1 (PINK1), familial parkinsonism, neuropsychiatric disorders, mitochondrial fragmentation, RNAi knockdown	March 10, 2009	Google scholar	English
13.	Mitochondrial oxidative stress in aging and healthspan	A review that focuses on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31	Mitochondria, oxidative stress, aging, healthspan	May 1, 2014	Google scholar	English
14.	TDP-43 interacts with mitochondrial proteins critical for	Discusses TDP-43 processing may contribute to metabolism and mitochondrial function	TDP-43, APP/PS1, PHB2, mitophagy, MFN2 mitochondria, PMPCA	June 21, 2018	Google scholar	English

	mitophagy and mitochondrial dynamics.					
15.	Mitochondria at the neuronal presynapse in health and disease	Importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.	Synapses, mitochondria, neuronal homeostasis	January 19, 2018	Google scholar	English
16.	AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH- SY5Y cells.	Important role in limiting ROS-induced dopaminergic cell death, and the utmost potential to prevent PD or other neurodegenerative diseases associated with mitochondrial oxidative stress	Parkinson's disease (PD), Oxidative stress, autophagy of mitochondria, cell homeostasis, neurodegenerative diseases	April 18, 2018	Google scholar	English
17.	Mechanism and medical implications of mammalian autophagy.	Discusses about deregulation of autophagy in the context of various human pathologies, including cancer and neurodegeneration, and its modulation has considerable potential as a therapeutic approach.	Autophagy, cellular stress, catabolic process, cytoprotective functions, cancer, neurodegeneration	April 4, 2018	Google scholar	English
18.	Mitochondria, calcium-dependent neuronal death and neurodegenerative disease	Possible roles of cell type-specific calcium signaling mechanisms in defining the pathological phenotype of each of these major diseases and review central mechanisms of calcium-dependent mitochondrial-mediated cell death.	Mitochondria, intracellular calcium, neurodegenerative disease, glutamate excitotoxicity	May 22, 2012	Google scholar	English
19.	PINK1/Parkin- mediated mitophagy in mammalian cells	Discusses about how PINK1 activates Parkin in response to mitochondrial malfunction, how Parkin localizes specifically to impaired mitochondria, and how ubiquitination and deubiquitination regulate PINK1/Parkin- mediated mitophagy.	Mitophagy, parkin, PINK1, ubiquitination, deubiquitination, mitochondria	April, 2015	Google scholar	English
20.	Oxidants, oxidative stress and the biology of ageing	Describes that the appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to ageing and life span.	Reactive oxygen species, oxidative stress, ageing and life span, metabolites	November 9, 2000	Google scholar	English
21.	Mitophagy in neurodegeneration and aging	Overview of mitophagy pathways and discuss the role of reduced mitophagy in neurodegeneration	Mitochondrial dysfunction, Parkinson's disease, Alzheimer's disease, proteolysis, mitophagy, autophagy, homeostasis	October, 2017	Google scholar	English
22.	Oxidative stress- induced signaling pathways implicated in the pathogenesis of Parkinson's disease	This article discusses the mechanisms and effects of oxidative stress, the emerging concept of the impact of environmental toxins, and a possible neuroprotective role of the antioxidant astaxanthin in various neurodegenerative disorders with particular emphasis in Parkinson's	Parkinson's disease, oxidative stress, signaling pathways, PINK1, MPTP, Astaxanthin	February 13, 2014	Google scholar	English

		disease				
23.	Deconstructing mitochondrial dysfunction in Alzheimer disease	This article summarizes the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result	mitochondrial damage, Alzheimer's disease, mitochondrial-targeted antioxidant	2013	Google scholar	English
24.	The PINK1/Parkin- mediated mitophagy is compromised by PD-associated mutations	Importance of compromised PINK1 kinase activity, reduced binding of PINK1 to Parkin leads to failure in Parkin mitochondrial translocation, resulting in the accumulation of damaged mitochondria, which may contribute to disease pathogenesis	Mitochondrial dysfunction, neurodegenerative diseases, mitophagy, macroautophagy, damaged mitochondria	October 1, 2010	Google scholar	English
25.	Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment	Highlights a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway	Mitochondria, mitophagy, Parkinson's disease, PINK1, proteases	February 21, 2012	Google scholar	English
