
Scalable software architecture
for distributed MMORPG traffic generation

based on integration of UrBBaN-Gen and IMUNES
Valter Vasić, Mirko Sužnjević, Miljenko Mikuc, and Maja Matijašević

Abstract—We present a scalable software architecture for
distributed traffic generation capable of producing Massively
Multiplayer Online Role-Playing Game (MMORPG) packet flows
in a statistically accurate manner for thousands of concurrent
players. The main challenge, to achieve truly massive scale traffic
generation, has been achieved by introducing kernel based virtu-
alization, pioneered by the network simulator/emulator IMUNES,
into the User Behaviour Based Network Traffic Generation
(UrBBan-Gen, introduced in our earlier work). The UrBBan-
Gen software architecture consists of four modules: Service
repository, Control function and user interface, Behaviour process,
and Traffic generation process. IMUNES has been integrated
into the virtualization part of the Traffic generation process,
which has resulted in two improvements: 1) increasing the
number of generated packet flows while accurately replicating
the required statistical properties, and, 2) introducing the ability
to run various network scenarios in simulated, as well as real
networks, under realistic traffic loads. With respect to the traffic
generation capabilities of the previous version of UrBBan-Gen,
which was based on Linux containers, the IMUNES based
solution demonstrates higher scalability, lower packet loss rates,
and lower CPU load for both the UDP traffic at high packet rate
and “thin” TCP traffic flows typical for MMORPGs.

I. INTRODUCTION

In recent years Massively Multiplayer Online Role-Playing
Games (MMORPGs) have become a growing phenomenon,
attracting millions of players. Networked games generate
traffic which is very demanding in terms of Quality of Service
(QoS), due to the real-time player interaction in MMORPG
virtual worlds [1]. As the number of games and users grows, so
does the amount of traffic which needs to traverse the network.
According to the Cisco Visual Networking Index [2], gaming
traffic is expected to grow with a compound annual growth
rate of 43% in the period 2010–2015, this being the second
largest growth after the video category.

In order to achieve a satisfying level of QoS for a MMORPG
on a network level, a network provider must primarily ensure
that the latency and jitter values are very low, and that
crucial data is delivered in a timely manner. The network
enabling connectivity for games needs to be well designed
and dimensioned, and the network equipment must be tested

Manuscript received November 13, 2012; revised December 26, 2012. The
material in this paper was presented in part at the 20th International Confer-
ence on Software, Telecommunications and Computer Networks (SoftCOM
2012), Split, Croatia, Sept. 11-13, 2012.

Authors are with University of Zagreb, Faculty of Electrical Engineering
and Computing, Unska 3, 10000 Zagreb, Croatia (e-mails: {fvalter.vasic,
mirko.suznjevic, miljenko.mikuc, maja.matijasevic}@fer.hr).

under realistic IP traffic loads. The most popular MMORPGs,
such as World of Warcraft (WoW) by Activision Blizzard
have millions of players. For scalability reasons, the player
population is distributed among multiple servers, or “shards”,
which replicate the entire virtual world content but limit the
number of concurrent players. While the exact number of
active players per shard is a matter of game content and
design, it can easily be in the range of thousands or even
tens of thousands, and the game traffic flow characteristics
are typically highly variable and dependent on the player
behaviour patterns in the game world.

Motivated by the challenge to achieve truly massive scale
software traffic generation, corresponding to real MMORPG
network traffic, in our previous work [3] we have developed
a software architecture for distributed traffic generation based
on player behaviour named User Behaviour Based Network
Traffic Generator (UrBBaN-Gen). The goal of UrBBaN-Gen
is to accurately generate the packet flows corresponding to
thousands of concurrent players typically present in a single
shard, while maintaining the statistical properties of real
MMORPG traffic.

Following the initial version of UrBBaN-Gen, we intro-
duced a scalability improvement, described in more detail in
[4], by substituting the Linux Containers (LXC) virtualiza-
tion technology by kernel based virtualization in IMUNES
(Integrated Multiprotocol Network Emulator/Simulator) [5],
[6]. The work presented in this paper goes a step further
by presenting a detailed view of the software architecture
of UrBBaN-Gen and IMUNES, means of their integration
and achieved performance evaluation. We run additional mea-
surements to demonstrate that the new setup is capable of
synthetic generation of MMORPG traffic at a larger scale.
We demonstrate the gains through measurements focusing on
generated packet load and bandwidth, and the CPU load and
RAM usage on a PC running the traffic generation. We also
confirm that the integration did not deteriorate the generated
traffic characteristics with respect to the required statistic
traffic models. This integration also enables the testing of
traffic workloads on realistic network topologies, thus enabling
more precise and detailed tests which can be used to identify
problems and bottlenecks in the network.

Following this Introduction, in Section 2 we present the
related work in the area of behaviour based traffic genera-
tion with emphasis on networked games and virtualization
techniques, and in Section 3 we describe the UrBBaN-Gen.

