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Recurrent neural networks can produce ongoing state-to-state transitions without any

driving inputs, and the dynamical properties of these transitions are determined by the

neuronal connection strengths. Due to non-linearity, it is not clear how strongly the

system dynamics is affected by discrete local changes in the connection structure,

such as the removal, addition, or sign-switching of individual connections. Moreover,

there are no suitable metrics to quantify structural and dynamical differences between

two given networks with arbitrarily indexed neurons. In this work, we present such

permutation-invariant metrics and apply them to motifs of three binary neurons with

discrete ternary connection strengths, an important class of building blocks in biological

networks. Using multidimensional scaling, we then study the similarity relations between

all 3,411 topologically distinct motifs with regard to structure and dynamics, revealing a

strong clustering and various symmetries. As expected, the structural and dynamical

distance between pairs of motifs show a significant positive correlation. Strikingly,

however, the key parameter controlling motif dynamics turns out to be the ratio of

excitatory to inhibitory connections.
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INTRODUCTION

Recently, a number of projects seek to map the human connectome, aiming to connect its structure
to function and behavior (Markram, 2012; Van Essen et al., 2013; Glasser et al., 2016). However,
even if the connectome would be known completely, it remains an unresolved problem how
to translate this detailed structural data into meaningful information processing functions and
algorithms (Jonas and Kording, 2017). For instance, the connectome of C. elegans has been known
for decades, and involves only 302 neurons. Nevertheless, even this relatively small system is not
yet understood in terms of its dynamics, let alone at a functional level (Hobert, 2003; Gray et al.,
2005).

Moreover, the problem is complicated by the fact that very similar dynamics of a neural network
at a macroscopic level might be realized by very different structures at the microscopic level
(Newman, 2003). Therefore, an important step toward extracting function from structure is a tool
to quantitatively compare different structures and dynamics.

In a neural network, all relevant structural information is encoded in a weight matrix, containing
the mutual connection strength of all neurons (Hertz et al., 1991; LeCun et al., 2015; Schmidhuber,
2015; Goodfellow et al., 2016). Quantifying the similarity of two weight matrices by standard
measures, such as the sum of squared differences between corresponding matrix elements, is
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however not sufficient because of possible permutations
of the neuron indices. Similarly, the dynamical properties
of a neural network are encoded in a matrix of transition
probabilities between all possible network states. As mentioned
before, comparing the sum of squared differences between
corresponding matrix elements fails in case of neuron
permutations.

To solve this problem, we develop permutation-invariant
metrics for the structural distance dstr(A,B) and for the
dynamical distance ddyn(A,B) of two given networks A and B. By
construction, these distance-measures yield dstr(A,B) = 0 and
ddyn(A,B) = 0 whenever B is topologically identical to A, even
though the corresponding weight and transition matrices of A
and Bmay differ due to inconsistent neuron indices.

We apply these distance metrics to so-called motifs, a class
of small recurrent networks which have been shown to be
fundamental building blocks of various complex networks (Milo
et al., 2002), such as gene regulatory networks (Shen-Orr et al.,
2002; Alon, 2007), the world wide web (Milo et al., 2002), and the
human brain (Song et al., 2005).

We exhaustively compute the structural and dynamical
distances between all possible pairs of the 3,411 different
classes of three-neuron motifs with ternary connection strengths,
resulting in two distance matrices with 3,411 × 3,411 entries
each. Based on these matrices, we use classical multidimensional
scaling (Kruskal, 1964a,b; Cox and Cox, 2000; Borg et al.,
2017; Krauss et al., 2018) to visualize the structural and
dynamical similarity relations between different motifs on a
two-dimensional plane.

Remarkably, it turns out that the distribution of motifs, both
in structural and dynamical “space,” is not uniform, but strongly
clustered and highly symmetrical. Moreover, the position of a
motif within structural and dynamical space correlates with the
ratio of excitatory and inhibitory connections (balance) in the
motif ’s connection matrix.

METHODS

Three-Neuron Motifs
Our study is based on Boltzmann neurons (Hinton and
Sejnowski, 1983) without bias. The total input zi(t) of neuron i
at time t is calculated as:

zi(t) =
N

∑

j=1

wij yj(t − 1) (1)

where yj(t − 1) is the binary state of neuron j at time t − 1 and
wij is the corresponding weight from neuron j to neuron i. The
probability pi(t) of neuron i to be in state yi(t) = 1 is given by:

pi(t) = σ (zi(t)), (2)

where σ (x) is the logistic function

σ (x) =
1

1 + e−x
. (3)

We investigate the set of all possible network motifs that can
be built from 3 Boltzmann neurons with ternary connections
wij ∈ {−1, 0,+1}, where self connections wii are permitted
(Figure 1A). In principle there are 39 = 19, 683 possible ternary
3×3 weightmatrices. However, due to permutation of the neuron
indices, not every matrix corresponds to a unique motif class.

