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Next to the disseminated clinical symptoms, cognitive dysfunctions are common features

of multiple sclerosis (MS). Over the recent years several different MRI measures became

available representing the various features of the pathology, but the contribution to

various clinical and cognitive functions is not yet fully understood. In this multiparametric

MRI study we set out to identify the set of parameters that best predict the clinical

and cognitive disability in MS. High resolution T1 weighted structural and high angular

resolution diffusion MRI images were measured in 53 patients with relapsing remitting MS

and 53 healthy controls. Clinical disability was inflicted by EDSS and cognitive functions

were evaluated with the BICAMS tests. The contribution of lesion load, partial brain,

white matter, gray matter and subcortical volumes as well as the diffusion parameters

in the area of the lesions and the normal appearing white matter were examined by

model free, partial least square (PLS) approach. Significance of the predictors was tested

with Variable Importance in the Projection (VIP) score and 1 was used for threshold of

significance. The PLS analysis indicated that the axial diffusivity of the NAWM contributed

the most to the clinical disability (VIP score: 1.979). For the visuo-spatial working memory

the most critical contributor was the size of the bilateral hippocampi (VIP scores: 1.183

and 1.2 left and right respectively). For the verbal memory the best predictors were

the size of the right hippocampus (VIP score: 1.972), lesion load (VIP score: 1.274)

and the partial brain volume (VIP score: 1.119). In case of the information processing

speed the most significant contribution was from the diffusion parameters (fractional

anisotropy, mean and radial diffusivity, VIP scores: 1.615, 1.321 respectively) of the

normal appearing white matter. Our results indicate that various MRI measurable factors

of MS pathology contribute differently to clinical and cognitive disability. These results

point out the importance of the volumetry of the subcortical structures and the diffusion

measures of the white matter in understanding the disability progression.

Keywords: multiple sclerosis, BICAMS, atrophy, demyelination, cognition

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2018.01172
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.01172&domain=pdf&date_stamp=2019-01-23
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kincses.zsigmond.tamas@med.u-szeged.hu
mailto:kincses.zsigmond.tamas@med.u-szeged.hu
https://doi.org/10.3389/fneur.2018.01172
https://www.frontiersin.org/articles/10.3389/fneur.2018.01172/full
http://loop.frontiersin.org/people/389380/overview
http://loop.frontiersin.org/people/662854/overview
http://loop.frontiersin.org/people/423371/overview
http://loop.frontiersin.org/people/423361/overview
http://loop.frontiersin.org/people/606201/overview
http://loop.frontiersin.org/people/309202/overview
http://loop.frontiersin.org/people/648828/overview
http://loop.frontiersin.org/people/662874/overview
http://loop.frontiersin.org/people/662858/overview
http://loop.frontiersin.org/people/274449/overview
http://loop.frontiersin.org/people/115789/overview


Tóth et al. MRI Parameters Related to Disability

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, demyelinating
disease, which affects the central nervous system. Next to the
disseminated clinical signs cognitive impairments are frequent
symptoms, it can occur in 40–70% of the patients. Most
commonly it affects the information processing speed, the
episodic memory, the executive functions, and the visuospatial
abilities. There are several psychometric surveys available, but
the Brief International Cognitive Assessment for MS (BICAMS)
allows a reliable, fast evaluation of the most frequently affected
cognitive domains (1–3).

One of the most prominent feature of the disease is the
white matter lesions identified on the MRI. The importance of
these lesions is unquestionable and hence became cornerstone
of the diagnosis (4) and the follow-up of therapeutic efficacy
(5). However, the correlation of T2 lesion burden with clinical
and cognitive impairment are modest at most, known as the
clinio-radiological paradox (6, 7). Recently, increasing interest is
shown about the gray matter (GM) atrophy, which has become
an approach to follow-up of the therapeutic effectiveness (8, 9).
The fact that it correlates stronger with the clinico-cognitive
functioning gives the real importance of the GM (10, 11).
While lesions and gray matter atrophy are non-specific to the
underlying pathology, there are novel methods which better
approximate the pathological processes. One of those is diffusion
tensor imaging, which non-invasively depicts the diffusion of
water in biological tissues. The molecular diffusion is blocked by
cellular elements (primarily membranes). This way the diffusion
profile of the water depicts the microscopic components of the
tissue architecture. It is important to notice, that the axon loss
and the demyelination alters the diffusion profile differently.
While the axon damage is demonstrated by the alterations in
axial diffusivity, the changes of radial diffusivity allude to myelin
damage. Diffusion tensor imaging, with appropriate parameters
was able to detect widespread alterations of the whitematter, even
in the non-lesioned, normal appearing white matter (NAWM)
(12). These alterations were also correlating with various clinical
and cognitive functions (13, 14).

