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Abstract. This paper discusses different aspects of analytical and numerical modelling of the buckling 

resistance of welded I-section columns subjected to axial compression. The section considered is of class 1 

that implies no local buckling affecting the column performance. The proposed analytical formulation of the 

buckling resistance is based on the so-called Marchant-Rankine's-Murzewski approach (M-R-M approach). 

The model proposed is of a 2D type and is a simplification of the 3D one that has recently been presented 

by the authors. The parameters of equivalent stress-strain model of the postwelding steel  are calibrated in 

two stages of the best fit approximation procedure and with use of numerical results of the finite element 

simulation of the buckling resistance. In the first stage, the postyielding inelastic tangent stiffness parameter 

ξE,eff  is evaluated with fixed value of the first yield parameter ψeff= ψcom. A target of the second stage is to 

assign the best fit value of the first yield parameter ψeff and the imperfection factor n that allows for 

accounting the effect of geometric imperfections. 

1 Introduction  

Eurocode 3 design recommendations with regard to the 

buckling resistance of columns and beams are based on 

the Ayrton-Perry formulation [1] in which the combined 

effect of imperfections is modelled through the 

introduction of a slenderness dependent imperfection 

factor η of the following format:  

                                      ( )0 −=   (1) 

in which α is the imperfection constant defining the 

buckling curve (represents globally the effect of 

imperfections on the buckling resistance as to the 

buckling dependency of real structural elements upon the 

section type, section wall dimensions, fabrication 

process and mode of buckling) and 0  is a constant 

below which the buckling phenomenon does not affect 

the member behaviour. 

A disadvantage of the approach such as that of 

Eurocode 3 [2] is that the buckling resistance cannot be 

evaluated as a function of the explicitly predefined 

parameters of material imperfections and geometric 

imperfections. One of the approaches that allows for the 

buckling resistance evaluation based on the independent 

treatment of imperfections is that of the Merchant-

Rankine-Murzewski type (M-R-M approach) [3, 4]. In 

the 3D type of M-R-M approach presented by the 

authors in [5], two independent parameters 0e  and ψcom 

were introduced that describe in a dimensionless format 

the actual geometric imperfection profile and the actual 

postwelding residual stress pattern, respectively. It is 

based on the effective stress-strain diagram resulting 

from either the equilibrium stress model (ES model) or 

the compatibility strain model (SC model). The latter 

model utilizes a virtual stub column test (VSC test) 

performed on a short length column with the actual 

residual stress pattern and conducted with use of the 

finite element simulation (FE simulation) and GMNIA 

type of the nonlinear incremental-iterative analysis [5]. 

In the conclusions summarizing the outcomes of 

conducted research it has been stated in [5] that the 3D 

M-R-M approach based on the VSC test leads to an 

unequal accuracy of the analytical model as to the 

buckling resistance evaluation with respect to the 

slenderness ratio. 

The main aim of this paper is to simplify the 

formulation based on the 3D M-R-M approach by 

presenting its 2D version and applying the two stage best 

fit calibration procedure for the evaluation of the 

effective stress-strain diagram parameters instead of 

using the VSC test parameters from FE simulations. The 

numerical results of the column buckling resistance used 

hereafter for the calibration exercise have been obtained 

elsewhere for different parameters describing the column 

imperfections. 

2 Buckling curve estimation based on 
the equivalent stress-strain diagram of 
postwelding steel 

Let us consider the steel column of welded I-section of 

class 1, made of steel grade S355, the same as 

considered in [5]. The section dimensions are given in 

Fig. 1a. Fig. 1b presents a general residual stress pattern 
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for such an I-section. The residual stress pattern is 

represented by a piecewise linear residual stress diagram 

with different ordinates of residual stresses in the tension 

and compression zones. Since the transition zone 

between the uniform residual stress blocks in tension and 

compression is rather small for welded sections, it is 

justified to adopt an approximate pattern consisting of 

rectangular residual stress blocks in tension and 

compression, without the transition zone. It yields y1=y2 

and z1=z2 with different  maximum stress ordinates in 

tension and compression. For common steel grades, the 

postwelding tensile residual stress σres,ten=ψtenfy reaches 

the steel strength (thus ψten=1). Such an approximation of 

the residual stress pattern has been considered in [5] and 

maintained also hereafter. 

a)   b)  

Fig. 1. Cross section, a) geometry, b) standard residual stress 

pattern. 