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 8, NO. 4, DECEMBER 2012 93

1845-6421/12/8262 © 2012 CCIS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201387265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In Section 4 we explain the improvements of the emulated
environment. Section 5 presents the testing methodology, and
Section 6 shows the results. Section 7 concludes the paper.

II. RELATED WORK

Network traffic generators may be categorized based on how
they derive the packet flow patterns, as follows:

• traffic generators based on replay of previously captured
packet flows,

• traffic generators emulating the properties of previously
captured traffic based on statistical analysis of the packet
trace,

• source based traffic generators, which emulate the be-
haviour of the traffic source (user and application).

In this paper, we focus on source based traffic generators.
One of the first source level traffic generators was Scalable

URL Reference Generator (SURGE) [7]. SURGE creates a
realistic web workload that mimics a set of real users accessing
a server. SURGE defines a concept of user equivalent (UE) as
a process in an endless loop that alternates between making
requests for web files, and being idle. The statistical properties
of web reference streams that are needed by each UE are
described by parameters such as file sizes, request sizes,
popularity, embedded references, temporal locality, OFF times.

Another example is GenSyn, a synthetic traffic genera-
tor implemented in Java based on user behaviour [8]. The
stochastic user behaviour is described by state diagrams. The
stochastic user behaviour model controls the creation of TCP
connections and UDP streams through interface modules that
links the GenSyn process to the underlying Internet protocol
stack on the workstation.

To generate MMORPG traffic a model must be created and
implemented in a specific traffic generator. While there are
several models of network traffic of MMORPGs described in
literature [9], [10], [11] there are very few implementations
of models in traffic generators. The extensive overview of
research efforts in areas of traffic analysis and modelling in
MMORPGs can be found in [12]. Some works on MMORPG
traffic focus on simulation in NS2 [9], [13], [14]. Simulation of
MMORPG traffic of different behaviours and different access
networks is presented in [13], while influence of different
TCP versions on coexistence of MMORPG and FTP traffic is
investigated in [14]. Shin et al. [15] propose a novel method for
modelling the network traffic of games. They analyze packet
size and inter-arrival times of WoW and first person shooter
game Left 4 Dead (L4D) by Turtle Rock Studios. Authors
propose a transformational scheme in order to simplify the
shape of the traffic so it can be mapped to an analytical
model. They implement their model in an online game traffic
generator [16]. Authors claim that their traffic model is based
on player behaviour, but this behaviour is only referred to
as high erraticism of the traffic. On the other hand, traffic
generation process used in UrBBaN-Gen [3] is fully defined
by application level user behaviour similarly to GenSyn. In the
area of other gaming traffic and traffic of machine to machine
(M2M) applications, there is a mobile application that has been
developed within the FP7 LOLA project [17].

With a working traffic generator model, a virtualized em-
ulator is needed to deploy a sufficient number of network
nodes that will run traffic generators. There are a couple of
integrated network topology emulator solutions that use kernel
based virtualization. The first emulator to use this kind of
technology was IMUNES [5], [6]. IMUNES runs natively on
FreeBSD, and it can also run in virtual machine software
such as VMware. The FreeBSD kernel has recently been
updated with a better routing table lookup algorithm capable
of achieving 490 million lookups per second in synthetic
tests using uniformly random IPv4 keys on a commodity 8-
core CPU [18]. Since IMUNES runs on the top of FreeBSD
kernel this performance can be used by virtual nodes in
IMUNES. IMUNES has also served as a foundation of the
CORE network emulator [19]. It is fully based on an older
IMUNES release with improvements regarding mobility. It has
been ported to work on Linux distributions and no longer
works on the newer FreeBSD releases. A similar network
emulator is also mininet [20] which provides a much simpler
GUI and also runs on Linux. IMUNES was chosen because
of stability, performance, user-friendliness and GUI, advanced
scripting options, and capabilities for testbed automation.

III. INTRODUCTION TO URBBAN-GEN

The goal of UrBBaN-Gen is to generate realistic client
and server traffic of complex IP services, based on user
behaviour, described through a mathematical model which
captures the statistical characteristics of the user behaviour
and the generated traffic. A source based traffic model for
MMORPGs is based on player behaviour on the application
level, and defined through action categories [21] and the
respective traffic models for each action category [22].

A. Supported services

While in our work UrBBan-Gen has primarily used
MMORPG statistical models, its functional architecture and
implementation are service independent, so any new services
may be added through new user behaviour and traffic models.
The design is highly modular, enabling the design and devel-
opment of specific extensions. Both main modules, described
later in more detail, have been developed and tested separately
(the behaviour simulation [21] and the traffic modelling and
generation [22]). Each module has defined outputs so newly
implemented models can be tested and validated separately.
An MMORPG provider could use UrBBaN-Gen to test their
network under normal operating conditions, but could also
easily create massive “stress tests”. The traffic generation
capacity is expandable by possible replicating the UrBBaN-
Gen on multiple PCs, depending on the required scale of
traffic generation. The ability to control and achieve a very
large scale is very important as users’ interest in MMORPGs
is highly correlated to the game content releases – when the
new game content is released, the servers can experience the
loads several times higher than the average load.