26.	An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1	Demonstrates the existence of an iper- oxidized SOD1 with toxic properties in patient-derived cells and identifies a common SOD1-dependent toxicity between mutant SOD1-linked familial ALS and a subset of sporadic ALS, providing an opportunity to develop biomarkers to subclassify ALS and devise SOD1-based therapies that go beyond the small group of patients with mutant SOD1.	Superoxide dismutase, amyotrophic lateral sclerosis, posttranslational modifications, mitochondria	March 27, 2012	Google scholar	English
27.	Targeting the unfolded protein response in disease.	Discusses recent advances in the design of novel compounds and therapeutic strategies to manipulate levels of ER stress in disease.	Unfolded proteins, endoplasmic reticulum (ER), cellular adaptation, apoptosis, neurodegenerative disorders	August 30, 2013	Google scholar	English
28.	Full-length TDP-43 and its C-terminal fragments activate mitophagy in NSC34 cell line	Discusses about human TDP-43 and its C-terminal fragments may cause mitochondrial dysfunction and enhance mitophagy.	Amyotrophic lateral sclerosis, TDP-43, Mitochondrial dysfunction, Mitophagy	November 21, 2012	Google scholar	English
29.	Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson's disease	Reveals that prolonged retention of Miro, and the downstream consequences that ensue, may constitute a central component of PD pathogenesis.	Homeostasis, oxidative stress, outer mitochondrial membrane, induced pluripotent stem cell, mitophagy, Parkinson's disease	December 1, 2016	Google scholar	English
30.	Loss of axonal mitochondria promotes tau-mediat- ed neurodegeneration	Loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD	Alzheimer's disease (AD), Tau phosphorylation, neurodegeneration,	August 30, 2012	Google scholar	English

	and Alzheimer's disease–related tau phosphorylation via PAR-1		axonal mitochondria			
31.	Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death	Highlights a signaling role for Mfn2 in the regulation of apoptosis that extends beyond its role in mitochondrial fusion	Mitofusin 2 (Mfn2), nervous system, neuronal injury, oxidative stress, apoptosis, mitochondrial fusion	May 30, 2007	Google scholar	English
32.	PGC-1a, mitochondrial dysfunction, and Huntington's disease	Discusses the role of PGC-1 α in mitochondrial dysfunction in HD and its potential as a therapeutic target to cure HD.	Mitochondria, energy metabolism, calcium buffering, reactive oxygen species, neurodegeneration, mitochondrial biogenesis	September, 2013	Google scholar	English
33.	ALS: astrocytes move in as deadly neighbors	Discusses non-neuronal cells contribute to ALS pathogenesis	Amyotrophic lateral sclerosis, motor neurons, astrocytes, superoxide dismutase, motor neuron death	May 1, 2007	Google scholar	English
34.	DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders	Augmenting DJ-1 activity might provide novel approaches to treating chronic neurodegenerative illnesses such as Parkinson's disease and acute damage such as stroke	DJ-1 redox signaling neurodegeneration Parkinson's disease free radicals	November 15, 2009	Google scholar	English
35.	Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease	Explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.	Autophagy, mitophagy, neurodegeneration, oxidative stress	May 8, 2014	Google scholar	English
36.	Understanding miro GTPases: implications in the treatment of neurodegenerative disorders.	Potential human Miros hold as novel therapeutic targets for the treatment of such disease.	Miro GTPase, atypical GTPase, neurodegenerative diseases, amyotropic lateral sclerosis	February 6, 2018	Google scholar	English
37.	PINK1-induced mitophagy promotes neuroprotection in Huntington's disease	Mitophagy is altered in the presence of mHtt and that increasing PINK1/Parkin mitochondrial quality control pathway may improve mitochondrial integrity and neuroprotection in HD	Huntington's disease (HD), huntingtin gene, mitochondria, PTEN- induced putative kinase 1 (PINK1), neuroprotection	January 22, 2015	Google scholar	English
38.	PINK1 signaling in mitochondrial homeostasis and in aging	Cellular protection could be critical for developing treatments to prevent and control excessive progression of neurodegenerative disorders.	Mitochondrial dysfunction, Parkinson's disease, oxidative stress, neurodegenerative disorders, mitophagy	December 12, 2016	Google scholar	English
39.	Nix restores mitophagy and mito- chondrial function to protect against	Demonstrate that Nix can serve as an alternative mediator of mitophagy to maintain mitochondrial turnover, identifying Nix as a promising target for	Parkinson's disease (PD), mitophagy, dysfunctional mitochondria, Nip3-like protein X (Nix)	March 10, 2017	Google scholar	English

	PINK1/Parkin-related	neuroprotective treatment in				
	Parkinson's disease	PINK1/Parkin-related PD.				