We have exhaustively listed all possible ternary weight
matrices in a set. We then partitioned this set into equivalence
classes, defining two matrices as equivalent if they can be made
element-wise identical by a suitable permutation of neuron
indices. By this way, we found that there are exactly 3,411 distinct
motif classes. For later convenience we label all motif classes with
unique indices, which are derived from the corresponding weight
matrices.

State Transition Matrices of Motifs
Since every neuron can be in one of two binary states, a 3-
node motif can be in 23 = 8 possible motif states. Given the
momentary motif state and the weight matrix, the probabilities
for all eight successive motif states can be computed, thus
defining the 8 × 8 state transition matrix of a Markov process
(Figure 1B). All information theoretical properties of 3-neuron
motifs, such as entropy or mutual information of successive
states, are determined by the state transitionmatrix.We therefore
calculate the transition matrices for each of the 3,411 motif
classes.

Motif Classes
A motif class A is defined as the set {A(m)

:m = 1 . . . 6} of
weight matrices, which are all related to each other by index

permutations, such as ai,j → a
(m)
i,j = aπm(i),πm(j), where πm is

the m-th permutation (Figure 2).

FIGURE 1 | Motifs of three coupled Boltzmann neurons. Each motif is

characterized by a 3× 3 weight matrix W (A), defining the connection strength

between the neurons. There are 23 = 8 possible states Y = 0 . . .7 for each

motif. The transition probabilities between these states are summarized in a

8× 8 state transition matrix (B).

Frontiers in Computational Neuroscience | www.frontiersin.org 2 February 2019 | Volume 13 | Article 5

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Krauss et al. Structure and Dynamics in Motifs

Unique Labels of Motif Classes

The nine entries of the weight matrix W =





a b c
d e f
g h i



 of

one motif class are treated as a vector w = (abcdefghi). The
components of this vector are then treated as the digits of a
number in the ternary system:

a·38+b·37+c·36+d ·35+e·34+f ·33+g ·32+h·31+i·30. (4)

It can be simplified to

name =

8
∑

i=0

w[i] · 38−i. (5)

Here, w[0] equals the first entry of the vector w and the value
of the sum is the name of the motif. Due to the possible entries
w[i] ∈ {−1, 0, 1} the motif names range between “−9,841” and
“9,841,” starting with the motif with just “−1” as entries and
finishing in the motif with just “1” as entries. Of course not every
number in this range is assigned a motif class as there are in
total only 3411 motif classes. This version of the formula is used
because the motif class with just zeros as entries gets the name “0”
and the names are approximately symmetrical around that motif
class. Furthermore, in order to make the system more balanced,
each motif class is represented by the weight matrix with the
smallest absolute value of name among all of its permutations
(Figure 2).

Structural Distance Between Motif Classes
The dynamical distance is calculated as follows (Figure 3): Given
are two motif classes A,B. For each class we derive all six
permuted weight matrices A(m) and B(n). For each of the 36

FIGURE 2 | Unique labeling of motif classes. Possible entries in the 3× 3

weight matrix of a motif are −1 (blue), 0 (white), and +1 (red). Shown are all

possible permutations of topologically equivalent motifs for two arbitrary

chosen cases (A,B). Each motif class is assigned a unique label (green

numbers), as described in the Methods section.

pairs of weight matrices A(m) and B(n), we compute a generalized

Hamming distance ĥ, defined as the number of different ternary
matrix elements:

ĥ(A(m),B(n)) =
∑

i,j

(1− δ
a
(m)
i,j ,b(n)i,j

), (6)

where δx,y is the Kronecker symbol. The structural distance dstr
between motif classes matrices A,B is defined as the smallest of
the above 36 Hamming distances

dstr(A,B) = minm,n

(

ĥ(A(m),B(n))
)

(7)

Dynamical Distance Between Motif
Classes
The dynamical distance is calculated as follows (Figure 4): For
each motif classes A, we compute general features F(A), which
can be scalars, vectors or matrices. In the case of matrix-like
features F and G (e.g., state transition probability matrices), the
Euclidean distance is defined as

d(F,G) =
√

∑

i,j

(fi,j − gi,j)2 (8)