Several studies investigated the correlation between various
MRI markers and clinical and cognitive dysfunction (14–17),
but only a few study investigated the relative importance of
these MRI parameters (18–20). Despite the undisputed merit
these studies have limitations, as in some of the studies deployed
only low number of diffusion directions, only some of the
diffusion parameters were used, others did not include all
of the subcortical structures separately in the analysis and
cognitive domains were evaluated separately only by a few of the
investigations.

Moreover, MRI parameters are highly related and that
relationship is not trivial (12), conventional linear regression
analysis could not unambiguously predict the importance of the
variables. The model-free partial least square (PLS) approach,
besides handling the problem of collinearity, is able to distinguish
a pattern of those parameters that best predicts the variable in
question. In the current investigation we set out to identify those
MRI parameters, which could predict the clinical disability and

TABLE 1 | Demographic data of the subjects.

Healthy Patients

n 53 53

Age (years; mean ± SD) 36.06 ± 11.06 44.34 ± 11.51

Sex (male) 16 17

Education (year ± SD) – 13,71 ± 2,4

Disease duration (years;

mean ± SD)

– 13.89 ± 9.02

EDSS score – 1.89 ± 1.65

Therapy – Interferon beta: 33

glatiramer acetate: 20

Duration of the therapy

(years; mean ± SD)

– Interferon beta: 3.89 ± 3.49

glatiramer acetate: 4.0 ±

3,79

various domains of cognitive dysfunction with the model free
PLS approach.

MATERIALS AND METHODS

Subjects
The study was carried on 53 patients with relapsing-remittingMS
diagnosis and 53 healthy, age-matched controls without history
of any neurological or psychiatric diseases. Patients were enrolled
from the Multiple Sclerosis Outpatient Clinic at the Department
of Neurology. The diagnosis was founded on the 2005 revision of
the McDonald criteria (21). The clinical disability was measured
on the Kurtzke expanded disability status scale (EDSS) (22).
The cognitive performance of patients was measured by Brief
international assessment for MS (BICAMS). All patients were on
disease-modifying therapy (Table 1). All of our patients were in
a stable clinical condition, without relapses or EDSS progression
in 6 months before or after the MR scans.

The study was approved by the National Institute of
Pharmacy and Nutrition and the Regional Human Biomedical
Research Ethics Committee (Ref. No.: 000002/2016/OTIG). All
study participant gave their written informed contribution in
accordance with the Declaration of Helsinki.

Cognitive Assessment of the Patients
The Brief International Cognitive Assessment for MS (BICAMS)
test is a short form that is a fast, sensitive and specific tool for
the determination of the cognitive disability of the patient. The
BICAMS test involves 3 separate tests: the symbol digit modalities
test (SDMT), the first five recall trials of the California verbal
learning test II. (CVLT-II) and the first three recall trials of the
brief visuospatial memory test revised (BVMT-R) (23).

In our study we used the validated Hungarian version of the
BICAMS test [for details of the validation process see: (2)]. For
all subtests of BICAMS the patient’s results were compared to the
age matched control group of healthy from our earlier validation
study (2) more than two standard deviation difference compared
to the control database was considered as abnormal.
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Image Acquisition
MR imaging were carried out on a 1.5T GE Signa Excite HDxt
MR scanner. 3D spoiled gradient echo (FSPGR: TE: 4.1ms, TR:
10.276ms, matrix: 256 × 256, FOV: 25 × 25 cm, Flip angle: 15
degrees, in-plane resolution: 1 × 1mm, slice thickness: 1mm),
FLAIR (TE: 133ms, TR: 6000ms, TI: 1848ms, matrix: 256× 256,
FOV: 25× 25 cm, Flip angle: 90 degrees, in-plane resolution: 1×
1mm, slice thickness: 1mm) and 60 direction diffusion-weighted
images with 6 non-diffusion-weighted reference volumes (TE:
93.8ms, TR: 16,000ms, matrix: 96 × 96, FOV: 23 × 23 cm,
Flip angle: 90 degrees, in-plane resolution: 2.4 × 2.4mm slice
thickness: 2.4mm, b: 1,000 s/mm2, NEX: 2, ASSET) were
acquired for all subjects.