40.	Inhibition of au-	Autophagy plays an essential role in	Brain injury, cognitive	February,	Google	English
	tophagy prevents	triggering neuronal death execution after	and motor dysfunction,	2008	scholar	
	hippocampal	hypoxia/ischemia injury and Atg7	gene essential, autophagy,			
	pyramidal neuron	represents an attractive therapeutic target	caspase-3			
	ischemic injury	associated with H/I brain injury				
41.	Homeostatic levels of	Highlight the unexpected role of	Autophagy, cytoplasmic	December	Google	English
	p62 control cy-	homeostatic level of p62, which is	protein,	14, 2007	scholar	2
	toplasmic inclusion	regulated by autophagy, in controlling	neurodegeneration,			
	body formation in	intracellular inclusion body formation,	protein aggregates,			
	autophagy-deficient	and indicate that the pathologic process	genetic ablation, inclusion			
	mice	associated with autophagic deficiency is	body			
42	Mitochondria and	The importance of mitochondria and	Apoptosis autophagy	2012	PubMed	Fnglish
72.	mitophagy: The vin	mitophagy in cardiovascular health and	mitochondria, p53.	2012	1 ubivicu	Linghish
	and yang of cell	disease and provide a review of our	Parkin, phosphatase and			
	death control	current understanding of how these	tensin homolog-induced			
		processes are regulated.	putative kinase 1			
43.	Role of PINK1	The association of PINK1 with the TOM	Mitochondria, mitophagy,	February 14,	Google	English
	binding to the TOM	complex allows rapid reimport of PINKI	peroxisomes, ubiquitin	2012	scholar	
	alternate intracellular	mitophagy and discount mitochondrial-	outer membrane (TOM)			
	membranes in	specific factors for Parkin translocation				
	recruitment and	and activation.				
