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Abstract. Rapid warming of Arctic ecosystems exposes soil
organic matter (SOM) to accelerated microbial decomposi-
tion, potentially leading to increased emissions of carbon
dioxide (CO2) and methane (CH4) that have a positive feed-
back on global warming. Current estimates of the magnitude
and form of carbon emissions from Earth system models in-
clude significant uncertainties, partially due to the oversim-
plified representation of geochemical constraints on micro-
bial decomposition. Here, we coupled modeling principles
developed in different disciplines, including a thermodynam-
ically based microbial growth model for methanogenesis and
iron reduction, a pool-based model to represent upstream car-
bon transformations, and a humic ion-binding model for dy-
namic pH simulation to build a more versatile carbon de-
composition model framework that can be applied to soils
under varying redox conditions. This new model framework
was parameterized and validated using synthesized anaero-
bic incubation data from permafrost-affected soils along a
gradient of fine-scale thermal and hydrological variabilities
across Arctic polygonal tundra. The model accurately simu-
lated anaerobic CO2 production and its temperature sensitiv-
ity using data on labile carbon pools and fermentation rates
as model constraints. CH4 production is strongly influenced
by water content, pH, methanogen biomass, and presence of
competing electron acceptors, resulting in high variability in
its temperature sensitivity. This work provides new insights
into the interactions of SOM pools, temperature increase, soil
geochemical feedbacks, and resulting CO2 and CH4 produc-
tion. The proposed anaerobic carbon decomposition frame-

work presented here builds a mechanistic link between soil
geochemistry and carbon mineralization, making it applica-
ble over a wide range of soils under different environmental
settings.
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access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/
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1 Introduction

The northern permafrost region contains 1400–1800 Pg soil
carbon (C), which is more than twice as much C as is cur-
rently contained in the atmosphere (Tarnocai et al., 2009;
McGuire et al., 2012). Persistent cold and saturated soil
conditions have limited C decomposition in this reservoir.
However, rapid warming and permafrost thaw expose pre-
viously frozen organic carbon to accelerated microbial de-
composition, potentially leading to emissions of carbon diox-
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ide (CO2) and methane (CH4) that have a positive feed-
back on global warming (Zimov et al., 2006; Schuur et al.,
2009, 2015). How quickly frozen soil organic matter (SOM)
will be mineralized, and how much permafrost C will be re-
leased to the atmosphere following thaw, is highly uncertain.
Earth system models project 27–508 Pg carbon release from
the permafrost zone by 2100 under current climate forcing
(Zhuang et al., 2006; Koven et al., 2015; MacDougall et al.,
2012; Schaefer et al., 2014). Understanding environmental
dependencies of SOM decomposition is therefore essential
for reducing model uncertainties and improving predictions
of future climate change.

Disagreement in model projections for the northern per-
mafrost region could be due to differences in model structure,
model initialization, or parameters used in simulations. De-
spite increasingly detailed process representations in many
models that simulate terrestrial CO2 and CH4 fluxes, im-
portant geochemical and metabolic constraints might still
be poorly represented, oversimplified, or missing in current
biogeochemical models (Xu et al., 2016). The northern per-
mafrost region is rapidly changing in response to the chang-
ing climate. Rising temperatures not only release more labile
carbon from permafrost for decomposition but also create
thermal and hydrological heterogeneity that further affects
biogeochemical processes. Here, we examine two mecha-
nisms that substantially affect SOM turnover in permafrost-
affected soils. First, rising temperature alters the kinetics
of biogeochemical reactions (Segers, 1998). This effect is
more pronounced at subzero temperature (Bore et al., 2017),
and the process rate increase is higher at lower temperature
ranges (Davidson and Janssens, 2006). Microbial commu-
nities also change with temperature, compounding effects
on process rates (Karhu et al., 2014). Models address this
temperature effect using empirical functions and parame-
ters (Tuomi et al., 2008; Xu et al., 2016), which might be
highly biased depending on model assumptions and original
curve-fitting techniques, generating large uncertainties. Sec-
ond, heterogeneity in permafrost thaw and related hydrologi-
cal responses creates geochemical gradients in soils. Models
use different levels of detail to simulate effects of water sat-
uration (Meng et al., 2012; Xu et al., 2016). Soil moisture
limits gas transport, and it is often used as an implicit con-
trol on heterotrophic respiration and methanogenesis. How-
ever, the explicit processes resulting from soil oxygen deple-
tion (e.g., soil redox status and pH dynamics) are not widely
represented (Riley et al., 2011; Meng et al., 2012; Xu et al.,
2015).

The extent of SOM decomposition and gas emissions de-
pends upon soil geochemical characteristics beyond temper-
ature and O2 availability. Among the wide range of envi-
ronmental variables, pH emerges as a primary control on
decomposition by regulating both microbial communities
and microbial metabolic activities (Zhalnina et al., 2015;
Bethke et al., 2011; Jin and Kirk, 2018). pH affects microbial
metabolism by modulating the thermodynamics and kinetics

of redox reactions. Redox reactions produce or consume pro-
tons, and thus their free energy yields vary with pH (Bethke
et al., 2011; Jin and Bethke, 2007). The Gibbs free energy
available to anaerobic microorganisms that degrade simple
organic molecules generally increases (becomes less favor-
able) with increasing pH (Bethke et al., 2011). Notably, iron
[Fe(III)] reduction is highly proton consuming and becomes
less favorable at higher pH (Fig. S1 in the Supplement). Pre-
vious studies identified iron reduction as a major process in
anoxic Arctic soils (Lipson et al., 2010, 2013), which in-
creases local pH and might favor co-occurring methanogen-
esis (Tang et al., 2016; Wagner et al., 2017). However, the
influence of iron reduction on methanogenesis rates in dif-
ferent soils is rarely investigated. The reactivity of iron and
its pH feedback impose additional complexity on the controls
of SOM decomposition and associated CH4 production.

Despite the importance of pH in controlling redox reac-
tions and resulting C emissions, pH change is not explicitly
represented in biogeochemical models. Most of the current
biogeochemical models apply a single initial pH value for
redox reactions without considering proton production and
consumption during the processes. Traditional decomposi-
tion models use landscape position, soil moisture content, or
other proxies for O2 concentration to determine the form of
C release. Scalars on aerobic respiration (Riley et al., 2011;
Lawrence et al., 2015) or empirical ratios of CO2 and CH4
(Koven et al., 2015) are often used to inform the extent of C
decomposition and partitioning of CO2 and CH4 production.
Reactions that produce or consume protons and the resulting
pH changes or ion exchange reactions are not considered in
these empirical models. Some process-rich models explicitly
include details of methanogen populations and their inter-
actions with substrates and other environmental factors, but
these models still lack the capability to simulate pH changes
during long-term carbon decomposition. Instead, constant
pH is often assumed within bell-shaped pH response func-
tions (Meng et al., 2012; Tian et al., 2010; Xu et al., 2015).
Without underlying proton exchange and pH buffering mech-
anisms, a significant error may occur when rate calculations
depend heavily upon the initial choice of a single optimal pH
value for various reactions.