Evaluation of Lesion Load
Lesions were manually segmented on the FLAIR images by ET,
and rechecked by ZTK having considerable experience in MS
neuroradiology.

Evaluation of Global Atrophy
The partial brain volume (PBV) was calculated with SIENAX
(24), part of FSL (25, 26). SIENAX started by extracting brain and
skull images from the single whole-head input data (24). Tissue-
type segmentation was then carried out (27) in order to calculate
the partial volume of brain, the GM andWM.

Volumetric Analysis of the Subcortical
Structures
Image analysis was carried out using tools of FSL (FMRIB
Software Library, http://www.fmrib.ox.ac.uk/fsl) (25). To
automatically segment the subcortical structures (28), FIRST,
a deformable-model-based segmentation/registration tool
was used that uses a Bayesian Appearance Model (FMRIB’s
Integrated Registration Segmentation Toolkit). For the
automatic segmentation of structures, shape and intensity
variations of subcortical structures were constructed from a
training set of 336 images. With preservation of the cross-subject
vertex correspondence, surface meshes were obtained with a
deformable model. At each vertex a sample was taken from
the normalized intensities along the surface normal. Then
the vertex location and intensity variation were modeled as
a multivariate Gaussian distribution. Finally, maximizing the
posterior probability of the shape given the observed intensities,
this model was fit to new images (10, 29). The result of the
segmentation was manually checked and corrected if necessary
by the first author. The volume of the segmented subcortical
structures were normalized to the head size.

Microstructural Alterations of the White
Matter
Diffusion data were corrected for Eddy currents and movement
artifacts by 12 degree-of-freedom affine linear registration to the
first non-diffusion-weighted reference image. Diffusion images
were processed by using FDT (FMRIB’s Diffusion Toolbox part of
FSL: www.fmrib.ox.ac.uk/fsl/fdt/). Fractional anisotropy, mean
diffusivity [(λ1 + λ2 + λ3)/3], axial diffusivity (λ1) and radial

diffusivity [(λ2 + λ3)/2] to the principal diffusion direction were
computed for the whole brain.

The Tract-Based Spatial Statistics (TBSS) method was used to
reduce possible errors resulting frommisalignment of the images:
A non-linear registration tool (FNIRT), which uses a b-spline
representation of the registration warp field, aligned all fractional
anisotropy images to a 1 × 1 × 1mm FMRIB58_FA standard
space. The data on all patients were brought into the standard
space, and the mean fractional anisotropy image was created and
then fed into the fractional anisotropy skeletonization program,
thresholded at fractional anisotropy = 0.2 to create a mean
fractional anisotropy skeleton that represented the centers of all
tracts common to the group. The aligned fractional anisotropy
data on each subject were then projected onto this skeleton,
which resulted in the 4D skeletonized fractional anisotropy
image.

A voxel-wise alteration of the diffusion parameters,
(microstructural integrity index—MII), was calculated for
each patient (12), by comparing the value of every voxel with the
distribution from the normal subjects in the spatially matching
voxel (z-score). To identify a global white matter damage we
calculate the averages of these z-scores:

Xn =

q
∑

i=1
Xn,i

q
,

δn =

q
∑

i=1

(

Xn − Xn,i
)

q
,

ZX,n,j =
Xn,j − Xn

δn
,

where X is the measured diffusion parameter (fractional
anisotropy, mean diffusivity, axial diffusivity, and radial
diffusivity) in the nth voxel in the skeleton. Indices i and j are for
controls and patients, respectively.

The average diffusion parameters were calculated for each
patient in the lesions and normal appearing white matter: The
lesions were projected to the fractional anisotropy skeleton. The
manually segmented lesions were brought to the diffusion data
space with 6 degree-of-freedom linear registration. Through use
of the warp field and the skeleton projections of the TBSS analysis
of the fractional anisotropy images, the lesion mask was brought
to the skeleton with the FSL tbss_non_fa algorithm. The mask
was finally thresholded at 0.5 and binarized to avoid any size
increment arising from the interpolation.