As a case study of a complex real time service we used
MMORPGs as they involve large number of users with diverse
application level behaviours which significantly affect network

94 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 8, NO. 4, DECEMBER 2012

Fig. 1. Functional architecture of UrBBaN-Gen [3]

traffic characteristics [1]. The following behavioural categories
are defined for MMORPGs: Trading (i.e., creation and ex-
change of virtual goods), Questing (i.e., completing tasks given
by the Non-Player Characters (NPCs) performed mostly by
player alone), Player versus Player (PvP) combat (i.e., battles
between groups of players), Dungeons (i.e., combat between a
small group of players and NPCs), and Raiding (i.e., combat
between a large group of players and NPCs) [1]. In order
to generate synthetic network traffic of MMORPGs, different
user behaviours must be taken into account as the bandwidth
consumption between some behaviours differs by an order of
magnitude.

The most popular MMORPG – World of Warcraft was
used to create the corresponding player behaviour and traffic
models (for both client-to-server and server-to-client traffic).
While MMORPGs are a real time based service depending on
timely delivery of information from servers to the clients and
vice versa, many of them (including WoW) use TCP. WoW
TCP streams are very thin, especially client to server traffic
with average payload size of 36 bytes (less than a 40 bytes
TCP/IP header) [1]. The packet rate fluctuates between 4 and
10 packets per second (pps) in one direction (including ACK
packets which carry no payload). The problem with such thin
TCP streams is that certain algorithms of the TCP can perform
poorly or even degrade Quality of Experience (QoE) of the
users (e.g., Nagle algorithm, Delayed Acknowledgment). Also,
as there are a lot of such streams coming and going from
game servers, congestion avoidance algorithms are not very
effective. Therefore, to study the effects of MMORPG traffic
in realistic conditions, there is a need for a tool like UrBBaN-
Gen which can generate not just high packet loads, but a large
number of TCP streams as well.

B. UrBBaN-Gen architecture
Figure 1 shows the functional architecture of UrBBaN-

Gen, consisting of four modules: Service repository, Control
function and user interface, Behaviour process, and Traffic
generation process. Briefly, the modules correspond to the
following functionality:

• the Service repository contains the input data which fully
describe the simulated service in terms of mathematical
models and statistics;

• the Control function and user interface are used for
managing the parameters of the simulation;

• the Behaviour process is in charge of simulating the user
behaviour and generating sessions; and,

• the Traffic generation process transforms the player be-
haviour to network traffic.

As already mentioned before, the focus of this paper is on
the Traffic generation process. The Traffic generation process
encompasses virtualization and packet flow generation. In the
initial implementation of UrBBan-Gen, we used virtualiza-
tion based on Linux containers to generate a large number
of thin TCP streams, by having one instance of a Traffic
sender or a Traffic receiver run within a container. While this
implementation enabled us to generate a fairly large number
of TCP streams, it has also proved to be not very stable.
Several security procedures had to be implemented in order
to ensure proper initiation of the Linux containers, proper
connection establishing from the senders and the receivers
within the containers, and also crash recovery. These faults
(especially of the Linux containers as a rather new technology)
were some of the main motives for moving on to IMUNES.
An additional benefit of using IMUNES is that the emulated
environment can also contain other network nodes, as well as

VASIĆ et al: SCALABLE SOFTWARE ARCHITECTURE FOR DISTRIBUTED MMORPG TRAFFIC GENERATION 95

entire IP subnets, which enables running complex experiments
in an fully emulated testbed (thus saving a possibly significant
amount of time and money for creating a real network testbed).

For the functional elements of Traffic sender and Traffic
receiver we used the Distributed Internet Traffic Generator (D-
ITG), an open source tool developed at Universita’ degli Studi
di Napoli “Federico II” (Italy). D-ITG is a tool for network
traffic generation which offers a choice of various transport
and application layer protocols.

A very important feature of D-ITG is easy implementation
of new application protocols. Newly implemented application
protocols are defined by the underlying transport protocol,
distribution of the Application Protocol Data Unit (APDU)
size and distribution of the inter-arrival time (IAT) of the
APDUs (i.e., time passed between sending two subsequent
APDUs). APDUs can be “fit” into one packet, or split be-
tween several packets depending on the APDU size and the
maximum transmission unit (MTU) of the underlying network.

D-ITG’s distributed architecture includes sender, receiver,
logger, and manager components. More details regarding D-
ITG can be found in the respective publications [23], [24],
[25].