In this study, we developed a new anaerobic carbon
decomposition model framework with explicit representa-
tion of aqueous-phase geochemistry to allow pH and ther-
modynamic calculations. By coupling three different mod-
els, including a thermodynamically based microbial growth
model, a substrate pool-based model, and a humic ion-
binding model, we built a process-rich carbon decomposi-
tion model that allows simultaneous thermodynamic and pH
calculations. Results from anoxic incubations of permafrost-
affected soils along a hydrological gradient were synthesized
to parameterize and validate this new model framework. The
main objectives of this study were to (i) examine the role of
soil geochemical variables in controlling anaerobic carbon
decomposition and carbon release (as both CO2 and CH4);
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Figure 1. Conceptual diagram showing key processes in the anaer-
obic carbon decomposition framework, beginning with plant mate-
rial and coarse wood debris (CWD). The numbers indicate different
processes. 1. SOM degradation from soil organic carbon pools with
increasing turnover time produces dissolved organic carbon (DOC)
and CO2. 2. Fermentation of DOC into organic acids, H2, and CO2.
3. Methanogenesis from organic acids or H2. 4. Fe(III) reduction
from organic acids or H2. 5. Fe(OH)3 dissolution.

(ii) develop a common set of parameters in the new anaer-
obic carbon decomposition framework to capture variabili-
ties in CO2 and CH4 production; and (iii) evaluate model un-
certainties in responses to both soil heterogeneity and model
parameterization, emphasizing effects of soil saturation, pH,
and temperature response.

2 Materials and methods

2.1 Anaerobic carbon decomposition model

The anaerobic carbon decomposition framework was devel-
oped with explicit representation of fermentation, methano-
genesis, and iron reduction, which were identified as key
mechanisms for anaerobic CO2 and CH4 production (Roy
Chowdhury et al., 2015; Yang et al., 2016; Zheng et al.,
2018b). The main structure of this framework included two
major components: a simplified Community Land Model
with prognostic carbon and nitrogen (CLM-CN) decomposi-
tion cascade (converging trophic cascade, or CTC) (Thornton
and Rosenbloom, 2005) to facilitate parameterization of the
upstream carbon flow entering the aqueous-phase dissolved
organic carbon (DOC) pool (Fig. 1, process 1), and an aque-
ous phase to facilitate calculations of thermodynamics and
redox-reaction-associated acid–base chemistry. An empiri-
cal approach was used to represent non-aqueous-phase soil
organic carbon (SOC) decomposition. Additionally, mecha-
nistic representations of methanogenesis and iron reduction
were developed in this work based on aqueous-phase ther-
modynamic calculations.

The simplified CTC cascade included four SOM pools
to represent bulk SOC with different levels of complexity.
Changes of these SOM pools followed modified first-order
decay (see the Supplement for details). We modified the orig-
inal respiration fraction (Thornton and Rosenbloom, 2005;
Koven et al., 2013) into direct and indirect fractions. Thus,
for each SOM pool, the direct respiration fraction repre-

sented CO2 lost as originally defined, while the indirect res-
piration fraction was labile C produced from bulk C entering
the aqueous-phase carbon pool (DOC pool, Fig. 1).

The large biomolecules in the DOC pool went through
multiple hydrolysis and fermentation steps to produce low-
molecular-weight organic acids that would further respire
into CO2 and CH4 (Boye et al., 2017; Zheng and Graham,
2018; Yang et al., 2016; Roy Chowdhury et al., 2015). Under
anoxic conditions, hydrolysis of polysaccharides was con-
sidered the rate-limiting step for downstream methanogene-
sis (Glissmann and Conrad, 2002). Polysaccharide hydroly-
sis has a favorable free energy, due to increased entropy, but
cannot be readily coupled to biological energy transduction
outside of the cell. We previously measured a rapid decrease
in reducing sugar concentrations in pore water during tundra
soil incubations, which indicated that hydrolysis limits de-
composition (Yang et al., 2016). At low temperatures (below
15 ◦C), the microbial degradation of cellulose was consid-
erably diminished, while other polymers, such as starch or
proteins, were degraded much faster at low temperature, re-
sulting in the accumulation of organic acids, primarily acetic,
propionic, and butyric acids (Kotsyurbenko, 2005; Yang et
al., 2016). These low-molecular-weight organic acids further
fueled microbial mineralization reactions that led to produc-
tion of CH4 and CO2. Given that most anaerobic lignocel-
lulose degraders also fermented sugars following hydrolysis
(Blumer-Schuette et al., 2014), we assumed the turnover of
DOC into low-molecular-weight organic acids was a single
lumped fermentation process (Fig. 1, process 2), in which
labile DOC (C6H12O6) was fermented into acetate, H2, and
CO2 (Appendix A, Reaction AR1, and Table S1 in the Sup-
plement). This assumption gave a fixed stoichiometry ratio:
one-third of the fermented carbon was oxidized to CO2.

Redox reactions including methanogenesis and iron reduc-
tion were represented using a thermodynamically based ap-
proach (Istok et al., 2010), with unique microbial growth ki-
netics incorporated into energy-yielding redox reactions. In
this thermodynamically based approach, the growth equa-
tions of methanogens and iron reducers were derived from
paired electron donor (acetate or H2) and electron accep-
tor half reactions and a biomass synthesis equation (Is-
tok et al., 2010). Using a constant molecular formula as
biomass (C5H7O2N) and ammonium (NH+4 ) as the nitro-
gen source for biosynthesis, we derived the growth equations
for methanogenesis and iron reduction (Appendix A, Reac-
tions AR2–AR5). Rate calculations followed the generalized
Monod rate law (Jin and Bethke, 2007) with an additional
thermodynamic factor representing the thermodynamic driv-
ing force. The thermodynamic factor f (G) is calculated us-
ing Eq. (1) (Jin and Bethke, 2003):

f (G)= 1− exp
(
−
−1G−m1Gp

χRT

)
, (1)

where 1G (kJ (mol reaction)−1) is the free energy change
of the redox reaction. 1G depends on the standard Gibbs
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free energy change (1G0) and the concentrations of chemi-
cal species involved in the reaction.1Gp is the phosphoryla-
tion potential, i.e., the energy required to synthesize adeno-
sine triphosphate (ATP) from adenosine diphosphate (ADP)
and dihydrogen phosphate in the cell’s cytoplasm. 1Gp is
about 45 kJ (mol ATP)−1 (Jin and Kirk, 2018).m is the num-
ber of ATP molecules synthesized per redox reaction. χ is
the average stoichiometric number (Jin and Kirk, 2018), R is
the gas constant (kJ mol−1 K−1), and T is the absolute tem-
perate (K). The factor f (G) ranges from 0 to 1, where the
reaction is thermodynamically favorable when f (G)>0.