Analysis of the Connection Between the
MR Parameters and the Clinical and
Cognitive Status
We used partial least square (PLS) regression analysis to estimate
the contributions of the various MRI parameters (partial brain
volume, normalized gray matter and white matter volume,
volume of the subcortical structures, lesion load and the diffusion
parameters of the lesions and the normal appearing white matter)
to the EDSS and the subscores of the BICAMS test (Figure 1). If
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FIGURE 1 | Graphical Presesntation: We used PLS regression analysis to estimate the contributions of the various MRI parameters (GM, WM, the diffusion

parameters of the lesions and the normal appearing white matter, the Lesion Load, volume of the subcortical structures, and the PBV) to the EDSS and the subscores

of the BICAMS test.

Y is an n × q matrix of dependent variables over n observations
and X is an n × p matrix of predictors, PLS successively extracts
latent variables (factors and loadings) from X and Y in such a way
that covariance between the factors and loadings is maximized.
With this approach, PLS reduces the dimensionality of the
data by providing a weighted linear combination of X variables
to form orthogonal components that predicts the dependent
variable. In mathematical terms, Partial least squares is a linear
decomposition of X and Y such that

X = TPT +E,

Y = UQT+F

and the covariance between T and U is maximum (30). In the
above equations, T is the n × r X scores, U is the n × r Y scores,
P is the p × r X loadings, Q is the 1 × r Y loadings, E, and F
are residuals, and r is the number of extracted latent variables.
The statistical inference on the significance of the latent variable
was carried out by permutation tests on the singular values of the

decomposition. The elements of the dependent variable matrix
were randomly permuted 5,000 times and the singular value
was recalculated to depict a null distribution. The summary of
the importance for the X loadings was calculated by a Variable
Importance in the Projection (VIP) score (31). Since the average
of squared Variable Importance in the Projection scores is equal
to 1, the “greater than one” rule was used for the selection of the
important variables.

RESULTS

Clinical, Cognitive, and Imaging
Parameters of the Patients
The patients recruited in our study have mild to moderate
disability as measured by EDSS in spite of the relatively long
disease duration (Table 1). Out of the 53 patients 18 had cognitive
dysfunction on one cognitive test (CVLT: 0, BVMT: 7, SDMT: 9),
8 on two tests (SDMT and BVMT: 7, BVMT and CVLT: 1) and 5
on all three tests.
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TABLE 2 | MRI parameters and cognitive scores of the subjects.

Multiple sclerosis Healthy p-value

Subcortical Structure volume

mm3 (mean ± SD)

Left amygdala 1717.22 ± 304.80 1755.28 ± 235.315 0.473

Left caudatus 4324.02 ± 611.32 4683.56 ± 561.583 0.02

Left hippocampus 5019.21 ± 608.16 5434.64 ± 690.22 0.001

Left pallidum 2303.76 ± 328.13 2383.04 ± 187.67 0.130

Left putamen 6270.55 ± 749.85 6802.61 ± 601.27 0.000106

Left thalamus 965.38 ± 1092.743 10886.14 ± 837.47 0.00000

Right amygdale 1666.32 ± 264.20 1713.80 ± 311.28 0.399

Right caudatus 4414.96 ± 705.49 4905.77 ± 582.28 0.000167

Right hippocampus 5148.92 ± 551.24 5340.47 ± 663.50 0.109

Right pallidum 2331.54 ± 250.36 2435.00 ± 181.80 0.017

Right putamen 6248.99 ± 765.47 6658.91 ± 628.22 0.003

Right thalamus 9380.61 ± 1092.52 10521.75 ± 925.85 0.00000

Global atrophy (mean ± SD) Normalized PBV 1423745.72 ± 7726.26 1492340.43 ± 65602.53 0.332

Normalized GM volume 784317.27 ± 51061.79 824838.22 ± 44204.64 0.00003

Normalized WM

volume

639428.45 ± 43973.57 667502.21 ± 36040.49 0.000498

Normalized pGM 607231.49 ± 43383.91 642563.77 ± 35221.91 0.000012

Normalized VCSF 48551.20 ± 20524.23 33269.52 ± 11904.28 0.000008

Diffusion parameters % (mean ±

SD)

NAWM_FA 94.46 ± 5.78 – –

Lesioned_FA 89.90 ± 14.36 – –

NAWM_AD 100.85 ± 2.41 – –

Lesioned_AD 105.66 ± 10.07 – –

NAWM_MD 103.84 ± 5.14 – –

Lesoined_MD 112.83 ± 18.62 – –

NAWM_RD 108.06 ± 9.83 – –

Lesioned_RD 123.63 ± 35.29 – –

Lesions LL (mean ± SD) 9698.33 ± 9754.94 – –

Cognitive scores (mean ± SD) BVMT z-score −0.67 ± 1.49 – –

SDMT z-score −1.00 ± 1.22 – –

CVLT z-score 0.28 ± 0.98 – –

For the measured MRI parameters (partial brain volume, GM
and WM volume, volume of the subcortical structures and the
diffusion parameters of the white matter) see Table 2.