IV. IMPROVEMENTS IN EMULATED ENVIRONMENT

In this paper we focus on the Emulated environment of the
traffic generation process as shown in Figure 1. This compo-
nent has been proven to be the bottleneck when the number of
senders/receivers has been increased over 100 [27]. We replace
the existing LXC containers implementation with FreeBSD
jails, a kernel based virtualization system used in IMUNES
(Integrated Multiprotocol Network Emulator/Simulator). Also
the network configuration is done in an optimized environment
(FreeBSD kernel) by using netgraph kernel modules.

A. IMUNES fundamentals

IMUNES is a lightweight kernel level network emulator
[5][6]. Four main tools inside the standard FreeBSD kernel
are used to provide the emulating environment:

1) FreeBSD jails – a lightweight virtualization solution that
enables different containers to share system resources
with minimum overhead. It is based on separating sys-
tem resources as a means of providing a higher level of
security without affecting system performance [26]. The
main advantage of jails is that they run on the same ker-
nel and enable full binary compatibility with FreeBSD
executables. All FreeBSD and most Linux applications
can run without recompilation. If recompiling is needed
the changes to the original source are minimal. Each jail
has its own:

• directory subtree – root file system,
• hostname,
• IP address – crucial for achieving network emula-

tion and communication between emulated nodes.
2) Clonable network stack – A jail has a complete instance

of the network stack. This is enabled by the clonable
network stack that is described in [6].

Fig. 2. IMUNES GUI: View of the testbed canvas

3) Netgraph kernel modules – used for emulating node
network interfaces and linking virtual nodes in the
simulation. Netgraph also provides the implementation
of lower layer (data link layer) network equipment such
as hubs and switches [28].

4) ZFS file system – Transactional file system originally
developed by Sun Microsystems. ZFS uses the concept
of storage pools to manage physical storage. ZFS has the
ability to create snapshots, read-only copies of the file
system state. Snapshots can be cloned and replicated.
This makes them suitable for creating initial copies of
root file systems used by virtual nodes during simulation
[29].

The main advantage of IMUNES is the low system foot-
print that topologies generate. Traffic manipulation is also
done efficiently in the FreeBSD kernel, where packets are
transferred by passing references rather than copied as they
cross the emulated network environment. The system archi-
tecture enables fast experiment instantiating and termination.
IMUNES is suitable for executing multiple experiments at
once, and its GUI also facilitates creation of large topologies
with multiple canvas support (Figure 2) [30]. Large topologies
can be divided into canvases that simplifies their management.

B. IMUNES nodes

The IMUNES system has a set of nodes that can be
instantiated and configured when a simulation is started. Nodes
can be seen in the left sidebar inside the IMUNES GUI [30]
(Figure 2). These nodes can be grouped according to the
usual reference model layers into three groups: the Layer 1
or Physical layer nodes, the Layer 1/2 nodes, and the Layer 3
nodes.

Their roles may be briefly described as follows:
• Physical layer nodes are used for interconnecting network

nodes and creating the topology. The first node in this
category are links that create all the paths between

96 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 8, NO. 4, DECEMBER 2012

network nodes. Links can be configured to emulate band-
width, delay, bit-error-rate (BER) and duplicate packets.
There is also the physical interface node that enables the
connection of IMUNES nodes to the external network.
By using this node IMUNES can route real-world traffic
and manipulate traffic with link settings. Both physical
nodes are part of the netgraph suite (ng pipe, ng ether).

• Layer 1/2 nodes emulate hub and layer 2 switch
nodes. Both are implemented as netgraph nodes (ng hub,
ng bridge) and used for creating more complex local area
connections. The main difference is that the hub node,
when it receives a packet, forwards it to all the other
interfaces, whereas the switch node forwards packets
based on link layer data.

• Layer 3 nodes operate at the IP layer and up. These nodes
are in fact jails with their own set of processes and file
systems. IMUNES allows us to create three types of jailed
nodes:

– PC: An empty jail that is, by default, created without
any processes running. The PC is an example of a
persistent jail [26]. This node is a base for creating
all other layer 3 nodes.

– Host: A jail used for running services. By default it
has the inetd and rpcbind processes running.

– Router: A node for emulating real routers. It can run
the Quagga routing protocol suite [31], or simply be
a static router that needs to be manually configured.
The Quagga routing suite offers support for most
widely used routing protocols: RIP, RIPng, OSPFv2,
OSPFv3, BGP, etc. IMUNES is setup to automat-
ically configure RIP(ng) and OSPFv2/3. If needed,
other routing protocols and suites can be manually
configured to run on the router node.

C. IMUNES batch mode

While the IMUNES GUI provides the most convenient
means to create and customize arbitrary network topologies,
IMUNES experiments can also be run and managed without
the GUI. Experiments can be started and stopped from a
terminal shell. To start an IMUNES topology from a shell,
the following command needs to be issued:

%sudo imunes -b topology.imn
Creating node n0
...
Creating link l0
...
Configuring node n0
...
Configuring node n8
Network topology instantiated in 2 seconds.
Experiment ID = i369b0

Once the experiment is started, it can be further managed
through the GUI, or through a command line interface. This
experiment can be easily shutdown with the use of the same
command and providing the Experiment ID (i.e. i369b0):

%sudo imunes -b -e i369b0
Terminating processes in vimage n0
...
Shutting down vimage n0

...
Shutting down vimage n8
Cleanup completed in 8 seconds.