	activation of the E3					
	ligase Parkin					
44.	Lysosomal proteol-	Defective lysosomal proteolysis	Macroautophagy,	June 25,	Google	English
	ysis and autophagy	represents a basis for pathogenic protein	Alzheimer's disease,	2010	scholar	
	and are disrupted by	AD and suggests previously unidentified	autophagosome			
	Alzheimer-related	therapeutic targets.	autolysosome acidificatio			
	PS1 mutations	1 0	n, cathepsin			
45.	Autophagy in	The two sides of autophagy will be	Autophagy; cell death;	June 30,	Google	English
	neurodegeneration	discussed in the context of several	cell survival;	2009	scholar	
	: Two sides of the	neurodegenerative diseases.	neurodegeneration			
	same coin					
46.	Basal mitophagy is	Pink1 and parkin are not essential for	Parkinson's disease,	March 2,	Google	English
	widespread in	bulk basal mitophagy in Drosophila	stress-induced mitophagy,	2018	scholar	
	Drosophila but		dopaminergic neurons			
	minimally affected		appaining is nourons			
	by loss of Pink1 or					
	parkin					
47.	Selective	Mitophagy may play a key role in	Autophagy,	March 29,	Google	English
	mitochondrial	retarding accumulation of somatic	autophagosomes,	2005	scholar	
	autophagy, or	mutations of mtDNA with aging.	mitochondria, outer			
	mitophagy, as a		membrane protein			
	targeted defense					
	against oxidative					
	stress,					
	mitochondrial					

	dysfunction, and					
	aging					
48.	Pink1 protects	Neuronal protective role of Pink1 against	Apoptosis, neurogenesis,	February 1.	Google	English
	cortical neurons from	oxidative stress and afford rationale for	neurodegeneration,	2015	scholar	0
	thapsigargin-induced	developing new strategy to the therapy of	oxidative stress,	2013	Scholar	
	oxidative stress and	neurodegenerative diseases.	endoplasmic reticulum,			
	neuronal apoptosis		antioxidant gene			
49.	Rapamycin attenuates	Rapamycin treatment attenuates	Brain ischemia,	February 7,	Google	English
	mitochondrial	mitochondrial dysfunction following	mitochondria function,	2014	Scholar	
	dysfunction via	cerebral ischemia, which is linked to	mitophagy,			
	activation of	enhanced mitophagy.	rapamycin			
	mitophagy in					
	experimental					
50	ischemic stroke	D	Minut 1. 1. And it 1	0.4.1	Carl	F = 1' - 1
50.	Structural insights	Reversible phosphorylation modification	Microtubule-associated	October 18, 2016	Google	English
	of phosphorylated	for selective mitophagy	Fun14 domain containing	2010	scholar	
	FUNDC1 by LC3B	for selective intophagy	protein 1 mitophagy			
	in mitonhagy		phosphorylation			
51	Abnormal mitochon-	Manifestation of mitochondrial	Amyotrophic lateral	October 23	Google	English
51.	drial transport and	abnormalities between the two mouse	sclerosis, mitochondrial	2013	scholar	English
	morphology are	models of familial ALS imply that	transport, mitochondria.	2010	50110101	
	common pathological	different molecular mechanisms may be	sciatic nerve			
	denominators in	involved.				
	SOD1 and TDP43					
	ALS mouse models					
52.	Sigma-1 receptor in	The multi-functional nature of the Sigma-	Sigma-1 receptor,	March 18,	Google	English
	motoneuron disease.	1R represents an attractive target for	motorneuron disease,	2017	Scholar	
	In: Sigma receptors:	treating aspects of ALS and other	amyotropic lateral			
	their role in disease	motoneuron diseases	sclerosis, etipathology			
	and as therapeutic					
52	targets			A '1 1 1		F 1' 1
53.	Cargo recognition	Inefficient enguliment of cytosolic	Autophagy, cellular	April 11,	Google	English
	for inefficient	responsible for their slower turnover	nomeostasis,	2010	scholar	
	autophagy in	functional decay and accumulation inside	autophagosomes			
	Huntington's disease	HD cells	cytosolic components			
54	Rasal mitonhagy	Orchestrating mammalian mitochondrial	Mitophagy Parkinson's	February 6	Google	English
	occurs independently	integrity in a context-dependent fashion.	disease,	2018	scholar	
	of PINK1 in mouse	and this has profound implications for our	dopaminergic neurons,			
	tissues of high	molecular understanding	mammalian mitophagy			
	metabolic demand	of vertebrate mitophagy				
55.	The mitochondrial	Two Parkinson's disease-causing	Intramembrane	March 23,	Google	English
	intramembrane	mutations decrease the processing of	proteolysis, Parkinson's	2011	scholar	_
	protease PARL	Pink1 by PARL, with attendant	disease, mitophagy.			
	cleaves human Pink1	implications for nathogenesis	mitochondrial integrity			
	to regulate Pink1					
50	trafficking			2000		
56.	Autophagosomes in	GFP-LC3 transgenic mice and	Autophagsome, GFP,	2008	Google	English
	mice	describe here how we determine the	green fluorescent		scholar	
	mille	occurrence of autophagy in vivo using	protein, LC3, Atg8			
		this mouse model.				