To compute the dynamical distance ddyn(A,B) between two
motif classes A and B, we derive all 36 pairs of features

FIGURE 3 | Structural distance between motif classes. Rows and columns

show the six possible permutations of two given motif classes. For each of the

36 combinations, the generalized Hamming distance ĥ (green numbers) is

computed. Black and white matrices indicate the Hamming distances

between corresponding matrix elements. As described in the Methods

section, the structural distance is defined as the minimum of all 36 generalized

Hamming distances (green numbers with yellow background).
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(e.g., the state transition matrix) from permuted weight

matrices
(

F(A(m)), F(B(n))
)

and calculate the Euclidean distance

d
(

F(A(m)), F(B(n))
)

of each pair. The dynamical distance ddyn

between motif classes A,B is defined as the smallest of the 36
Euclidean distances

ddyn(A,B) = minm,n

(

d( F(A(m)), F(B(n)) )
)

(9)

Multidimensional Scaling
We compute the pair-wise structural and dynamical distances
between all 3,411 motif classes. In order to visualize their
similarity relations, we use classical multidimensional scaling
(Kruskal, 1964a,b; Cox and Cox, 2000; Borg et al., 2017; Krauss
et al., 2018). This method assigns to each motif class a point
on the two-dimensional plane, so that the mutual geometric
distances between the points reflect the structural or dynamical
distances between the motif classes. In contrast to alternative
visualization methods such as t-SNE (Maaten and Hinton, 2008)
where the results depend crucially on the choice of parameters
(Wattenberg et al., 2016), classical multidimensional scaling has
no adjustable parameters and therefore produces more robust
and reproducible results.

FIGURE 4 | Dynamical distance between motif classes. As in Figure 3, rows

and columns contain the six possible permutations of two given motif classes

(structure). For each permutation the corresponding state transition matrix is

calculated (gray shaded matrices). Subsequently, for each of the 36

combinations, the Euclidean distance between each pair of state transition

matrices is calculated (green numbers). As described in the Methods section,

the dynamical distance is defined as the minimum of all 36 Euclidean

distances (green number with yellow background). Note that green numbers

do not correspond to actual distances, but are for illustration purposes only.

RESULTS

By an exhaustive listing of all possible weight matrices and a
subsequent numerical sorting into equivalence classes, we could
show that there exist 3,411 structurally distinct three-neuron
motif classes with ternary connection strengths. We computed
the structural and dynamical distances between all possible pairs
of these motif classes, resulting in two 3,411 × 3,411 distance
matrices.

In a first step, we tested the intuitive expectation that the
dynamical distance ddyn between motifs should grow, at least as a
general trend, with their structural distance dstr . For this purpose,
we produced a scatter plot of ddyn versus dstr , including all 3, 411

2

pairs of motif classes (Figure 5). We found that for each given
structural distance (except for dstr = 0), the distribution of
possible dynamical distances is very large. Nevertheless, there is
a clear positive correlation of r = 0.59 (p < 0.001) between
structure and dynamics, thus confirming the expectation.

In a next step, we investigated the similarity relations between
motif classes, as they are contained in the two 3,411 × 3,411
matrices of structural and dynamical distances. For this purpose,
we have used classical multidimensional scaling (MDS) (Kruskal,
1964a,b; Cox and Cox, 2000; Borg et al., 2017; Krauss et al., 2018)
to arrange all motif classes as points on a two-dimensional plane,
so that the mutual geometric distances between the points reflect
the corresponding structural or dynamical distances.

This two-dimensional representation reveals that the
distribution of motif classes in both structural and dynamical
“space” is not uniform, but instead is strongly clustered
(Figure 6). The structural distribution (Figures 6a,c) also reveals

FIGURE 5 | Scatterplot of all pairwise dynamical and structural distances.

Each point (dstr ,ddyn) represents the relation between structural distance dstr
and dynamical distance ddyn of a certain motif. Dynamical and structural

distances are significantly correlated (r = 0.59, p < 0.001), but also show a

large variance.
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a six-fold rotation symmetry, which might be due to the six
possible permutations of 3-neuron motifs.

As a final step, we investigated how motifs are affected by
the statistical properties of the weight matrix. In particular,
we considered the statistical parameters “density,” defined
as the fraction of non-zero connections among all possible
connections, as well as “balance,” the ratio between excitatory
and inhibitory connections.We computed the values of these two
statistical parameters for all motif classes and color-coded them
correspondingly in the two-dimensional MDS representations
(Figure 6).