 The tension zone residual stress parameter ψten is 

kept constant for different heat/cooling history so that 

only the compression zone residual stress parameter ψcom 

might be considered as a variable. Discrete values from 

the range between zero (the residual stress free case) and 

0.5 (the most unfavourable case for typical welded I-

sections equivalent to those of rolled I-sections) are 

considered hereafter with an interval of 0.1. 

2.1 SE model 

The SE model assumes that the column is strain free 

with the equilibrated residual stresses within the section 

being of the same pattern for all the sections along the 

column length. The adopted equilibrated residual stress 

pattern produces therefore the section stress resultants of 

zero values. When the parent steel is modelled using the 

elastic-ideal-plastic diagram, the equivalent stress-strain 

diagram of postwelding steel becomes trilinear (for 

considered steel grade is given in Fig. 2). 

a)  

b)  

 Fig. 2. Section properties affected by welding in the SE 

model, a) transformed cross section in the region AB,             

b) equivalent stress-strain diagram. 

The initial line OA represents the column elastic 

behaviour up to the point at which the applied stress 

reaches the value fH,eff  equal to (1-ψcom)fy.  At this point, 

the compression residual stress zones of the web and 

flanges yield. The original thickness ti of yielded section 

i-wall (for the web i=w and for the flanges i=f) might be 

represented by its effective (reduced) thickness 

according to the following equation: 

                                      
i

har
effi t

E

E
t =,

 (2) 

For yielding without hardening (Ehar=0), yielded 

zones become fully ineffective and the transformed 

section in the postyielding region consists only of the 

tension residual stress zones (Fig. 2a,b). The tangent 

modulus of the column effective stress-strain model may 

therefore be calculated from the following equation: 

                                    
eff,zzT EIIE =   (3) 

in which 
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The second line AB in Fig. 2b represents the section 

postyielding inelastic behavior after the first yield of 

residual stress compression zones of the cross section 

and the third, horizontal one beginning at B, represents 

the full section yielding (cross section is fully 

ineffective). For a given strain εeff, the stress σeff can be 

determined as a minimum of three variables where two 

of them are the functions of εeff and one is a constant: 

               ( )
yeffTeff,Heffeff f,E,E  += min  (5) 

in which the value of initial postwelding stress σH,eff  may 

be related to fH,eff  and fy  as follows:  
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2.2 SC model 

The strain compatibility model requires either the real 

stub column test (RSC test) and real stub tie test (RST 

test) in the laboratory or their virtual representations 

(VSC test and VST test) obtained with use of numerical 

simulations. If a simple tensile test on a steel coupon is 

carried out, the stress-strain relationship will be a 

bilinear one and obtained from recording the data on a 

coupon measurement length L0. In numerical inelastic 

incremental analysis, the elastic-perfectly-plastic model 

of material based on a coupon test is usually replaced by 

its strain hardening counterpart in which a low value of 

the hardening modulus is adopted in the range of 

inelastic behaviour. The value of Ehar=E/1000 is usually 

used (see Fig. 3a) and the relationship adopted is of the 

same form for tension and compression. 

 The stress-strain relationship is however different 

when a stub compression/tension test is performed. Let 

us consider a short I-section of the length L0 such that in 

compression the buckling effect does not affect the 

specimen performance, therefore the stress-strain 

relationship obtained  from the stub test, either RS test or 

VS test, will not be, due to residual stresses, of that from 

to the coupon tensile test. Results of the VS test for the 

welded I-section and the considered standard 

postwelding residual stress pattern shown in Fig. 1a,b are 

presented in Fig. 3b. The curves corresponding to VSC 

test have also been derived in [5]. 

 Let us consider in details one of the curves 

corresponding to the virtual compression test. It is shown 

in Fig. 4. The trilinear effective stress-strain curve 

obtained from this test is an approximation of the 

equilibrium path from the finite element simulation of 

the stub column test. First the best fit line A'B' is 

constructed together with that affected by hardening (B' 

is the intersection of both). The point C' is at the yield 

stress level and intersects with the hardening stiffness 

line. The initial part OA' of the equivalent σeff-εeff  

relationship in the SC model is similar to that 

represented by OA line in the trilinear relationship for 

the SE model (Fig. 2). It has however to be noted that the 

point A' has a different stress level coordinate. The 

obtained equivalent σeff-εeff  is used for the determination 

of the buckling behaviour of the welded section steel 

column in the same way and that used in the SE model. 

 For a given strain εeff, the stress σeff can be 

determined as a minimum of three variables where all of 

them are the functions of εeff: 

    ( )
effhareff,hareffTeff,Heffeff E,E,E  ++= min  (7) 

in which the value of the stress σhar,eff  may be related to 

fy  as follows:  

                               
y

har
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
−= 1  (8)  

as shown in Fig. 4b. 