During the experiment, one can also manage virtual links
and nodes in IMUNES by using the following scripts available
within the standard IMUNES distribution:

• himage is used for executing arbitrary commands in a
virtual node. Can be used for starting and terminating
applications, collecting data from the virtual node and
configuring the virtual node.

• hcp is used for copying data to the virtual node, and
from the virtual node, i.e. copying configuration files,
extracting server log files.

• vlink is used for changing the properties of the links in
network topology within the experiment. The link settings
which can be changed include bit-error-rate, bandwidth,
delay, and packet duplication rate.

D. Using D-ITG in IMUNES

The main problem encountered when attempting to replace
LXCs with IMUNES was the lack of native support for
BSD operating systems in D-ITG. (D-ITG has primarily been
designed for Windows and Linux operating systems.) As of
late 2012, the latest available D-ITG (version 2.8.0-rc1) needed
some additional work to recompile successfully on FreeBSD.
Once that was completed, the process of integration with
IMUNES was fairly straightforward. The D-ITG executables
have been inserted into the ZFS snapshot which is replicated
across nodes in the IMUNES simulation. In this way, each
node in a simulation has gained access to D-ITG binaries.

V. SCALABILITY TESTING METHODOLOGY

Two testbeds were created: 1) Linux (LXC) testbed, and 2)
IMUNES testbed. The testing was performed on commodity
hardware PC-s (Intel Core i3-2120 3.3 Ghz with 4GB of
RAM). The same hardware configuration was used for both
testbeds.

Linux testbed architecture is illustrated in Figure 3. It
consisted of two PCs running Ubuntu 11.10 operating system.
One PC hosted all LXCs hosting D-ITG senders connected
to a Linux bridge, while other PC hosted D-ITG receivers.
The number of instances of LXCs varied depending on the
experiment. The IMUNES testbed was also set on 2 PCs,
one for running the IMUNES system with all D-ITG sender
nodes in an emulated environment and the other that acted
as a receiver. The IMUNES system is running on top of
FreeBSD 8.3-RELEASE. The D-ITG receiver node was run on
another PC so that it would not interfere with the testbed and
testing results. The IMUNES testbed was a classic IMUNES
experiment that consisted of 240 nodes divided into 8 similar
canvases, with 30 nodes per canvas.

The following three tests were run in both testbeds:

1) Test 1: Generating UDP packet flows with fixed pps rate
and fixed packet size, while increasing the number of
sender nodes.

VASIĆ et al: SCALABLE SOFTWARE ARCHITECTURE FOR DISTRIBUTED MMORPG TRAFFIC GENERATION 97

Fig. 3. Linux testbed architecture

2) Test 2: Generating UDP packet flows with fixed pps rate
and fixed number of nodes, while changing the packet
size.

3) Test 3: Generating TCP flows with fixed numbers of
senders and receivers, while changing the number of
generated flows per each sender. This test uses client to
server traffic model of Dungeons behavioural category
of WoW.

For each test iteration the CPU load and packet loss were
noted.

Additionally, Test 4 was run only by using the IMUNES
testbed on top of VMware. Through this test we inspected
how the UDP packet rate created from a single sender to a
single receiver varies in the network emulated by IMUNES.

VI. RESULTS

The IMUNES testbed has shown to be, in overall, more
stable than the Linux testbed. The reason is that jails started
inside IMUNES is more lightweight and also represents a more
“mature technology” in comparison to the Linux containers
used in the Linux testbed. Also, results regarding CPU use
and packet loss in first two (UDP) tests show that IMUNES is
a significantly better solution for high packet loads, and even
in the third (TCP) test, IMUNES shows slightly better results.

A. Test 1 results

In this test we investigated the impact of increasing the
number of sender nodes to CPU load and packet loss values.
The test was done as follows. The packet rate was fixed at
1000 pps and the packet size was 64 bytes. The number of
nodes was gradually increased from 10 nodes to 180 nodes.

The results regarding the loss depending of the number
of nodes can be seen in Figure 4. It can be observed that
after increasing the number of nodes over 40 (i.e., increasing
packet rate over 40,000 pps) loss values of Linux testbed
increase rapidly. IMUNES had a much smaller packet loss

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180

P
ac

ke
t l

os
s

(%
)

Number of sender nodes

IMUNES
Linux

Fig. 4. Packet loss with respect to the number of sender nodes

which started to occur at around 120 nodes (i.e., packet rate
of 120,000 pps).