We find that the density parameter is not at all related to
the position of a motif class in the structural or dynamical
plane (Figures 6c,d). By contrast, there is a clear linear
ordering of motif classes with respect to the balance parameter
(Figures 6a,b), both in the structural and in the dynamical
plane. Indeed, altering the ratio between excitatory and inhibitory
connections has a much more pronounced effect on the motif
dynamics than changing the structural distance itself.

DISCUSSION

The relation of structure and function is a long-standing topic
in biology (Bullock and Horridge, 1965; Estes and Cohen, 1989;
Blackburn, 1991; Harris, 1996; Missale et al., 1998; Mitchell et al.,
2011). On the one hand, the micro-structure of a biological
system determines the set of possible functions that this system

FIGURE 6 | Multidimensional scaling of motif distribution in structural

(a,c) and dynamical (b,d) space. Plots are color coded according to balance

(a,b) and density (c,d) parameters. The structural distribution reveals a six-fold

rotation symmetry due to the six possible permutations of 3-neuron motifs. In

addition, motifs are ordered linearly according to the balance parameter, in

both structural (a) and dynamical (b) space. By contrast, motifs are not

ordered with respect to the density parameter (c,d). Note that absolute

coordinates of points have no particular meaning other than scaling relative

distances between any pair of points.

can serve. On the other hand, human observers may not be able
to deduce the function of a system from its structure alone: even
if we know all neural connection strengths in some sub-network
of the animal brain, as well as all its input and output signals,
the specific purpose of this sub-network within the whole of the
organism may remain elusive (Hobert, 2003; Gray et al., 2005;
Jonas and Kording, 2017). Indeed, “function” is not a property
of the isolated subsystem alone, but can only be defined in the
context of its embedding global system. For this reason, we focus
in this work not on the function of neural systems, but on
their dynamics—a property that is completely determined by the
network structure and, if present, the system’s input signals.

An additional advantage of this approach is that dynamics,
just as structure, can be conveniently expressed in the form of
matrices. Based on these matrices, we have developed suitable
metrics that measure the distance of two neural networks
in structural or dynamical space respectively. Using this tool,
we can investigate how sensitive network dynamics reacts to
small changes in network structure. Robustness with respect
to structural changes is crucial in biological brains, as the
synaptic weights cannot be adjusted with extremely high accuracy
(Pinneo, 1966; Faisal et al., 2008; Rolls and Deco, 2010).

For the case of isolated three-neuron networks, we have found
that the question of robustness has no definitive answer on the
microscopic level of individual neuron connection strength: a
small topological change in the connection matrix (i.e., adding
or removing a connection, or inverting its sign), can have,
both, small and large dynamical consequences. By contrast, a
much clearer correlation is found between certain statistical
(macroscopic) properties of a network’s weight matrix and its
dynamics. In particular, the ratio of excitatory to inhibitory
connections (balance) affects network dynamics very strongly,
while the ratio of non-zero connections (density) is much less
important. This is in line with recent micro-anatomical studies
of the hippocampus and the neocortex, where it was found that
the balance is conserved (Megías et al., 2001; Gal et al., 2017).

This result suggests that a recurrent neural network can
gain or lose a large random fraction of neural connections
without drastically changing its dynamical state, provided the
balance remains unchanged. We speculate that, in the brain, this
surprising robustness may help to keep the cortex functional in
periods of increasing density during development and contribute
to the phenomenon of graceful degradation (Rolls and Treves,
1990).

In this work we abstracted from biological detail in that
we included all possible three-neuron motifs with ternary
connection strengths. By contrast, in the human brain the
vast majority of neurons is either purely excitatory or purely
inhibitory. However, there are prominent exceptions to this rule,
such as the dopaminergic transmission within the basal ganglia
(Kandel et al., 2000).

Future work will need to investigate whether our results
extend to larger neural networks, to networks with continuous
rather than ternary connection strengths between the neurons,
and to networks based on alternative neuron models, such as
non-probabilistic threshold units. It might also be interesting to
consider networks built from mixed neuron types. Finally, we
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note that our choice of probabilistic Boltzmann neurons together
with zero bias leads to a firing probability of 0.5 without any
input, which is not biologically realistic. Neurons with a low
spontaneous firing rate might lead to other interesting dynamics
and might therefore also be investigated in future work.
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