 

a)  

b)  

Fig. 3. a) coupon tensile test b) virtual stub column test for 

different values of ψcom (compression and tensile tests). 

a)  

b)  

Fig. 4. I-section properties affected by welding in the 

numerical SC model, a) transformed cross section in the region 

A'B', b) equivalent stress-strain diagram. 

2.3 Buckling curve approximation of perfect 
geometry postwelding column 

When residual stresses are taken into account for steel 

columns being perfectly straight but of an arbitrarily 

length, two possible solutions are possible for assessing 

the buckling resistance in dimensionless coordinates χz,res 

and  : 

LBIB: the lower bound inelastic bifurcation stress σb  

resulting from the tangent modulus theory of inelastic 
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buckling (Shanley’s theory) for which the flexural 

buckling resistance about z-z axis affected by residual 

stresses is for σb/fy > 1-ψeff given by: 

                                  
2

z

eff,E

y

b
res,z

f 


 ==  (9) 

as shown in Fig. 5a,b by a blue solid line, 

UBIB: the upper bound inelastic bifurcation stress σb 

resulting from the inelastic compression of the column 

without buckling up to the level of σH,eff  and then from 

buckling of the initially stressed column; thus the 

following relationship holds for σb/fy > 1-ψeff: 

                            ( )( )
2

11
z

eff,E
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
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as shown in Fig. 5a,b by a green solid line. 

The above approximations need to be completed by the 

Euler curve for σb/fy < 1-ψeff: 

                                        
2

1

zy

b

f 


=  (11) 

that is shown in Fig. 5a,b by a red solid line. 

The case ψcom=0.2 is considered in Fig. 4 for which (see 

also Tab. 1): 

- SE model parameters for LBIB: ξE,eff = 0.005 and for 

UBIB: ξE,eff = 0.005, and ψeff = ψcom =0.2, 

- SC model parameters for LBIB: ξE,eff = 0.209 and for 

UBIB: ξE,eff = 0.209, and ψeff = 0.167. 

The blue, green and red dashed lines are not in the range 

constituting upper and lower bounds of the buckling 

resistance. 

a)  

b)  

Fig. 5. Buckling curves assessment of welded perfectly straight 

columns, a) based on σeff-εeff  according to SE model, b) based 

on σeff-εeff  according to SC model. 

 In order to verify which model is closer to that 

from the incremental-iterative buckling analysis, LBIB 

or UBIB, a numerical GMNIA+ approach is adopted [6] 

and ABAQUS software used [7, 8]. The residual stress 

block is introduced through the option *Predefined 

Field, Mechanical, Stress while the nonlinearity through 

the option *Nlgeom and Riks algorithm for the 

evaluation of pre-limit branch, limit point and post-limit 

branch of the equilibrium path. In order to numerically 

trigger the buckling of perfectly straight column with the 

symmetric standard residual stress block about both 

axes, y-y and z-z, the infinitesimally small value of the 

amplitude is used for the column initially bowed 

according to the lowest buckling mode. The value of e0= 

L/10000 is selected [5]. Numerical results in the 

slenderness range from 0.3 to 1.4 with an interval of 0.1 

are given in Fig. 5 by blank circles. 

 The verification exercise shows clearly that neither 

SE model nor SC model is able to represent the buckling 

of perfectly straight column affected by postwelding 

residual stresses. A more accurate BF model is therefore 

proposed for the evaluation of ξE,eff and ψeff  parameters 

as it is explained in the following section. 

2.4 BF model 

The σeff-εeff relationship parameters ET and σH,eff of the 

best fit model (BF model) are represented by their 

dimensionless equivalents ξE,eff=ET/E and ξH,eff= σH,eff /fy 

calibrated by the least square optimization with use of 

Mathematica function Non-Linear Model Fit. A two 

stage calibration procedure is proposed in which the 

calibration of ξE,eff=ET/E is firstly performed using the 

numerical results of χz,res and the fixed values of ψeff = 

ψcom giving   ξH,eff = (1- ξE,eff)(1- ψeff)  according to Eqn. 

(6), and secondly – the calibration of ψeff parameters 

using the parameters ξE,eff found in the first stage. 

As a result of the above stated two stage calibration, 

the following linear functions are derived for the 

approximation of ξE,eff and ψeff  as a function of ψcom: 

                    
, 0.001 0.105E eff com = +  (12) 

                            1.05eff com =  (13) 

 The parameters used for the equivalent stress-strain 

relationships for three considered models, namely SE, 

SC and BF are listed in Table 1.  