In terms of CPU load, the IMUNES testbed had a linear
growth compared to the Linux testbed, which grew faster up
to 60 nodes (Figure 5). This behaviour can be explained by
the fact that packet loss values of Linux testbed at 60 nodes
were very significant, while the IMUNES testbed was more
stable because the packet loss was substantially smaller.

B. Test 2 results

The second test used a fixed number of 100 nodes and the
packet rate of 200 pps. The packet size was changed from
64 bytes to 1472 bytes because the MTU size was set to
1500 bytes (IP header is 20 bytes and the UDP header is
8 bytes). The results can be seen in Figure 6, depicting the
CPU load depending on the size of the packets generated. As
it can be seen, the Linux implementation varies significantly
in load while the IMUNES is much more stable. This is

98 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 8, NO. 4, DECEMBER 2012

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180

C
P

U
 lo

ad
 (

%
)

Number of sender nodes

IMUNES
Linux

Fig. 5. CPU load with respect to the number of sender nodes

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400

C
P

U
 lo

ad
 (

%
)

Packet size (bytes)

IMUNES
Linux

Fig. 6. CPU load with respect to packet size

probably due to the fact that IMUNES handles packets more
efficiently. Since the CPU load is rather low it is probably
directly connected to the base testbed load caused by the
operating systems running on testbeds.

C. Test 3 results

During the third set of tests which used gaming traffic
models for generation of TCP traffic we encountered several
problems.

The first problem was that D-ITG receiver in version 2.8
would randomly start to decrease the TCP sending window
size. We believe that this is due to the receiver not being able
to process those packets. Once the sending window size of
the receiver reached zero, the receiver would send a message
with “Zero Window Size” to the sender which would stop
generation of the packets. This error was not present in the
previously used D-ITG version 2.7. We established that such
behaviour is only seen when complex distributions of the
APDU size (e.g., Weibull distribution) were used in the model
of the traffic. As we could not find the solution for this error,
we remodelled the client to server APDU size of the Dungeons
category using Normal distribution, and used that for testing

Fig. 7. CDF of APDU IAT with 10,000 active flows

Fig. 8. CDF of APDU size with 10,000 active flows

purposes. We aim to investigate further this issue and find a
solution in future work.

Additionally, we encountered an operating system boundary
on the number of created TCP flows in both testbeds. We
successfully created more than 10,000 TCP flows but the traffic
was inconsistent. At 10,000 flows both systems had similar
CPU load at around 20%. There was no packet loss on the
TCP flows as each generated TCP flow had on average 2.3
packets per second (in one way) which is consistent with the
UDP results where loss occurs at pps rates of 40,000 pps and
up.

In final setup, the third test had a fixed number of 240
sender nodes and the traffic was generated according to the
“Dungeons” client to server traffic model. The model was
adjusted to use the normal distribution (not Weibull) due to the
“Zero Window Size” error. We gradually increased the number
of active flows and monitored CPU load, packet loss, and also
the statistical characteristics of the generated traffic to make
sure that the properties of the traffic conform to the defined
statistical models.

Figure 7 and Figure 8 show the characteristics of one flow
captured randomly from 10,000 active flows. Both figures
show that distributions of APDU size and inter arrival times
(IAT) do not deteriorate when the load is increasing for
both Linux and IMUNES testbed. We can conclude that the

VASIĆ et al: SCALABLE SOFTWARE ARCHITECTURE FOR DISTRIBUTED MMORPG TRAFFIC GENERATION 99

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
P

U
 lo

ad
 (

%
)

Number of flows

Linux
IMUNES

Fig. 9. CPU load with respect to number of TCP flows

IMUNES testbed does not deteriorate the statistic properties
of the game traffic in comparison with the Linux testbed
which was thoroughly tested in terms of statistical accuracy
in previous work [3].

Figure 9 demonstrates how both testbeds deal with the
number of flows in a similar way, while keeping the CPU
load fairly low, (at below 25are also consistent with the traffic
characteristics. The CPU load values and increase rate suggest
that the system could manage more than 10,000 TCP flows
after tuning the operating system. This will be explored in
future work.

D. Test 4 results

As previously stated, the last test was run only on IMUNES
on top of VMware. Figure 10 shows the maximum achieved
packet rate with zero loss for each packet size. We used the
packet size of 64, 512, and 1500 bytes for 1, 10, 50, 100,
and 250 streams. It can be noted that the highest packet rate
without loss has been achieved for the packet size of 64 bytes.

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 50 100 150 200 250

P
ac

ke
t r

at
e

(p
ps

)

Packet size (bytes)

64 bytes
512 bytes

1500 bytes

Fig. 10. Maximum achievable zero-loss packet rate with respect to packet
size (IMUNES)

VII. CONCLUSION

In this paper we have presented improvements to our
architecture for user behaviour based traffic generation. Linux
containers, the previously used technology for virtualization
has been replaced with IMUNES. Both testbeds have been
tested in order to compare CPU load and packet loss while
generating traffic at higher packets per second rates. The
implementation with IMUNES showed better results in both
terms of lost packets and CPU load. Performance evaluation
was done with high packet rates and with a high number of
gaming flows. Shown results enable generation of MMORPG
traffic on a truly massive scale. We achieved generating 10,000
MMORPG gamers on a single PC. For our future work we
aim to add expandability into the IMUNES prototype so that
multiple PCs can participate in a single simulation.