The Imaging Parameters Influencing
Clinical Disability
In the first PLS analysis, the dependent variable was the EDSS.
As the second latent variable interpreted only a small part of the
variance of the dependent measure (<10%) and the permutation
test indicated a non-significant latent variable, only the first latent
variable was evaluated. The permutation test showed that the first
latent variable was significant (p < 0.001) and responsible for
50.67% of the variation of the dependent variable and 27.08% of
the predictors. The X loadings and the corresponding VIP scores
indicated that age (VIP score: 1.72) and the axial diffusivity of the
NAWM contributed the most to the clinical disability (VIP score:
1.979) (Figure 2). While far less, but still significant contributor
was from the mean diffusivity of the NAWM (VIP score: 1.169),

the demyelination features of the lesions (VIPFA: 1.17, VIPRD:
1.08).

The Imaging Parameters Influencing
Cognitive Functions
In these analyses the raw scores from the three subtest of
the BICAMS test were used as dependent variables. The first
latent variable was evaluated, as the second latent variable was
responsible for just a small fraction of the variance of the
dependent measure (<5% in case of BVMT and CVLT and
10% in case of SDMT) and the permutation tests indicated
non-significant latent variables. The permutation test indicated
that the first latent variable was significant (p < 0.001 for
each subtests) and explained for 50.99% of the variation of the
dependent variable and 23.89% of the predictors in case of the
BVMT, for 50.93% of the variation of the dependent variable and
22.24% of the predictors in case of the CVLT, for 50.67% of the
variation of the dependent variable and 22.43% of the predictors
in case of the SDMT.
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FIGURE 2 | VIP scores of the partial least squares analysis that depict the optimal contrast of the independent variables predicting the clinical disability (EDSS). These

VIP scores suggest, that principally the axial diffusivity of the NAWM drives the EDSS. Higher than 1 VIP scores are identified as significant.

Age contributed significantly to all cognitive tests (VIP
score: 1.538, 1.127, and 1.296 for BVMT, CVLT, and SDMT,
respectively). Gender was significant contributor to CVLT and
SDMT (VIP score: 1.356 and 1.345, respectively).

As regarding the visuo-spatial working memory, the most
critical contributor was the size of the bilateral hippocampi
(VIP scores: 1.183 and 1.2 left and right, respectively) and
the demyelination features of the lesions (VIPFA score: 1.257,
VIPMD score: 1.008, VIPRD score: 1.158) and the axon loss
diffusion features of NAWM (VIPFA score: 1.125, VIPL1 score:
1.232) (Figure 3). Lesion load was also a marginally significant
contributor (VIP score: 1.031).

For the verbal memory the best predictor was the size of the
right hippocampus (VIP score: 1.972), the lesion load (VIP score:
1.274), the partial brain volume (VIP score: 1.119) the total white
matter volume (VIP score: 1.008), total gray matter volume (VIP
score: 1.058), the size of the right caudate (VIP score: 1.152), and
the FA of the NAWM (VIP score: 1.012) (Figure 3).

In case of the SDMT test the most significant contribution
was from the demyelination-like diffusion parameters of the
NAWM (fractional anisotropy and radial diffusivity VIP scores:
1.615, 321, respectively) (Figure 3). The FA, mean and the radial
diffusivity of the lesions (VIP scores: 1.289, 1.082, and 1.271,
respectively) and the size of the right hippocampus (VIP score:
1.101) also contributed significantly to the performance.

DISCUSSION

Our model-free analysis of multiparametric MRI data of
MS patients revealed complex interplay between the clinical
and cognitive disability and various MRI parameters. Clinical
disability was best predicted by the axial diffusivity of the
NAWM. Cognitive functions were influenced by several factors
in the various domains: (i) the most critical MR contributor to
the visuo-spatial working memory was the size of the bilateral
hippocampi and the demyelination-like diffusion profile of
the lesions, and the axon loss of the NAWM; (ii) the best
predictor of the verbal memory was the size of the right
hippocampus and the brain, gray and white matter volumes, and
(iii) information processing speed as measured on the SDMT test

was best predicted by the demyelination like diffusion parameter
alterations of the white matter.