57.	Parkinson's disease	The role of these PD proteins in the heart	Coronary heart disease,	December,	Google	English
	proteins: novel	and explore their potential as novel	Parkinson's disease,	2015	scholar	

	mitochondrial targets for cardioprotection	mitochondrial targets for cardioprotection	myocardial ischaemia- reperfusion injury, mitochondria ischaemic preconditioning			
58.	Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis	Dual role of BECN1 in ALS and depict a complex scenario in terms of predicting the effects of manipulating autophagy in a disease context	ALS, autophagy, Beclin 1, neurodegenerative disease, SOD1	May 12, 2014	Google scholar	English
59.	Loss of Miro1- directed mitochondrial movement results in a novel murine model for neuron disease	Defects in mitochondrial motility and distribution are sufficient to cause neurological disease	Calcium-binding mitochondrial Rho, mitochondrial respiration, Miro GTPase	August 18, 2014	Google scholar	English
60.	Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study	Neuroprotecive functions of autophagy	Lysosomes, neurodegeneration, amyloid, apoptosis, necrosis	February 1, 2005	Google scholar	English
61.	Nix is a selective autophagy receptor for mitochondrial clearance	Nix functions as an autophagy receptor, which mediates mitochondrial clearance after mitochondrial damage and during erythrocyte differentiation	GABARAP, LC3, mitophagy, Nix, selective autophagy	December 11, 2009	Google Scholar	English
62.	Pathology of protein synthesis and degradation systems in ALS	The main morphological abnormalities detected in the anterior horn cells of ALS patients	Protein synthesis, pathomechanisms, autophagic systems, ubiquitin-proteasomal	March 21, 2010	Google scholar	English
63.	Exploring new pathways of neurode- generation in ALS: the role of mitochondria quality control	Since ALS motor neurons progressively accumulate damaged mitochondria, it is plausible that the MQC is ineffective or overwhelmed by excessive workload imposed by the chronic and extensive mitochondrial damage.	ALS, mitochondria, mitophagy, SOD1, Parkin, p62	May 14, 2015	Google scholar	English
64.	The autophagy-re- lated protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice	Beclin 1 deficiency disrupts neuronal autophagy, modulates APP metabolism, and promotes neurodegeneration in mice and that increasing beclin 1 levels may have therapeutic potential in AD.	Autophagy, neurodegeneration, AD, amyloid-β, APP metabolism	May 22, 2008	Google scholar	English
65.	The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease	PINK1 and Parkin play within cells, their molecular mechanisms of action, and the pathophysiological consequences of their loss.	Parkinson's disease, parkinsonism, Parkin, mitochondria, E3 ubiquitin ligase, membrane proteins	January 21, 2015	Google scholar	English
66.	Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human	UPS is involved in mitofusin degradation.	Parkinson's disease (PD), Mitofusins, mitochondrial stress, Mitofusin degradation	March 8, 2011	Google scholar	English

	fibroblasts					
67.	HTT/Huntingtin in selective autophagy and Huntington disease: A foe or a friend within?	Role of HTT/Huntingtin in selective autophagy	aggrephagy, cargo recognition, Huntingtin, H untington disease, lipophagy, mitop hagy, MTORC1, nonselec tive autophagy, selective autophagy, SQSTM1/p62, ULK1	May 18, 2015	Google scholar	English
68.	A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin	Rational combination treatment approach in vivo by showing greater protection against neurodegeneration in an HD fly model with TOR inhibition and lithium, or in HD flies treated with rapamycin and lithium, compared with either pathway alone	Huntington's disease, mammalian target of rapamycin, glycogen synthase kinase-3b	October 6, 2007	Google scholar	English
69.	The interplay between mitochondria and autophagy and its role in the aging process	Mitochondrial function and autophagy with particular focus on their crosstalk and its possible implication in the aging process	Aging, autophagy, <i>C. elegans,</i> diseases, mitochondria, mitophagy, hormesis	August, 2014	Google scholar	English
