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Salt-inducible kinase (SIK), which belongs to the sucrose non-fermenting

1/AMP-activated protein kinase family, was first discovered in the adrenal cortex

of a rat on a high-salt diet. As an isoform of the SIK family, SIK2 modulates various

biological functions and acts as a signal transmitter in various pathways. Compared with

that in adjacent normal tissues, the expression of SIK2 is significantly higher in multiple

types of tumors, which indicates its pivotal effect in oncogenesis. Studies on SIK2 have

recently underlined its role in several signaling pathways, including the PI3K-Akt-mTOR

pathway, the Hippo-YAP pathway, the LKB1-HDAC axis, and the cAMP-PKA axis.

Moreover, a few small-molecule SIK2 inhibitors have been found to be able to rescue

the oncogenicity of SIK2 during tumor development and reverse its abnormal activation

of downstream pathways. In this mini-review, we discuss the results of in vivo and in

vitro studies regarding the SIK2 mechanism in different signaling pathways, particularly

their regulation of cancer cells. This work may provide new ideas for targeting SIK2 as a

novel therapeutic strategy in tumor therapy.
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INTRODUCTION

Plasma ion balances regulate a wide range of cellular processes from cell proliferation to
mitochondrial functions. The plasma concentrations of Na+ and K+ have been proven to play a
vital role in the biosynthesis of aldosterone in the adrenal cortex. Studies have shown that changes
in plasma ion concentration can target biomembrane ion channels, such as Na+-K+-ATPase to
regulate extra- and intracellular ion balances (1, 2). As a major part of this ion modulation network,
salt-inducible kinase (SIK) was first discovered in 1999 by Okamoto et al. in the adrenal cortex
of a rat on a high-salt diet. SIK is a serine/threonine protein kinase that belongs to the sucrose
non-fermenting 1/AMP-activated protein kinase (SNF1/AMPK) family. The SIK family comprises
three isoforms, namely, SIK1, SIK2, and SIK3, all of which may act as metabolic transmitters.
The SIK2 gene is located on chromosome 11 and encodes for the SIK2 protein, which has 926
amino acids and three domains (3, 4). The C-terminal domain of the SIK protein contains
numerous unique sites that can be phosphorylated by different protein kinases and transmit various
stimulation signals involved in different biological processes, including cell growth and apoptosis
(4–8). In many malignant tumors, such as breast cancer, lung cancer, melanoma, primary liver
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cancer, and ovarian cancer, SIK expression is significantly
different from that in adjacent tissues (9–14).

Growing evidence has proven that the expression and
action of SIK2 are tissue-specific. The cellular and subcellular
distributions of SIK should be considered to determine
its mechanism. Earlier investigations demonstrate that SIK2
maintains cell homeostasis via modulation of cAMP response
element binding protein (CREB)-mediated gene transcription
during starvation, whichmay be a possible mechanism for cancer
cell survival under stress, such as chemoradiotherapy (15). SIK2
reduces glucose uptake in muscle cells and white adipocytes and
downregulates lipogenesis and ketogenesis by phosphorylating
the glucose-activated histone acetyltransferase coactivator p300
(16). SIK2 modulates several subtle cellular signaling pathways,
and its abundant expression in melanoma and ovarian tumors
is suggestive of its pivotal function in tumor development (13,
17). Thus, in this mini-review, we discuss the specific role and
related signaling pathways of SIK2 in tumorigenesis. Our findings
indicate the potential application of SIK2 as a therapeutic target
for cancers.

SIK FAMILY AND THEIR FUNCTIONS

The structures of the SIK isoforms are shown in Figure 1. The
three isoforms are similar to one another, particularly in three
domains: a kinase domain near the N-terminal, a central SNF1
protein kinase homology (SNH) domain, and a phosphorylation
domain near the C-terminal (3). SIK1 is a 776-amino acid
protein with a kinase domain in the region of residues 27–
278, an SNH domain in the region of residues 301–354, and a
domain enriched with PKA-dependent phosphorylation sites in
the region of residues 567–613. Similarly, SIK2 is a 931-amino
acid protein with a kinase domain in the region of residues
20–271, an SNH domain in the region of residues 293–346,
and a phosphorylation domain in the region of residues 577–
623. Finally, SIK3 is a 1,263-amino acid protein with a kinase
domain in the region of residues 8–259, an SNH domain in the
region of residues 283–336, and a phosphorylation domain in
the region of residues 486–518. Initial studies have found that
SIK1 is most abundant in the adrenal cortex and an important
regulator in the early phase of hormonal stimulation of the
adrenal cortex (4, 18), adipose tissue (6), and neural tissue (19).
It may overexpress in several non-adipose tissues, such as in the
ovaries and lungs, and act as an oncogenic signal transmitter
during the occurrence and progression of tumors in the
aforementioned organs (18–20). Unlike SIK1, SIK2 modulates
several subtle cellular signaling pathways, and the increased
expression of SIK2 in adipose and neuronal tissues indicates its
pivotal role in lipid metabolism and neural physiology. SIK2
promotes insulin resistance and diabetes by reducing glucose
uptake in muscles and white adipose tissues and inhibiting
gluconeogenesis (7). SIK2 is overexpressed in several cancer cell
lines and boosts cancer cell tolerance to different stresses, such as
deprivation of nutrients and taxol chemotherapy (21). It plays a
proinflammatory role by repressing IL-10 secretion of regulatory
macrophages (22). However, little is known about why the
structural similarity of the SIK family leads to different biological
functions.