It is long known that correlation between clinical disability
and lesion load is weak (6, 7). The correlation of disability with
brain atrophy and primarily gray matter atrophy seems to be
stronger (10, 32–36), however several voxel-wise morphometry
studies failed to find correlation of focal gray matter atrophy and
disability (37–42). There are conflicting results on the correlation
between diffusion metrics and disability. Griffin in a ROI analysis
found neither abnormal diffusion parameters in the NAWM nor
correlation with disability (43). Filippi et al. (44) found modest
correlation between disability and the mean diffusivity of lesions.
Hasan found no connection between the fractional anisotropy
of the corpus callosum and the disability of patients (45). The
anisotropy of the pyramidal tract was correlating with the EDSS
in 25 relapsing-remittingMS patients (46). In a whole brain TBSS
analysis Onu et al. foundwidespread differences between controls
andMS patients and within these group differences FA correlated
with EDSS, hand function and ambulation (47). Ciccarelli and
colleagues found connection of the clinical disability with the FA
of the supra and infratentorial NAWM. In particularly the FA
and MD of the cerebral peduncles showed a negative correlation
with the clinical disability, measured by EDSS (48). Importantly,
most of the above mentioned studies limited the analysis to
FA. Also the extent of microstructural damage reported was
usually far less. Previous studies have demonstrated that the
radial and axial diffusivity alterations indicate demyelination and
axonal pathology, respectively (49–53). In our previous analysis
we showed that the demyeliniation like diffusion parameter
changes can be detected in most of investigated white matter
skeleton if high number of diffusion directions are investigated
(12). Interestingly, our current analysis pointed out, that the
clinical disability was best defined by the axial diffusivity of the
NAWM.

In recent years cognitive dysfunction in MS become the focus
point of research. Patients with multiple sclerosis are usually
more concerned about their cognitive impairments, than physical
disability, and it has a greater influence on their quality of life
(54). Earlier results even suggest that there is an accelerated
disease progression in the cognitively impaired patients (55).
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FIGURE 3 | VIP scores of the partial least squares analysis that depict the optimal contrast of the independent variables predicting the cognitive functions. These VIP

scores suggest, that for the BVMT the most critical contributor was the size of the bilateral hippocampi, for the CVLT the best predictor was the size of the right

hippocampus and the total gray matter volume and in case of the SDMT test the most significant contribution was from the diffusion parameters fractional anisotropy,

mean and radial diffusivity of the NAWM. Higher than 1 VIP scores are identified as significant.

Therefore, the research of the structural background of the
cognitive dysfunction cannot be overrated. Recently, BICAMS
test, a reliable fast tool for cognitive survey become available, but
the structural brain abnormality measured with this test was not
systematically investigated.

Not only lesion burden, but lesion localization is a weak
predictor of cognitive functions (7). There are several studies
showing connection between gray matter atrophy and cognitive

functions of MS patients. The volume of the thalamus was found
to be associated with information processing speed (56), the
attention/executive function and also the verbal memory (57).
The volume of the putamen correlated with the information
processing speed (SDMT test) (11). Hippocampal atrophy also
showed a connection to cognitive dysfunction (58–60). In a
multicenter study the atrophy of the hippocampus and the deep
GM nuclei was found to be the best predictor of cognitive decline
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in MS, while the atrophy developed in the WM was associated
with the disability of the patients (61).

The thinning of the different regions of the cortex shows
connection with various cognitive functions. While the verbal
memory performance showed connection with the cortical
thinning in the insula, the visual memory performance correlated
to parietal atrophy (62), the reduced verbal fluency was associated
to the left-sided, while the impaired figural fluency was related to
the right-sided cortical thinning in the anterior cingulate region
(63). The auditory information processing speed measured with
PASAT shows correlation with the thinning of the orbito-frontal
cortex (64).

While the above mentioned studies provide evidence about
the relationship of cognitive test and certain MRI measures, only
limited number of studies investigated the relative contribution
of various structural MRI parameters to clinically relevant set
of cognitive test. Our results indicate that the three subtest
of the BICAMS is related to the pathology of different brain
structures.