70.	Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases	The immune function of both glial cells and neurons, and the roles they play in regulating inflammatory processes and maintaining homeostasis of the CNS.	Microglia, astrocyte, neuron, neuroinflammation, innate immunity, adaptive immunity	July 2, 2012	Google scholar	English
71.	Protein turnover differences between neurons and other cells	Revealed some surprising differences in the ways that neurons regulate protein turnover compared with non-neuronal cells, which we discuss further in this article.	Huntington disease, autophagy, neurodegeneration, rapamycin, everolimus, LC3	October, 2009	Google scholar	English
72.	Decreased glutathione ac- celerates neurological deficit and mitochondrial pathology in familial ALS-linked hSOD1 G93A mice model	The potential difference in the molecular pathways by which different hSOD1 mutants generate disease	Amyotrophic lateral sclerosis, Glutathione, GCLM, Mitochondria	September, 2011	Google scholar	English
73.	Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4- mediated autophagosome formation	Mechanistic explanation of the neuroprotective activity of Resveratrol and support its inclusion in a therapeutic regimen to slow down HD progression.	Huntington, Parkinson, dopaminergic neurons, autophagy, anti-oxidant neurodegeneration	July, 2018	Google scholar	English
74.	Mitochondria and cancer: Warburg addressed	The increased ROS mutagenizes nuclear proto-oncogenes (initiation) and drives nuclear replication (promotion), resulting	Oxidative phosphorylation, reactive oxygen	2005	Google scholar	English

		in cancer. Therefore, hexokinase II and mitochondrial ROS may be useful alternate targets for cancer therapeutics.	species, glycolytic metabolism			
75.	Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer's disease	Mitophagy pathway may become a new targeted therapy to attenuate neuronal damage induced by AD.	Autophagy, oxidative stress, apoptosis, 3-MA, Aβ1-42	January 5, 2018	Google Scholar	English
76.	ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-de- pendent mitochondrial degradation by autophagy.	ROS-induced mitochondrial damage may be an important upstream activator of mitophagy.	neurodegenerative disorders, mitophagy, mit ochondrial morphology, KillerRed, live-cell imaging, reactive oxygen species, SOD2, PARK2/P ARKIN, PINK1	August 14, 2012	Google scholar	English
77.	Motor cortex glutathione deficit in ALS measured in vivo with the J- editing technique.	Discrepancy is attributed to small but opposite changes in NAA and tCr in ALS that, as a ratio, resulted in a statistically significant group difference, further suggesting caution in using tCr as an internal reference under pathological conditions.	Magnetic resonance spectroscopy, amyotrophic lateral sclerosis, glutathione, oxidative stress, neurodegeneration, biomarker	June 6, 2014	Google scholar	English
78.	Parkin mediates proteasome- dependent protein degradation and rupture of the outer mitochondrial membrane	Parkin regulates degradation of outer and inner mitochondrial membrane proteins differently through proteasome- and mitophagy-dependent pathways.	Autophagy, Electron microscopy (EM), Parkinson's disease, proteasome, mitophagy, parkin	March 18, 2011	Google scholar	English
79.	Miro1 deficiency in amyotrophic lateral sclerosis	Miro1 deficiency in ALS patients and ALS animal models and suggest glutamate excitotoxicity as a likely cause of Miro1 deficiency.	Amyotrophic lateral sclerosis, Miro1, spinal cord, lutamate excitotoxicity	May 26, 2015	Google scholar	English
80.	Mitochondrial autophagy is an HIF- 1-dependent adaptive metabolic response to hypoxia	Mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.	Autophagy, cytoplasmic organelles, Beclin-1, reactive oxygen species	February 15, 2008	Google scholar	English
81.	Autophagy and mitophagy in cellular damage control.	Mitophagy are described in the context of <u>bioenergetic</u> dysfunction.	Neurodegeneration, alpha-synuclein, lysosomes, fission, fusion, reactive species, cellular bioenergetics pharmacological agents	2013	Google scholar	English