SIK2 AND THE PI3K-Akt-mTOR PATHWAY

The expression level of SIK2 in cancers is significantly higher
than that in adjacent and surrounding normal tissues, which
suggests that SIK2 is critical in tumorigenesis and tumor
development. Miranda et al. found that the loss of SIK2 reduces
G1/S transition, delays mitotic progression, and decreases Akt
phosphorylation levels (17). They also confirmed that SIK2 is
overexpressed in adipocyte-rich metastatic deposits compared
with ovarian primary lesions and that adipocytes activate
SIK2 in ovarian cancer cells in a calcium-dependent manner.
Following adipocyte-induced stimulation, the activated SIK2
alters metabolic effects in ovarian cancer cells by inhibiting
acetyl-CoA carboxylase and promoting fatty acid oxidation.
p85α, the regulatory subunit of the PI3K complex, was
previously identified as a putative SIK2 substrate during
chemical genetic screening. The identified p85α phosphorylation
site (S154) resides in the known SIK2 phosphorylation
consensus sequence L-x-[HKR]-[ST]-x-S-X(3)-L at L149–L158
(LYRTQSSSNL). Incubation of recombinant full-length SIK2
or its kinase domain with a peptide corresponding to L149–
L158 of p85α confirmed that SIK2 catalyzes the phosphorylation
of this sequence. More importantly, full-length SIK2, but not
the kinase-inactive mutant, phosphorylated p85α was confirmed
in isotopic labeling assay. Phosphopeptide mapping of p85α
following incubation with SIK2 (kinase domain or full-length)
revealed that the former was phosphorylated at S154 in the
BH domain. The BH domain is thought to bind to proteins
that modulate PI3K activity. Downstream S154 phosphorylation
also appears to increase in an SIK2-dose-dependent manner.
siRNA-mediated depletion or chemical inhibition confirms that
SIK2 is required for p85α S154 phosphorylation. Moreover,
p85α phosphorylation and concomitant Akt phosphorylation can
be triggered by calcium-mediated SIK2 activation. Consistent
with these observations, incubation of the PI3K complex with
recombinant SIK2 leads to a profound increase in PI3K activity in
vitro (up to 13.8-fold), while chemical inhibition of SIK2 induces
a dose-dependent reduction in PI3K activity to its basal level.
These data confirm that p85α is a direct catalytic substrate of
SIK2 and that SIK2 S154 phosphorylation significantly increases
the activity of the PI3K-Akt pathway in ovarian cancer cells.

While most reports suggest that SIK2 is an oncogenic marker,
one study in Turkey claimed that SIK2 is a potential tumor
suppressor in breast cancer (23); SIK2 expression was reportedly
reduced in tumor tissues and breast cancer cell lines compared
with that in normal counterparts. The researchers also found
SIK2-mediated attenuation of proliferation and survival of breast
cancer cells with parallel inhibition of the Ras-Erk and PI3K-Akt
pathways. However, the mechanisms underlying the reduction of
SIK2 levels in cancer tissues were not discussed. Thus, research
into the mechanism of SIK2 loss will help future scholars better
understand tumor transformation in breast tissue and design new
treatment strategies.