Table 1. Parameters describing the equivalent σ - ε model. 

Model SE*) SC**) BF**) 

ψcom ξE,eff ξE,eff ψeff ξE,eff ψeff 

0.1 0.001 0.133 0.066 0.012 0.11 

0.2 0.005 0.209 0.167 0.022 0.21 

0.3 0.013 0.273 0.267 0.033 0.32 

0.4 0.025 0.327 0.368 0.043 0.43 

0.5 0.038 0.375 0.470 0.054 0.53 

*)  The parameter ψeff = ψcom, **)  ψeff = 1-ξH,eff/(1- ξE,eff) 
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3 Influence of postwelding residual 
stresses on flexural buckling resistance 

In the following, the influence of postwelding residual 

stresses on the flexural buckling resistance is assessed. 

The results from FEM simulations are presented in Fig. 6 

and compared to those of Eurocode 3 (in accordance 

with the EC3 specifications, the buckling curve "c" is 

designated to the analyzed cross-section). Five values of 

the ψcom are taken into account, namely 0.1, 0.2, 0.3, 0.4 

and 0.5. Two values of initial crookedness are 

considered: e0 = L/10000 and e0 = L/750 (L/750 is the 

amplitude at the manufacturing tolerance level). The 

results are presented in the following way: 

- including postwelding residual stresses (with RS; 

labeled as blue circles for e0= L/10000 and black crosses 

for e0= L/750);  

- excluding residual stresses (no RS; labeled as white 

circles for e0 = L/10000 and red crosses for e0 = L/750).  

 Observing the results, one can come to the 

conclusion that elements with the very small value of the 

geometric imperfection e0 = L/10000 and without taking 

into account residual stresses could be treated as "perfect 

elements" (white circles). The inclusion of postwelding 

residual stresses led to the significant reduction of the 

flexural buckling resistance, but discrete values of the 

buckling resistance (blue circles) constitute the buckling 

curves of different shapes than those based on the EC3 

recommendations. 

 The increase of the bow imperfection to the value 

of e0=L/750 led to the better match of FEM and EC 3 

results. In case of the ψcom = 0.2 (Fig. 6b, black crosses) 

the best fit of the FEM buckling resistances is obtained 

to those of the EC3 buckling curve “c”. 

Based on the above, it is important to emphasize that 

material and geometrical imperfections have to be 

considered individually in order to define the separate 

effect of material and geometric imperfections on the 

column buckling strength. 

a)  

b)  

c)  

d)  

e)  

Fig. 6. Reduction factors χz from FEM simulations for steel 

grade S355, a) ψcom=0.1, b) ψcom=0.2, c) ψcom=0.3,  

d) ψcom=0.4, e) ψcom=0.5 

The aspects of FEM modelling and the problem of 

postwelding residual stress influence on the stability of 

steel members were also presented in [9-12]. An 

alternative method of assessing the load capacity of steel 

elements to this presented in the paper is the concept of 

equivalent geometric imperfections, which is in 

compliance with the so-called Eurocode's general 

method. FEM calculations with use of the concept of 

equivalent geometric imperfections were presented and 

widely discussed in [13-17]. The sensitivity and 

reliability analyzes of buckling resistance of steel 

members were presented in [18-20].  

4 M-R-M buckling curve formulation 
based on BF model 

The reference is made to the authors’ paper [5] in which 

the M-R-M buckling curve formulation with three 

variables Ncr, Ncr,eff and Ncr,har based on the SC model 

parameters has been presented. It is simplified hereafter 

by reducing from three to two the number of the 

considered variable components, i.e. Ncr and Ncr,har for 

ψcom=0 or Ncr and Ncr,eff for ψcom > 0. 
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Thus, for perfect columns (ψcom=0): 

                        ( )har,crcrnom,b N,NN min=  (14) 

and for columns with postwelding residual stresses  

(0< ψcom ≤ 0.5)  

                       ( )
eff,crcrnom,b N,NN min=  (15) 

The following notation is used: Ncr - Euler elastic critical 

force, Ncr,eff = σH,eff A+ ξE,eff Ncr - critical load with residua 

stresses taken into account, Ncr,har = (1- ξE,har) Npl + ξE,har 

Ncr - critical load referred to the hardening stiffness, 

Npl = Afy and ξE,har=Ehar/E. 

Using the conventional dimensionless coordinates used 

in Eurocode 3 [2], Eqns. (14) and (15) may be presented 

in a rearranged format: 

               ( )( ) 22

11min
−−

+−−= zEEzz ,   (16) 

where for ψcom=0: ξE = ξE,har and ψ=0, and for ψcom > 0: 

ξE = ξE,eff and ψ=ψeff. 