Both methanogenesis and iron reduction contribute to
pH change. Reactions such as ferrihydrite reduction sub-
stantially increase alkalinity (Appendix A, Reactions AR4,
AR6). Furthermore, the solubility of CO2 and the composi-
tion of dissolved CO2 and bicarbonate vary significantly over
typical soil pH values, affecting all C mineralization pro-
cesses. In the organic-rich soils modeled here, SOM rather
than minerals provides most buffering capacity. Therefore,
we used the humic ion-binding model to describe pH buffer-
ing during carbon decomposition. A simplified parameteri-
zation of proton binding is available in the Windermere Hu-
mic Aqueous Model (WHAM; Tipping, 1994, 1998), which
has been extensively calibrated to represent the acid–base
chemistry of “average” humic and fulvic acids, and bench-
marked with heterogeneous natural organic matter (Atalay et
al., 2009). We adopted the WHAM parameterization to rep-
resent proton-binding characteristics (pH buffering) provided
by SOM (Tang et al., 2016). Using representative binding
constants provided by WHAM, the pH buffering capacity can
be directly adjusted by altering the number of proton-binding
sites, which is assumed to be linearly correlated with the total
amount of SOM (see the Supplement for details).

2.2 Model implementation and initialization

The above model structure was implemented using the
open-source geochemical program PHREEQC 3.0 (Charl-
ton and Parkhurst, 2011) with a new database describing
SOC decomposition cascade, redox reaction kinetics, and pH
buffering (redox.dat, available at https://github.com/jianqiuz/
decomposition, last access: January 2019). This model as-
sumed thermodynamic equilibrium of aqueous chemical
speciation, mineral dissolution/precipitation, and ion sorp-
tion/desorption based on the updated PHREEQC thermody-
namic database (phreeqc.dat; Charlton and Parkhurst, 2011).
The database was modified to include WHAM pH buffering
and reaction kinetics for SOM pools decay and reaction ki-
netics for fermentation, methanogenesis, and iron reduction.
The kinetic rate constants and microbial biomass growth and
decay rates were adopted from former thermodynamically
based studies (Istok et al., 2010) and previously tested with
low-center polygon Arctic soils (Tang et al., 2016).

The model initialization was based on both the incubation
conditions and soil geochemical characterizations (Fig. S2).

The initial partitioning of SOM pools was assumed to be
at fixed ratios due to the limitation of short-term incuba-
tion data. Under the experimental conditions, we assumed
SOM1 and SOM2 pools with relatively shorter turnover rates
(τ = 14 days and 70 days, respectively) were most relevant in
the model. On the other hand, SOM3 and SOM4 pools were
relatively inert (τ>2 years for both pools). We started with
the relative fractions of SOM pools at approximately 10 %,
40 %, 10 %, and 40 % of SOC in organic and mineral soils
for SOM1–4. We further assessed the bias of this assumption
with sensitivity analysis. Sizes of SOM1 and SOM2 pools
were reduced by 90 % for permafrost to better account for
the overall low levels of carbon degradation.

All other variables required were initialized using mea-
surements based upon 10 to 15 g of wet soil incubated in
60 to 70 mL sealed bottles. Total SOC, total water (TOTW),
total organic acid carbon (TOAC), pH, and the initial con-
centration of Fe(II) were specified in the model based on
measurements (Table S2). The DOC pool in the model was
initialized using the measured water-extractable organic car-
bon (WEOC) expressed as a fraction of SOC (fdoc). On
average, WEOC accounts for approximately 2 % of SOC
based on our synthesized data (see Sect. 3.1). This value is
consistent with previous long-term incubations, which sug-
gested less than 5 % of SOC was fast-decomposing carbon in
permafrost-affected soils at a standardized temperature of 4–
5 ◦C (Knoblauch et al., 2013; Schädel et al., 2014). The start-
ing biomass of methanogens and iron reducers was assumed
to be within the range of 10−3 to 10−5 g C g SOC−1 for or-
ganic soils, 10−4 to 10−6 g C g SOC−1 for mineral soils, and
10−7 to 10−9 g C g SOC−1 for permafrost (Table S2). This
stratified microbial biomass distribution was used to repre-
sent the vertical gradient in the relative abundance of micro-
bial communities (Yang et al., 2017).

The lumped fermentation process was the rate-limiting
step in the model and was fitted individually with data from
each soil microcosm. Based upon reaction stoichiometry, the
fermentative conversion of each mole of labile C led to two-
thirds of mole of organic acids and one-third of a mole of
CO2. Organic acids were mineralized via methanogenesis or
iron reduction to convert approximately 49 % to 88 % of C
in organic acids into CO2. This estimation was based on re-
action stoichiometry of Reactions (AR2) and (AR4), and a
fraction of the C was incorporated into microbial biomass.
Therefore, the percentage of respired C would be less than
100 % even if all organic acids were respired as CO2. If we
assume all fermentation products were mineralized into CH4
and CO2, we could estimate the fermentation rate (Rfer) from
measured CO2 production. Thus, Rfer was estimated using
the initial CO2 production rate in the incubation data,and fur-
ther optimized using the least squares method by fitting with
observed CO2 production values (Table S3).

Temperature and pH response functions were used to fur-
ther constrain model simulations (Fig. S2). A temperature
effect was parameterized using the CLM-CN temperature re-
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sponse function (Appendix B, Eq. B1). Additional tempera-
ture response functions were evaluated by sensitivity analysis
(see Sect. 2.4). The effect of pH on biological reaction rates
is modulated by bell-shaped pH response functions (Tang
et al., 2016; Xu et al., 2016). Here, we used the Dynamic
Land Ecosystem Model (DLEM) pH response function (Ap-
pendix B, Eq. B5), since it generated the least variation in
parameter perturbation tests (Tang et al., 2016).