The most critical contributor to the visuo-spatial working
memory was the size of the bilateral hippocampi. An earlier
study investigating the correlation between various cognitive
functions and the components of the thalamic-hippocampal-
prefrontal network found no correlation with the visuo-spatial
abilities of the patients and the volume of the hippocampus, but
the best predictor of the 7/24 Spatial-Recall Task was the uncinate
fasciculus connecting the mediotemporal structures to frontal
cortex (57). Other studies found the performance of MS patients
on visuospatial memory tests correlated with the diffusion
parameters of the fornix, the primary hippocampal efferent
(65, 66), but not the volume of the hippocampus itself (65).
Importantly, the structural abnormality of one structure usually
comes along with the other structures connected functionally or
structurally (67).

Performance of the verbal memory test was best predicted
by the volume of the total gray matter and right hippocampus.
Interestingly in the above mentioned study of Dineen on a
smaller MS group the volume of the hippocampus did not
show correlation with the verbal or the visuo-spatial memory
scores (65). Kiy and colleagues found association between the
consolidation score of the CVLT test and the right temporal horn
volume, an indirect measure of hippocampal atrophy (68). A
recent study found correlation between physical activity induced
hippocampal viscoelasticity and improvement on CVLT-II test in
MS patients (69). Global brain atrophy was found to be correlated
with the CVLT long delay recall (52). The learning score of
the CVLT-II was correlating with the size of the hippocampus,
thalamus, caudate and amygdala, but not with the lesion burden
or the brain parenchymal fraction in Benedict’s study. According
to the linear regression analysis the volume of the caudate
predicts the verbal learning ability best (70).

The laterality of the hippocampal atrophy correlating with
cognitive performance is also interesting. While in case of the
BVMT the both hippocampi were similarly predictors of the
cognitive function, in case of the CVLT the right hippocampus
was significant predictor but not the left. This later is especially
interesting since earlier studies showed that left hippocampal

volume was related to verbal while the right to the visuospatial
memory (71–73).

Recent study of Yu found extensive demyelination-like
diffusion alterations in the white matter of MS patients spreading
well into the NAWM (74). Most of these microstructural
alterations correlated with the performance on the SDMT.
Importantly out of the three cognitive test SDMT had the
largest area of correlation. Another investigation found SDMT
performance be correlated with the gray matter fraction and a
diffusion measure of the brain parenchyma (18). Interestingly,
the authors used a summary statistics for the diffusion metrics
similar to our analysis.

Finally, it is important to consider the methods used in
the current analysis. There are two important features of our
analysis that needs to be considered. (i) We created a clinically
feasible, new whole brain summary measure of the diffusion
properties, respecting voxel-wise normal variation of the white
matter microstructure. This approach is useful, when a large
extent of the diffusion parameters are altered, such as in multiple
sclerosis (12).

(ii) The contribution of pattern of diffusion parameters to
the clinical and cognitive disability was examined by model-free
partial least square analysis. If the predictors show high degree of
collinearity (like MRI data), the conventional regression analysis
might be misleading.

Partial least squares, besides handling the problem of
collinearity, is able to distinguish a pattern of those parameters
that best predicts the variable in question.

LIMITATIONS

The main strength of our study is that we have identified the
independent contribution of various MRI parameters to the
cognitive and clinical disability in MS. Nevertheless, it has to be
emphasized that several other quantitative MRI markers were
described in multiple sclerosis, such as magnetization transfer
imaging, myelin water fraction etc. Including more predictors
could possibly give a more through characterization of the
dysfunction. Moreover, an important weakness of the approach
used in our analysis that we were not considering the spatial
distribution of the cortical atrophy. Alternative approaches,
such as linked independent component analysis (67) could
offer a better characterization of the focal alteration of MRI
parameters. It also have to be mentioned that the clinical
applicability of theses approach is somewhat limited because
of the lengthy data acquisition and processing approaches.
However, with advancing MR technology, by establishing the
minimum requirements of acquisition parameters (e.g., number
of diffusion directions) and improvement of analysis approaches
advanced quantitative measures should be available for the
clinical practice too.

CONCLUSIONS

In MS there is a complex pathology of focal lesions and diffuse
neuro-glial degeneration affecting the gray matter (cortical and
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subcortical) and also the white matter. These various MRI
measurable factors contribute differently to clinical and cognitive
disability. Our results indicate that the volumetry of the cortical
and subcortical structures and the diffusion measures of the
white matter are critical for the understanding the disability
progression and these measures should be considered in clinical
trials and in the everyday clinical practice.
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