The M-R-M approach leads therefore to a two 

dimensional Weibull minima distribution of the buckling 

resistance [4]. As a result, the following equation is 

obtained for the reduction factor χz of an imperfect 

column subjected to residual stresses and initial bow 

deformations: 

                 ( ) ( )( )  n

zEE

n

z
n

z

−−−
+−−+=

22

11   (17) 

in which n is the imperfection factor to be best fitted to 

results of FEM simulations. 

a)  

b)  

c)  

d) 

 

e)  

f) 

 

Fig. 7. Reduction factors χz calculated analytically and χz,FEM 

from FEM simulations for steel grade S355, a) ψcom=0, b) 

ψcom=0.1, c) ψcom=0.2, d) ψcom=0.3, e) ψcom=0.4, f) ψcom=0.5 

The best fit imperfection factors n are calibrated 

using again the Mathematica function Non-Linear Model 

Fit for ψcom=0 and five nonzero values of ψcom (see Tab. 
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1), and two extreme values of the geometric amplitude 

e0, namely L/10000 (quasi straight column) and L/750 

(the amplitude at the manufacturing tolerance level). The 

results are presented in Fig. 7. 

Analyzing the optimization parameters n presented in 

the graphs shown in Fig. 5 one can conclude that for a 

geometric imperfection magnitude factor equal to            

L /10000 the power coefficient is close to the value of 

6.0 while in case of imperfection magnitude 1/750 it is 

close to 1.6. Thus, in the former case:  

        ( ) ( )( ) 
( )

111

61
6262










+−−+=

−
−−

zEEzz      (18) 

and in the latter: 

    ( ) ( )( ) 
( )

111

611
612612










+−−+=

−
−−

.
.

zEE

.

zz     (19) 

in which for ψcom > 0 the parameters ξE= ξE,eff  and ψ = 

ψeff  have to be taken from Tab. 1 for the BF model. 

In Fig. 8, the buckling curves using the BF model 

approximations according to Eqns. (18) and (19) are 

presented for two extreme values of the geometric 

imperfection amplitude factor equal to 1/10000 (upper 

curve) and 1/750 (lower curve). Comparing the accuracy 

of buckling curves in Figs. 7 and 8 in reference to their 

discrete FEM results one can conclude that the buckling 

curves given in Fig. 8 are acceptable from engineering 

point of view. It is therefore justifiable to calibrate the 

imperfection factor n as a function of the geometric 

amplitude e0 while the factor itself is to be independent 

from the effective stress strain parameters ξE= ξE,eff  and 

ψ = ψeff. 

a)  

b)  

c)  

d)  

e)  

f)  

Fig. 8. Reduction factors χz calculated analytically for n=6.0 

(1/10000) and n=1.6 (1/750), and χz,FEM from FEM simulations 

for steel grade S355, a) ψcom=0, b) ψcom=0.1, c) ψcom=0.2, d) 

ψcom=0.3, e) ψcom=0.4, f) ψcom=0.5 

5 Conclusions 

The paper deals with modelling of the residual 

postwelding stresses influence on the column overall 

7

MATEC Web of Conferences 262, 09006 (2019) https://doi.org/10.1051/matecconf/201926209006
KRYNICA 2018



 

buckling. The analytical approach is presented on three 

different levels. First model (SE) based on strain free and 

internally equilibrated residual stresses gives acceptable 

predictions for slenderness z  above 0.6. In case of 

lower slenderness the numerical results are not in the 

domain indicated by this model. As a solution for this 

problem, the second formulation is applied (SC). This 

approach is based not only on analytical formulas, but 

for the determination of its parameters the virtual 

experiment on a stub element is needed. It is worth to 

underline here that the relationship for effective stresses 

and effective strains in tension range is different than 

those in compression. As a basis for SC parameters 

determination, the compression test is used. In that case, 

the prediction of the model is better than SE model, but 

still for low slenderness the numerical results lay outside 

the model domain. As a solution to these problem, the 

third model is applied, for which the model parameters 

are determined through nonlinear optimization methods. 

The model best fit parameters are then used for building 

up the M-R-M curves giving proper predictions for the 

whole range of geometrical imperfection multiplayers. It 

is worth to indicate that BF model parameters work 

better for covering the effect of lower levels of residual 

stresses on the column buckling resistance. The biggest 

discrepancies are visible for slenderness below 0.6 and 

ψcom within the range of 0.4-0.5. The buckling curve 

predictions for this range are however on a safe side.   
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