2.3 Incubation data synthesis for model validation

Incubation data from Utqiaġvik (Barrow) Alaska soil cores
that represent the microtopographic heterogeneity of polyg-
onal tundra were synthesized to validate the new anaerobic
carbon decomposition model. The selected datasets represent
fine-scale variabilities in thermal and hydrological regimes
across the gradient of soil microtopographic positions (Hern-
don et al., 2015). The synthesized data contain complete
sets of soil geochemical descriptions for organic, mineral,
transition zone (if identified), and permafrost layers from
each microtopographic feature (see the Supplement for de-
tails). Levels of total soil organic carbon, WEOC, and TOAC
were available before and after soil incubation. Besides CH4
and CO2 production during low-temperature soil decomposi-
tion, data on Fe(II) concentrations and pH changes were also
available for model initialization and validation.

2.4 Model parameter uncertainty

This model was designed as a generic framework to simu-
late anaerobic carbon decomposition across a range of soil
physiochemical conditions. Two types of sensitivity analysis
were conducted to evaluate model performance. First, pos-
sible bias and variations associated with model initialization
variables (soil geochemical attributes) were assessed using
perturbation simulations. Variations of ±25 % and ±50 %
(+100 % and 200 % for some variables) were applied to these
variables, and the resulting changes in cumulative CO2 and
CH4 production were evaluated by comparison with refer-
ence simulations. This evaluation helps to identify critical
measurements needed for initializing the model. Second, pa-
rameters specifically benchmarked in this study and parame-
ters adopted from empirical relationships were also evaluated
with perturbation simulations. This test helps to apportion the
model prediction uncertainties into different sources, includ-
ing model input, parameters, or model structure.

3 Results

3.1 Meta-analysis to validate model assumptions

Incubation data used in this study were generated from soils
representing different microtopographic features with a wide
range of moisture and SOC contents and reported elsewhere
(Roy Chowdhury et al., 2015; Zheng et al., 2018b). Correla-

tion analysis revealed a close relationship between soil mois-
ture and organic carbon pools (measured as SOC, WEOC,
and TOAC) among examined soil microtopographic features
and across soil depth (p<0.01, Table S4). All these soil prop-
erties significantly correlated with cumulative CO2 and CH4
production (p<0.05), suggesting the important role of initial
soil geochemical properties in controlling carbon degrada-
tion.

Although various levels of carbon mineralization were
measured as CO2 and CH4 production during incubations,
changes in WEOC and TOAC were consistent among treat-
ments with distinct patterns. WEOC represents 0.3 % to
2.6 % of total SOC among all test soils, and this ra-
tio remained constant before and after anoxic incubations
(Fig. S3). On the other hand, TOAC showed much more dy-
namic changes among different soils and different incuba-
tion temperatures. TOAC generally increased in soils from
the organic layer, transition zone, and permafrost. In con-
trast, TOAC drastically decreased by up to 90 % in min-
eral soils. These results indicate that WEOC was in a steady
state among examined soils, while TOAC varied substan-
tially due to microbial mineralization processes, supporting
the model assumption of lumped fermentation (the conver-
sion of WEOC to TOAC) as the rate-limiting step.

Both CO2 and CH4 production rates responded strongly
to rising incubation temperature (p = 0.02 and p = 0.04, re-
spectively; Fig. S4, Tables S5 and S6). The estimated Q10
values of CO2 production showed a relatively narrow range,
while methanogenesis had much larger variation in estimated
Q10 values ranging from 1.6 to 48.1. Using Q10 values
to simulate the temperature dependence of processes might
work for CO2 production but could generate significant er-
rors in predicting CH4 production.

3.2 Modeled CO2 and CH4 production using observed
parameters

The model performed well in simulating CO2 and CH4 dy-
namics across a range of moisture and SOC gradients and
among different soil types (Figs. S5 and S6). Variations in
gas production among different conditions, including mi-
crotopographic features, soil layers, and different incubation
temperatures, were well captured (Fig. S7). The comparisons
between modeled and observed CO2 and CH4 production are
shown in Fig. 2. The model slightly underestimates CO2 pro-
duction towards the end of the incubations but still maintains
a good agreement between modeled and observed CO2 pro-
duction (R2

= 0.89). The underestimation of CO2 produc-
tion is likely due to substrate limitations caused by the ini-
tial distribution of different carbon pools. Model-predicted
CH4 production also showed good agreement with observa-
tions (R2

= 0.79). More variation between modeled and ob-
served CH4 production suggests a systematic pattern in the
model parameterization of methanogenesis: the model under-
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Figure 2. Comparison between modeled and observed production of CO2 (a) and CH4 (b). Averaged measurements of triplicate microcosms
at each time point from each incubation temperature were calculated as observed values.

estimates CH4 production at 4 and 8 ◦C, and overestimates
CH4 production at −2 ◦C.

To assess the model sensitivity to initial model inputs,
we compared model predictions in response to varying ini-
tial model inputs via perturbation simulations. First, we ex-
amined the influence of the partitioning of different carbon
pools. Significant changes in model predictions of CO2 and
CH4 were observed in response to perturbations of initial in-
put of SOC and WEOC but not TOAC (Fig. 3). SOC deter-
mines the size of different carbon pools in the model, and
it further influences the predictions of WEOC, TOAC, CO2,
and CH4. For example, predicted CO2 and CH4 production
increased by about 200 % when +200 % changes were ap-
plied to initial SOC input. This trend is consistent with cor-
relation analysis of incubation results, described above (Ta-
ble S4). Perturbations in initial WEOC strongly altered the
predictions of TOAC and CO2, consistent with the model as-
sumption of the conversion of WEOC to TOAC (fermenta-
tion process) as the rate-limiting step. The model also pre-
dicted increases in CH4 and Fe(II) accumulation in response
to lower WEOC. Lower WEOC significantly reduced organic
acid accumulation and thus increased system pH and accel-
erated rates of both methanogenesis and iron reduction. The
starting level of TOAC showed minimal influence on model
predictions of CO2 and CH4, suggesting other factors rather
than substrate availability were limiting carbon mineraliza-
tion. The initial sizes of SOM1 and SOM2 pools showed very
slight changes in model predictions of WEOC and CO2, and
minimal influence on CH4 prediction, further supporting the
assumption that downstream fermentation is the rate-limiting
step in the model. Additional soil geochemical factors, in-
cluding soil moisture, Fe(II), and pH, also significantly in-
fluence model output. In particular, initial soil pH showed a
dramatic effect on predicted CO2 and CH4 production. With
initial soil pH increasing from 5 (reference simulation) to 6,

the model predicted 160 % and 308 % increases in CO2 and
CH4 production, respectively. Perturbations in initial soil pH
had the strongest effect on the prediction of CH4 by assign-
ing different values in fpH that were directly proportional to
the methanogenesis rates. The above results of perturbation
simulations demonstrated the high sensitivity of this model
in response to varying soil geochemical properties.