ACKNOWLEDGMENTS

This work was supported by the research projects 036-
0362027-1639 and 036-0362027-1640, funded by the Ministry
of Science, Education, and Sports of the Republic of Croatia
and the E-IMUNES project funded by Ericsson Nikola Tesla,
Zagreb, Croatia. Also, the research leading to these results
has received funding from the European Community’s Seventh
Framework Programme under grant agreement no. 285939
(ACROSS).

REFERENCES

[1] M. Suznjevic, O. Dobrijevic, and M. Matijasevic, “MMORPG player
actions: Network performance, session patterns and latency requirements
analysis,” Multimedia Tools and Applications, vol. 45, no. 1-3, pp. 191–
241, 2009.

[2] Cisco Systems, “Cisco Visual Networking Index: Forecast and method-
ology, 2010-2015,” 2011.

[3] M. Suznjevic, I. Stupar, and M. Matijasevic, “A model and software
architecture for MMORPG traffic generation based on player behavior,”
Multimedia Systems, DOI: 10.1007/s00530-012-0269-x, 2012.

[4] V. Vasic, M. Suznjevic, M. Mikuc, and M. Matijasevic, “Improving
distributed traffic generation performance by using IMUNES network
emulator,” in Proceedings of the 2012 International Conference on
Software, Telecommunications and Computer Networks, p. 5, 2012.

[5] M. Zec and M. Mikuc, “Real-time network IP network simulation at
gigabit data rates,” in Proceedings ConTEL 2003, pp. 235-242, 2003.

[6] M. Zec and M. Mikuc, “Operating system support for integrated network
emulation in IMUNES,” in 1st Workshop on Operating System and
Architectural Support for the on demand IT InfraStructure (OASIS),
pp. 3-12, 2004.

[7] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” in Proceedings of the
ACM SIGMETRICS, pp. 151–160, 1998.

[8] P. E. Heegaard, “Gensyn - a Java based generator of synthetic Internet
traffic linking user behaviour models to real network protocols,” in
ITC Specialist Seminar on IP Traffic Measurement, Modeling and
Management, 2000.

[9] P. Svoboda, W. Karner, and M. Rupp, “Traffic analysis and modeling
for World of Warcraft,” in IEEE International Conference on Commu-
nications, 2007. ICC ’07. , pp. 1612–1617, 2007.

[10] J. Kim, E. Hong, and J. Choi, “Measurement and Analysis of a Mas-
sively Multiplayer Online Role Playing Game Traffic,” in Proceedings
of Advanced Network Conference, pp. 1–8, 2003.

[11] H. Park, T. Kim, and S. Kim, “Network traffic analysis and modeling for
games,” in Internet and Network Economics, Lecture Notes in Computer
Science, pp. 1056–1065, Springer Berlin / Heidelberg, 2005.

[12] M. Suznjevic and M. Matijasevic, “Player Behavior and Traffic Char-
acterization for MMORPGs: A Survey,” Multimedia Systems, DOI:
10.1007/s00530-012-0270-4, 2012.

100 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 8, NO. 4, DECEMBER 2012

[13] X. Wang, T. Kwon, Y. Choi, M. Chen, and Y. Zhang, “Characterizing the
gaming traffic of World of Warcraft: From game scenarios to network
access technologies,” IEEE Network, vol. 26, no. 1, pp. 27-34, 2012.

[14] J. Saldana, M. Suznjevic, L. Sequeira, J. Fernandez-Navajas, M. Mati-
jasevic, J. Ruiz-Mas, “The Effect of TCP Variants on the Coexistence
of MMORPG and Best-Effort Traffics,” in Proceedings of the 21st
International Conference on Computer Communications and Networks
(ICCCN), p.5, 2012

[15] K. Shin, J. Kim, K. Sohn, C. J. Park, and S. Choi, “Transformation
Approach to Model Online Gaming Traffic,” ETRI Journal, vol. 33,
no. 2, pp. 219–229, 2011.

[16] K. Shin, J. Kim, K. Sohn, C. Park, and S. Choi, “Online gaming
traffic generator for reproducing gamer behavior,” in Proceedings of the
9th international conference on Entertainment computing, pp. 160–170,
2010.