SIK2 AND THE HIPPO-YAP PATHWAY

The Hippo pathway is a highly conserved growth regulatory
signaling pathway that was first discovered in Drosophila. It can
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FIGURE 1 | Structures of isoforms in SIK family.

block the downstream pro-growth transcriptional co-activator
Yorkie (Yki), which is homologous tomammalian Yes-associated
protein (YAP), and exert its regulatory effects on organ size, cell
proliferation, and apoptosis during organ development (24, 25).
YAP has been shown to be highly expressed in various human
tumors, such as endometrial carcinoma, primary liver cancer, and
oral squamous cell carcinoma. Activation of YAP can remove
tumor cell contact inhibition, leading to tumor metastasis (25–
27). Tsujiura et al. immunohistochemically analyzed YAP in
endometrial carcinoma tissue samples and found that the high
expression of YAP in the nucleus is closely associated with higher
tumor grading and staging, lymphatic/blood vessel invasion,
increased recurrence, and metastasis. They then confirmed these
results at the cellular level in knockdown and overexpression
assays. Recent studies have demonstrated that YAP restricts
the activity of the cell cycle checkpoints ATM and ChK2 to
enable cancer cells to enter the cell cycle and mitosis after
chemoradiotherapy despite unrepaired DNA damage, resulting
in tumor growth, chemoradiotherapy resistance, and ongoing
proliferation (28).

Wehr et al. characterized Drosophila salt-inducible kinase
(sik2) as an upstream inhibitor of the Hippo pathway (29). sik2
has been identified as the ortholog of human SIK2. Activated sik2
phosphorylates Ser413 of the scaffold protein Salvador (Sav), a
major part of the core kinase complex of the Hippo pathway,
and subsequently abolishes the inhibition of the proto-oncogene
Yki. In addition, sik2 directly induces the expression of Yki and
facilitates Yki-dependent tissue overgrowth. Coincidentally, both
SIK2 and YAP have been proven to be oncogenes in ovarian
cancer. Research has confirmed a close interaction between the
PI3K-Akt-mTOR and Hippo-YAP pathways via SIK2 (Figure 2).
On the one hand, YAP directly activates PI3K-Akt-mTOR and
alters cellular biological functions (30, 31). YAP also increases
pAkt-S473 levels and suppresses apoptosis by induction of
insulin-like growth factor 2 expression (28). On the other hand,
mTOR complex 2 enhances the oncogenicity of YAP through
phosphorylation of the Hippo pathway component AMOTL2
(32). These observations reveal that mutual activation between
the PI3K-Akt-mTOR and Hippo-YAP pathways caused by SIK2
may be crucial in tumorigenesis. However, the precise role of

FIGURE 2 | Crosstalk between the PI3K-Akt-mTOR pathway and the

Hippo-Yap pathway via SIK2.

SIK2 in these intersecting pathways is not well-understood, and
future studies are still desperately needed to elucidate the related
detailed mechanisms.

SIK2 AND THE LKB1-HDAC SIGNALING
AXIS

Epigenetic studies have confirmed that DNA acetylation
modification is closely related to tumorigenesis, tumor invasion,
and chemoradiotherapy resistance (33–35). The abnormal
activation and overexpression of histone deacetylase (HDAC)
down-regulates tumor suppressor genes and exhibits tumor-
promoting effects. Using kinase domain-focused CRISPR
techniques, researchers screened all dependent kinase in acute
myeloid leukemia (AML), focusing subsequent experiments on
SIK3, which scored strongly in MOLM-13 and MV4-11 AML
cells and in a more intermediate fashion in other AML cell lines
(36). Liver kinase B1 (LKB1) was also identified to show an AML-
biased pattern of dependence. Since SIK3 is homologous to SIK1
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and SIK2, further studies were conducted to determine whether
a broader requirement exists for SIKs in cancer. By performing
dual targeting of each SIK gene combination in 17 AML cell lines,
researchers observed a broad AML-specific requirement for SIK2
+ SIK3 resembling the pattern of LKB1 dependence with a
bias for lines with mixed lineage leukemia fusions. In cDNA
rescue assays, LKB1 was found to phosphorylate and activate
SIK3 in AML. The SIK3 mutant was unable to maintain the
proliferation of MOLM-13 cells, while a phosphomimetic allele
of SIK3 rescued the proliferation arrest caused by inactivating
LKB1. The reverse of SIK3 dependence for AML proliferation
was observed during dual CRISPR targeting of HDAC4. Western
blotting revealed reductions in HDAC4 phosphorylation upon
genetic targeting of SIK3 or chemical inhibition of SIK. Taken
together, these results indicate that the function of SIK3 is critical
in AML and that inhibition of HDAC4 is one of the key functions
of SIK3 in supporting AML proliferation.