3.3 Model sensitivity to parameterization uncertainties

To further validate the model, we performed additional sensi-
tivity analysis to justify model assumptions and estimate the
uncertainties generated from model parameterizations. One
major assumption of this modeling framework is to lump
multiple fermentation processes into one reaction stoichiom-
etry, controlled by one reaction rate constant. It is critical to
evaluate how this simplified structure influences model per-
formance and contributes to model output uncertainties. The
model parameter sensitivity analysis indicated the TOAC
pool was most sensitive to changes in the fermentation rate
(Rfer) and reaction stoichiometry (Fig. 4). Downstream re-
actions were less affected by the uncertainties of the two
tested parameters. These results supported our assumption of
lumped fermentation with fixed stoichiometry, indicating the
robustness of the model structure presented here.

The selection of temperature response functions represents
one of the major sources of model uncertainties. A sensi-
tivity analysis was performed by comparing four different
temperature response functions (Appendix B). In our simula-
tions, the quadratic temperature response function proposed
by Ratkowsky et al. predicted much higher CO2 and CH4
production rates at higher temperature, and the lowest rates
of both CO2 and CH4 at temperatures below 0 ◦C, giving the
highest temperature response among tested response func-
tions (Fig. 5). In contrast, the Arrhenius equation predicted
much lower temperature response for both CO2 and CH4.
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Figure 3. Perturbations of initial soil geochemical conditions differentially affected model predictions (including CH4, CO2, Fe(II), TOAC,
WEOC, and pH) during anaerobic carbon decomposition. For example, when the initial pH decreased by 8 % and 17 %, CH4 production
decreased by 40 % and 80 %, respectively. Normalized changes in model output were calculated as the ratio of changes caused by perturbation
simulations (differences between perturbation and reference runs) to reference simulation output after 60 days of anaerobic decomposition
at 8 ◦C. To test model sensitivity in response to initial pH, the reference run started with pH 6, and up to 1 pH unit changes were applied in
perturbation simulations to represent a realistic pH range for soils. Reference simulations were based on soils with 30 % SOC (water content
of 2 g g−1 dwt, and pH= 5).

Empirical functions used in the CLM-CN and CENTURY
models gave similar temperature responses for both CO2 and
CH4. Variations in low-temperature CO2 production are well
constrained by established temperature response functions,
while CH4 production at −2 ◦C showed a much wider range
of temperature response, and the median value is best simu-
lated using the Ratkowsky function. This sensitivity analysis

is consistent with model output of CO2 and CH4 production,
where CO2 is well constrained by the model, but CH4 is sig-
nificantly overestimated at −2 ◦C using the CLM-CN tem-
perature response function. A unified temperature response
function for all reactions under different biotic or abiotic con-
straints substantially contributes to the disagreement between
model output and observations.
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Figure 4. Simulated changes in model predictions (including CH4, CO2, Fe(II), TOAC, WEOC, and pH) during anaerobic carbon decompo-
sition in response to perturbations of (a) fermentation rate and (b) fermentation stoichiometry (acetate : CO2 is 1 : 1 for reference simulation).
Normalized changes in model output were calculated as the ratio of perturbation simulation output to reference simulation output after 60
days of anaerobic decomposition at 8 ◦C. Reference simulations were based on soils with 30 % SOC (water content of 2 g g−1 dwt, and
pH= 6).

Figure 5. Comparison of simulated and observed temperature responses for the production of CO2 (a) and CH4 (b). Results were all
normalized to CO2 or CH4 production rates at 8 ◦C for direct comparison. Observations at −2 and 4 ◦C were plotted in black dots and
the median values were marked in red. The shaded area represents output uncertainties generated from rate estimations within 60± 5 days.
Reference simulations were based on soils with 30 % SOC (water content of 2 g g−1 dwt, and pH= 5).

Redox reactions contribute to proton production or con-
sumption, and the resulting pH alters the value of the pH re-
sponse function (fpH) that directly controls reaction kinetic
functions, creating a feedback loop. pH buffering capacity
(BC) provided by SOM with proton-binding sites and fpH
represent two major sources of uncertainties in this feedback
loop. Thus, we performed perturbation simulations to charac-
terize the sensitivity of model output to variations in BC and
fpH (Fig. 6). Higher BC stabilized system pH during pro-
longed incubations, while lower BC permitted a pH increase
by up to 0.71 pH unit compared to the reference simulation.
This 14 % pH increase led to a 123 % increase in fpH, accel-
erating both methanogenesis and Fe(III) reduction rates sub-

stantially. Perturbations on the pH response function were di-
rectly reflected in the slopes of pH response curves (Fig. S8).
We found up to 372 % change in the value of fpH during a 60-
day simulation, as a steeper increase in fpH accelerated both
methanogenesis and iron reduction (Reactions AR2–AR5),
which contributed to pH rise that further accelerated fpH in-
crease. Correspondingly, both CH4 and Fe(II) increased by
more than 100 % after the simulation. While BC is an impor-
tant factor controlling both redox reactions and pH fluctua-
tions, a unified fpH for all reactions may impose significant
variations in model output.

BC is an intrinsic soil property simulated with a simpli-
fied linear relationship to soil SOM. However, it generates a
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Figure 6. Simulated changes in model predictions (including CH4, CO2, Fe(II), TOAC, WEOC, pH, and fpH) during anaerobic carbon
decomposition in response to perturbations of (a) pH buffering capacity and (b) pH response function. Normalized changes in model output
were calculated as the ratio of perturbation simulation output to reference simulation output after 60 days of anaerobic decomposition at
8 ◦C. Reference simulations were based on soils with 30 % SOC (water content of 2 g g−1 dwt, and pH= 5).

Figure 7. Temperature response of CH4 and Fe(II) production rates at varying soil pH buffering capacities (BCs). Varying BCs with respect
to the reference simulation (BC= 1) creates strong feedback to rates of methanogenesis and iron reduction. Reference simulations were
based on soils with 30 % SOC (water content of 2 g g−1 dwt, and pH= 5).

strong nonlinear response in the simulations of methanogen-
esis and Fe(III) reduction (Fig. 7a). Simulations with varying
soil BC revealed dynamic pH change at lower BC (Figs. 8
and 9, with BC= 1 as the reference simulation) and stabi-
lized pH at higher BC. At constant temperature, rates of both
methanogenesis and Fe(III) reduction increased significantly
at lower BC due to pH control. At lower BC, when pH change
is not well buffered, higher pH accelerated CH4 and Fe(II)
production rates (Fig. 7), giving much higher apparent tem-
perature responses, while at higher BC with stabilized pH in
the system, apparent temperature responses of these redox
processes were significantly lower than the reference sim-

ulation (BC= 1). Variations in pH buffering capacity gen-
erated large variations in apparent temperature responses of
methanogenesis and Fe(III) reduction due to this pH feed-
back loop.