[17] D. Drajic, S. Krco, I. Tomic, P. Svoboda, M. Popovic, N. Nikaein, and N.
Zeljkovic, “Traffic generation application for simulating online games
and M2M applications via wireless networks,” in Proc. of the 2012
9th Annual Conference on Wireless On-demand Network Systems and
Services (WONS), pp. 167 – 174, 2012

[18] M. Zec, L. Rizzo, and M. Mikuc, “DXR: towards a billion routing
lookups per second in software,” Computer Communication Review,
DOI: http://dx.doi.org/10.1145/2378956.2378961, 2012

[19] J. Arenholz, C. Danilov, T.R. Henderson, and J.H. Kim, “CORE: A
real-time network emulator,” in IEEE MILCOM, 2008.

[20] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proc. of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, 2010.

[21] M. Suznjevic, I. Stupar, and M. Matijasevic, “MMORPG player behavior
model based on player action categories,” in Proceedings of the 10th
Workshop on Network and System Support for Games, p. 6, 2011.

[22] M. Suznjevic, I. Stupar, and M. Matijasevic, “Traffic modeling of player
action categories in a MMORPG,” in Proceedings of the 2nd workshop
on DIstributed SImulation and Online gaming (DISIO), p. 8, 2011.

[23] S. Avallone, S. Guadagno, D. Emma, and A. Pescapé, and G. Venturi,
“D-ITG Distributed Internet Traffic Generator,” in Proceeding of Inter-
national Conference on Quantitative Evaluation of Systems, pp. 316–
317, 2004.

[24] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-based
traffic generator?,” Communications Magazine, IEEE, vol. 48, no. 9,
pp. 158 – 165, 2004.

[25] A. Botta, A. Dainotti, and A. Pescapè, “Multi-protocol and Multi-
platform Traffic Generation and Measurement,” in INFOCOM 2007,
26th IEEE International Conference on Computer Communications,
Demonstration Session, 2007.

[26] P.H. Kamp and R.N.M. Watson, “Jails: Confining the omnipotent root,”
in 2nd International SANE Conference, p. 15, 2000.

[27] M. Suznjevic, “Modelling of network traffic for multiplayer role playing
games based on user behaviour,” PhD Thesis, University of Zagreb,
Croatia, May 2012.

[28] A. Cobbs, “All about nethgraph.” http://people.freebsd.org/ ju-
lian/netgraph.html.

[29] J. Bonwick and B. Moore, “ZFS: The last word in filesystems.”
http://hub.opensolaris.org/bin/view/Community+Group+zfs/WebHome.

[30] M. Zec, M. Mikuc, A. Mijocevic, S. Marjanovic, and V. Vasic, “Imunes
manual.” http://imunes.tel.fer.hr/imunes/dl/imunesug20110907.pdf.

[31] “Quagga project, quagga routing suite.” http://www.quagga.net.

Valter Vasić received his M.Sc. in Computer Sci-
ence in 2010 from the Faculty of Electrical Engi-
neering and Computing, University of Zagreb. He
is currently employed as a research assistant at the
same faculty within the E-IMUNES project funded
by Ericsson Nikola Tesla. His research interests in-
clude security, network simulation and virtualization.
He is an author of 5 conference papers and a member
of IEEE.

Mirko Sužnjević received his PhD in Electrical
Engineering in 2012 from the Faculty of Electrical
Engineering and Computing, University of Zagreb.
He is currently employed as a senior researcher at
the same faculty within the ACROSS Project funded
by the Seventh Framework Programme of the Euro-
pean Union. His research interests include analysis
and modelling of network traffic, cloud computing,
and Quality of Service/Experience. His research is
mostly focused on the complex multimedia services
and especially online games. He is an author of 4

journal and 9 conference papers. He is a member of IEEE and an active
contributor in the IETF.

Miljenko Mikuc Miljenko Mikuc received his PhD
in Electrical Engineering from University of Zagreb,
Croatia, in 1997. He is currently Associate Professor
at the Faculty of Electrical Engineering and Com-
puting, Department of Telecommunications within
the same university. His area of interest includes
network protocols, network simulation and security.

Maja Matijašević is a Professor in the Faculty of
Electrical Engineering and Computing at the Univer-
sity of Zagreb (FER), Croatia, and the leader of the
Networked Media research group within the FER’s
Department of Telecommunications. Her research
interests include networked multimedia and quality
of service in IP-based next generation networks, with
particular focus on session negotiation, adaptation,
and mobility. She is a principal researcher in a Croat-
ian national research project and a research program,
and she has led research projects in collaboration

with industry. She has over 80 journal and conference publications, and she
has coauthored several books and book chapters. She has served as a TPC
member, TPC (co)chair, and reviewer in international conferences, and as a
guest editor in several journal special issues. She received her Dipl.-Ing, M.Sc.
and Ph.D. degrees in Electrical Engineering from the University of Zagreb
and the M.Sc. in Computer Engineering from the University of Louisiana at
Lafayette, LA, USA. She is a Senior Member of IEEE and a member of
ACM.

VASIĆ et al: SCALABLE SOFTWARE ARCHITECTURE FOR DISTRIBUTED MMORPG TRAFFIC GENERATION 101