4 Discussion

4.1 Synthesized soil geochemistry and model validation

Soil geochemical characteristics represent important abiotic
controls on anaerobic carbon decomposition and subsequent
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Figure 8. Cluster analysis of soil geochemical properties related to CO2 and CH4 production using Ward’s linkage method. (a) Cluster
analysis of measured soil geochemical characteristics and observed CO2 and CH4 production (n= 42); (b) cluster analysis of modeled
results (n= 42). Model-simulated CO2, CH4, and Fe(II) production, and final pH values are labeled as M_CO2, M_CH4, M_Fe, and M_pH,
respectively. Biomasses of methanogens and iron reducers were tracked in the model and labeled M_Meb and M_Feb, respectively.

CO2 and CH4 production. SOC content, soil pH, water ta-
ble position, C : N ratio, and landscape position were all sug-
gested to contribute to the variability in anaerobic CO2 and
CH4 production (Lee et al., 2012; Schädel et al., 2014; Treat
et al., 2015). We synthesized incubation data for gelisol soils
from different pedons and soil moisture regimes representing
heterogeneity across the Barrow Environmental Observatory
(BEO). This coordinated dataset allowed us to focus on in-
dividual factors and their roles in relation to anaerobic CO2
and CH4 production.

Carbon released as CO2 and CH4 during anoxic incuba-
tions decreased with depth. Permafrost was associated with
low levels of CO2 production and very low CH4 production,
consistent with a previous synthesis (Treat et al., 2015). Nev-
ertheless, permafrost TOAC, WEOC, and SOC concentra-
tions were all comparable to organic soils, suggesting high
substrate availability but low microbial activity. This trend
is consistent with previous studies (Walz et al., 2017; Treat
et al., 2015), where highest microbial abundance and diver-
sity were observed in surface soil, and permafrost contained
low microbial abundance (Treat et al., 2014; Waldrop et al.,
2010). Among surface soils, higher moisture in low-centered
polygon soils significantly promoted CO2 and CH4 produc-
tion and the accumulation of fermentation products (mea-
sured as TOAC), emphasizing the importance of soil SOC
content and moisture as strong environmental drivers for car-
bon decomposition. Given the bias in correlation analysis
created by the skewed distribution of CO2 and CH4 produc-
tion in our dataset, additional cluster analysis was performed
based on data similarity rather than correlations. High sim-
ilarity of soil attributes (depth, moisture, pH, C : N ratio,
SOC, TOAC) with CH4 production (Fig. 8a) was found, sug-
gesting methanogenesis is potentially controlled by a set of
soil geochemical characteristics in the local microenviron-
ment.

These synthesized observations support the major assump-
tions of our model development: (1) the coupled hydroly-
sis and fermentation processes converting macromolecular
SOM into low-molecular-weight organic acids are the rate-
limiting step; and (2) different rates of CO2 and CH4 pro-
duction from different soil layers can be attributed to vari-
ations in microbial activity manifested as differences in ini-
tial microbial biomass or growth rates. Additional observa-
tions of substantial Fe(III) reduction and associated pH in-
creases during anaerobic decomposition (Fig. S9) confirmed
the need to simulate pH variations associated with redox re-
actions and corresponding microbial responses. This anaero-
bic carbon decomposition framework adequately modulated
the involved biotic and abiotic interactions by splitting the
carbon flow to different redox reactions and simulating pH
buffering capacity to mediate associated changes in acidity
or alkalinity.

The model presented here identified fermentation, aceto-
clastic methanogenesis, and acetotrophic iron reduction as
key mechanisms for anaerobic CO2 and CH4 production
(Vaughn et al., 2016; Lipson et al., 2010). Although deni-
trification, ammonification, and sulfate reduction are all ther-
modynamically more favorable, low nitrate and sulfate con-
centrations in BEO soils limit flux through these pathways
(Newman et al., 2015). We performed another cluster analy-
sis on the model output (Fig. 8b), where we not only simu-
lated fermentation, methanogenesis and iron reduction rates,
and associated pH changes but also tracked the biomass of
methanogens (M_Meb) and iron reducers (M_Feb). A den-
drogram depicting data similarity showed four distinct clus-
ters consisting of WEOC, CO2 (CO2 prediction), ferrous
(Fe(II) prediction), and CH4 (CH4 prediction) that closely
associated with soil geochemical properties and incubation
temperature. This result is similar to the cluster analysis
of synthesized data, demonstrating that the proposed model
structure captured major relationships between carbon min-
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eralization and soil geochemical attributes. Predicted CH4
production is strongly influenced by incubation temperature,
soil pH, soil moisture, and depth which determine the size
of the methanogen population. This model prediction is con-
sistent with previous studies on the vertical distribution of
methanogen population (Waldrop et al., 2010). Environmen-
tal factors, such as labile organic matter, water table depth,
and soil redox status, soil alkalinity, and salinity (Wachinger
et al., 2000; Rivkina et al., 2007; Høj et al., 2006; Yang et
al., 2017) are all likely to contribute to the variabilities in the
distribution and abundance of methanogens and subsequent
methane production.

4.2 Temperature and pH response of anaerobic carbon
decomposition

Rising temperature promotes anaerobic carbon decomposi-
tion, resulting in increased rates of anaerobic CO2 and CH4
production (Treat et al., 2014; Lupascu et al., 2012). It is
widely recognized that methanogenesis is more sensitive to
temperature than respiration (Yvon-Durocher et al., 2012,
2014), and it is usually associated with large variations.
Segers estimated the Q10 value of methanogenesis ranged
from 1.5 to 28 among 1043 incubation experiments using
wetland soils (Segers, 1998). Our data synthesis revealed
higher temperature sensitivity than other reported values.
High estimated temperature sensitivity across the freezing
point of water has previously been documented (Waldrop et
al., 2010) and further attributed to limited water availability
for microbial activities at subzero temperature (Tilston et al.,
2010). Ratkowsky et al. proposed a quadratic relationship for
the temperature dependence of microbial growth rates that
modeled low-temperature growth better than the Arrhenius
law (Ratkowsky et al., 1982). Our simulations suggest better
prediction of methanogenesis with this temperature response
function, possibly due to a more suitable representation of
growth limitation of methanogens at subzero temperature.
Methanogenesis rates are also influenced by the availabil-
ity of alternative electron acceptors and carbon source. Pro-
cesses contributing to the accumulation or consumption of
carbon substrates and competing electron acceptors may re-
spond differently to temperature change, which could further
complicate the temperature sensitivity of methanogenesis.
Current modeling approaches heavily depend upon empiri-
cal temperature response functions, which may be associated
with large uncertainties due to variations in the selection of
data and curve-fitting methods. Extrapolation of carbon de-
composition rates, particularly methanogenesis rates, into a
future warmer climate remains uncertain. More accurate sim-
ulations will require additional information on geochemical
properties that contribute to the variations of methanogens
distribution and methanogenesis activity.

pH values impose fundamental physiological restrictions
on microbial activities. Soil pH ranges from acidic to cir-
cumneutral (pH 4–7.5) in northern Alaska and varies sub-

stantially through the soil profile and along the microtopo-
graphic gradient. Accumulation of organic acids in anoxic
soils leads to pH decline (Jones et al., 2003), while consump-
tion of organic acids by methanogenesis and iron reduction
increases the alkalinity of the system via the production of
HCO−3 and OH− (Drake et al., 2015; Roy Chowdhury et al.,
2015; Howell et al., 1998). The interplay of these processes
leads to strong nonlinear pH feedbacks in the system, and
previous studies have observed up to 1–2 pH unit changes
during short-term anoxic incubations (Xu et al., 2015; Drake
et al., 2015; Roy Chowdhury et al., 2015). These relation-
ships between pH and organic carbon decomposition can
vary in sign and magnitude. Our model simulations with
mechanistic pH evolution indicate that constant pH assumed
in previous models may cause significant errors in simulating
long-term anaerobic CO2 and CH4 production. The intrinsic
soil pH buffering capacity plays a large role in stabilizing
soil pH and may be heterogeneous depending upon solution
acidity or alkalinity, cation exchange capacity and residual
acidity or mineral dissolution. These properties derive from
SOM characteristics, moisture, mineral content, and addi-
tional geochemical properties, leading to complex correla-
tions between soil pH and SOC decomposition rate that re-
quire future investigation.

4.3 Fast-decomposing carbon pool

Substrate availability is a primary determinant of potential
CO2 and CH4 production (Lee et al., 2012; Schuur et al.,
2015; Tarnocai et al., 2009). Total SOC is composed of
heterogeneous C pools characterized by different turnover
times. Carbon release during short-term incubation origi-
nates from the C pool with relatively rapid turnover. The size
and turnover time of this quickly metabolized carbon pool
are usually estimated by two-pool or three-pool conceptual
models with a maximum likelihood solution using time se-
ries of CO2 data (Schädel et al., 2013). A previous study on
Siberian permafrost soils using a two-pool model estimated
a turnover time of 0.26 years for the fastest-responding pool
(Knoblauch et al., 2013). A three-pool model was applied
using more extensive incubation datasets collected from 23
high-latitude ecosystems, yielding an estimate of a 0.35-year
mean turnover time for the fastest-responding carbon pool
(Schädel et al., 2014).

In our synthesis study, we directly quantified WEOC and
assumed it represented the fast-decomposing labile carbon
pool. The size of the labile carbon pool is constant during
anaerobic decomposition, while total CO2 and CH4 release
represent up to 194 % of the labile carbon pool, indicat-
ing continuous replenishment of the labile carbon pool from
non-labile carbon pools within the hierarchy. The replen-
ishment of the labile carbon pool can be attributed mostly
to decomposition of SOM1 and SOM2 pools with faster
turnover (Koven et al., 2013). Overall, we estimated the fast-
decomposed carbon pool is approximately 2 %–4 % of total
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Figure 9. Model-estimated turnover rates of the fastest-
decomposing carbon pool. Organic, mineral, and permafrost
labels represent estimations from our model simulations (rates
estimated at 4 ◦C). Schadel data represent turnover rates estimated
via a three-pool model from pooled anaerobic incubations with
normalized incubation temperature of 5 ◦C (tags 1, 2, and 3 repre-
sent pool estimation from different soil types: 1. organic, 2. mineral
<1 m, 3. mineral >1 m). Knoblauch data are rate estimates (at
4 ◦C) made via a two-pool model (Schädel et al., 2014; Knoblauch
et al., 2013). Open symbols represent the average values, and the
vertical lines represent the estimated range.

SOC, similar to previous estimates. The turnover time calcu-
lated from the fermentation rate was comparable to estimates
of the turnover time of the fastest-responding carbon pool
in previous studies (Fig. 9), suggesting these quantifications
and parameterization in the anaerobic carbon decomposition
framework apply broadly.

4.4 Key features of the anaerobic model framework
and future considerations

Here, we present an anaerobic carbon decomposition frame-
work by combining three well-known modeling approaches
developed in different disciplines. A pool-based model to
represent upstream carbon transformations and replenish-
ment of a DOC pool, a thermodynamically based model to
calculate rate kinetics and biomass growth for methanogen-
esis and Fe(III) reduction, and a humic ion-binding model
for aqueous-phase speciation and pH calculation are imple-
mented into the open-source geochemical model PHREEQC
(Charlton and Parkhurst, 2011). The model framework pre-
sented here has several unique features. First, this model
is built upon a thermodynamically based approach, which
allows consistent parameterization of individual reactions
along the redox ladder. Such a model structure is particu-
larly useful in circumstances when function-specific micro-
bial growth is difficult to quantify and parameterize. Second,
calculations of free energy changes of redox couples are used
to modulate redox reaction hierarchy. Considering the dif-
ficulty in obtaining growth-associated parameters for every
functional group, a thermodynamically based approach sig-

nificantly decreases the number of parameters that are dif-
ficult to measure. In addition, proton production and con-
sumption during redox reactions are incorporated into a dy-
namic pH calculation, allowing various simulations on aque-
ous solubility and reactivity of different elements. The anaer-
obic carbon decomposition framework presented here holds
a significant advantage over traditional models in simulating
carbon decomposition process within a wide range of envi-
ronmental settings.

In permafrost-affected regions, studies consistently iden-
tify iron reduction, denitrification, and sulfate reduction (Lip-
son et al., 2010, 2013; Ernakovich et al., 2017; Hansen
et al., 2007) as alternative anaerobic pathways, which are
recognized as energetically more favorable processes than
methanogenesis. Fe reduction makes a significant contribu-
tion to total respiration (Roy Chowdhury et al., 2015; Hern-
don et al., 2015), and adding Fe reduction simulations to a
baseline model (without Fe reduction or dynamic pH calcula-
tions) caused faster decreases in TOAC and WEOC pools and
increased CO2 production as expected (Fig. S10). More indi-
rect feedbacks were revealed when dynamic pH calculation
was enabled. With dynamic pH simulation during anaerobic
decomposition, the model revealed strong pH dynamics that
are counterbalanced by Fe reduction. By including both Fe
reduction and dynamic pH calculations, the model accurately
reproduced the initial pH drop and subsequent pH rise during
incubations, which were commonly observed in permafrost-
affected soils (Roy Chowdhury et al., 2015; Herndon et al.,
2015). The new model framework presented here provides
a basis for a deeper understanding of carbon decomposition
under oxygen-limited conditions where the importance of ac-
counting for alternative election acceptors and pH feedbacks
becomes more pronounced. Future fine-scale experiments on
carbon decomposition using alternative electron acceptors
would be beneficial for more comprehensive parameteriza-
tion of this model framework. Additional observations on
temperature and pH sensitivity of specific redox reactions
would also be quite useful in reducing large uncertainties
generated by the current representation of temperature and
pH responses. Application of such a modeling framework at
the field scale requires close coupling with hydrology mod-
els to facilitate estimations of aqueous-phase concentrations.
Additional assumptions on vertical mixing and gas diffusion
in the soil column should also be considered.

5 Conclusions

Microbial processes are the driving forces for biogeochemi-
cal cycling of soil carbon and are subjected to environmental
constraints beyond temperature and organic substrate avail-
ability. The present study incorporated microbial redox re-
actions and mechanistic pH evolution to simulate anaerobic
carbon decomposition in Arctic soils with depth and across
soil moisture gradients. Our data synthesis and modeling re-
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sults quantify direct effects of temperature on anaerobic car-
bon decomposition, as well as indirect effects of soil geo-
chemistry that cause strong redox reaction–pH feedback. We
identified substantial pH feedbacks on the predicted CO2
and CH4 production. The anaerobic carbon decomposition
framework presented in this study provided the essential
model structure to incorporate redox reactions of alternative
electron acceptors for accurate simulation of CO2 and CH4
production. Soil geochemistry imposes critical constraints on
SOM decomposition and further regulates permafrost carbon
feedback in response to changing climate.

Code and data availability. PHREEQC (version 3) is publicly
available at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/
phreeqc/ (last access: January 2019).

The model is archived at https://doi.org/10.5440/1430703
(Zheng et al., 2018c), with a detailed description of model imple-
mentation, input files, and various sensitivity analyses described in
this paper.

Datasets used in this work can be found at
https://doi.org/10.5440/1168992 (Herndon et al., 2017),
https://doi.org/10.5440/1393836 (Zheng and Graham, 2018),
and https://doi.org/10.5440/1288688 (Zheng et al., 2017),
and a synthesis of the incubation data is available at
https://doi.org/10.5440/1440029 (Zheng et al., 2018a).
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Appendix A: Anaerobic carbon decomposition model

This section lists reactions used in the anaerobic carbon de-
composition model. Under anaerobic conditions, dissolved
organic carbon is converted to low-molecular-weight organic
acids via fermentation. One simplified fermentation reaction
is used to represent this lumped fermentation process, where
one-third of the fermented organic carbon is converted to
CO2 (Tang et al., 2016; Xu et al., 2015):

C6H12O6+ 4H2O→ 2CH3COO−+ 2HCO−3 + 4H++ 4H2.

(AR1)

This fermentation reaction generates protons and de-
creases pH in the system. Fermentation products acetate and
H2 are further consumed via methanogenesis and iron reduc-
tion. The growth equations of methanogenesis and iron re-
duction were derived for each group using a thermodynami-
cally based approach, in which biomass synthesis is included
in paired electron donor and electron acceptor half reactions.
A general molecular formula (C5H7O2N) is used for micro-
bial biomass, and the growth equations are written as (Istok
et al., 2010)

1.5H++ 98.2H2O+NH+4 + 103.7CH3COO− (AR2)
→ C5H7O2N+ 101.2HCO−3 +CH4

84.9H++NH+4 + 85.9HCO−3 + 333.5H2 (AR3)
→ C5H7O2N+ 255.6H2O+ 80.9CH4

72.1H2O+NH+4 + 150.2Fe3+
+ 21.3CH3COO− (AR4)

→ C5H7O2N+ 150.2Fe2+
+ 167.4H++ 37.5HCO−3

5HCO−3 +NH+4 + 114.8Fe3+
+ 57.4H2 (AR5)

→ C5H7O2N+ 114.8Fe2+
+ 110.8H++ 13H2O.

In addition, Fe(III) concentration was calculated based on
the dissolution of representative amorphous ferric hydrox-
ides (Reaction AR6), with a solubility constantKs0 = 103.96.
This process consumes many protons and contributes to pH
increases.

Fe(OH)3(s)+ 3H+↔ Fe3+
+ 3H2O (AR6)

A complete set of rate constants used in this model can be
found in Table S1.

Appendix B: Temperature and pH response functions

We used the CLM-CN temperature response function
(Eq. B1) in our simulations (Thornton and Rosenbloom,
2005). Additional tested temperature response functions in-
cluded Eq. (B2), which is used by the CENTURY model
(Grosso et al., 2005), the Arrhenius equation (Eq. B3) used in
ecosys (Grant, 1998), and the quadratic Eq. (B4) (Ratkowsky
et al., 1982). Tref is set at 25 ◦C, Ea is the activation energy
(J mol−1), and R is the universal gas constant (J K−1 mol−1).
Tm used in Ratkowsky’s model represents a conceptual tem-
perature of no metabolic significance and is set at −8 ◦C in
this study.

lnf (T )= 308.56×
(

1
71.02

−
1

T − 227.13

)
(B1)

f (T )= 0.56+ 0.465 arctan [0.097(T − 15.7)] (B2)

f (T )= e
−Ea
R

(
1
T
−

1
Tref

)
(B3)

f (T )=

(
T − Tm

Tref− Tm

)2

(B4)

The discontinuous bell-shaped pH response function from
the DLEM model was used here (Eq. B5; Tian et al., 2010):

f (pH)=
1.02

1.02+ 106exp(−2.5pH)
(0<pH<7) (B5)

f (pH)=
1.02

1.02+ 106exp(−2.5(14-pH))
(7<pH<14). (B6)
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