Histone H3 lysine 27 acetylation (H3K27ac) is linked to the
relevant downstream activity in the LKB1-SIK pathway, and
ChIP-seq has confirmed that LKB1/SIK3-dependent H3K27ac
coincides with sites of transcription factor MEF2C occupancy.
While LKB1/SIK3 knockout or following SIK inhibitor HG-
9-91-01 treatment did not change MEF2C protein expression,
HG-9-91-01 exposure led to increased HDAC4 binding to
MEF2C-bound sites. Epigenomic analysis suggests that LKB1-
SIK signaling is critical in AML to prevent HDAC4 from
inactivating the function of MEF2C on chromatin. These genetic
experiments suggest that co-inhibition of SIK2 + SIK3 could be
the ideal strategy to achieve potent MEF2C inhibition in AML.
Since MEF2C is maladjusted in lymphoid malignancies, LKB1-
SIK signaling is likely to be important in other hematopoietic
cancers (37).

SIK2 AND THE cAMP-PKA SIGNALING
AXIS

The G protein αs (GNAS) gene encodes the Gαs stimulatory
subunit of G proteins, whichmediate G-protein-coupled receptor
signaling, a major mechanism that links multiple environmental
stimuli with intracellular responses (38). The primary target is
adenylyl cyclase, which generates the second messenger cAMP,
which, in turn, activates downstream protein kinase A (PKA).
In many tissues, GNAS–cAMP-PKA signaling is required during
cell dormancy and cell growth (39–43). However, multiple
types of human cancers show gain-of-function variations in this
pathway (38). For example, loss of p53 promotes the advent of
GNAS R201C mutations and induces malignant transformation
in pancreatic benign tumors in the KGC mice model, which
can rapidly develop cystic pancreatic tumors (44–47). Mutated
GNAS R201C supports pancreatic tumor growth via cAMP-PKA
signaling, which subsequently phosphorylates SIKs (SIK1, SIK2,
and SIK3) and prevents them from phosphorylating downstream
targets (48). Also, small molecule pan-SIK inhibitors (HG-9-
91-01 and KIN-112) prevent the growth of KGC organoids
after silencing GNAS, and their effects are directly proportional
to the degree of SIK inhibition. Compared with wild-type

SIK2, the SIK2-S4A mutant, which is resistant to cAMP-PKA
activation, strongly inhibits the proliferation of KGC-like organs.
In particular, SIKKO rescues both organoid growth in vitro and
subcutaneous tumor growth following GNAS R201C silencing,
and these findings have been confirmed in human pancreatic
ductal adenocarcinomas (PDA). Thus, the cAMP-PKA-SIK2
signaling pathway is a conserved tumorigenic mechanism in
pancreatic tumor cells. The mutant GNAS drives downstream
PKA-SIK2 axis and promotes lipid hydrolysis in addition to lipid
synthesis and remodeling. While SIK2 is known to maintain cell
homeostasis and energetic metabolism, particularly glucose and
fatty acid oxidation (15), the suppression of SIK2 mediated by
GNAS-PKA will inhibit the phosphorylation of its downstream
CREB-regulated transcription co-activator (CRTC) and others
(Figure 3). Then it will promote lipids absorption and synthesis,
and the abundant lipids in tumor cells provide substrates for
structural, signaling, andmetabolic purposes, which explains why
SIK2 act as a tumor suppressor in PDA.

While SIK2 is deemed to be a tumor promoter in most cases,
in the context of GNAS mutated PDA, it is supposed to be a
tumor suppressor, mainly because SIK2 plays different roles in
different tissue and cells, similar to cAMP/PKA signaling. Given
the context-dependent tumor-promoting and -suppressing roles
of SIK2, administration of SIK2 inhibitors in GPCR-mutated or
other overactive cAMP-PKA cancer types should be attempted
with extremely caution to avoid potential pro-tumor effects.
More investigations are necessary to clarify these issues and
promote the use of SIK2 inhibitors in tumor therapy.

SIK2 IN CANCER THERAPY

Previous studies on SIK2 have reported its regulation of energetic
metabolism, mostly based on its signaling pathways and the
downstream role of LKB1 in adipocytes. Studies on SIK2 have
recently underlined its role in several signaling pathways related
to tumorigenesis. Clinical and pathological data indicate that

FIGURE 3 | The dichotomous oncogenic roles of SIK2 in the LKB1-HDAC

axis and the cAMP-PKA axis.
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SIK2 is a potential oncogenic marker in ovarian (17, 49),
prostate (50), osteosarcoma (51), and colorectal (52) cancers
by controlling different cellular mechanisms. Intriguingly, two
studies report that SIK2 may act as a tumor suppressor in breast
cancer and PDA. Since SIK2 plays a distinct role in different
tissues and divergent pathways, its dysregulation may lead to
conflicting phenotypes. Initial studies on SIK2 maily focused
on its role in energetic metabolism, particularly in glucose, and
lipids oxidation during starvation. The functions of SIK2 may be
unique in cells that are involved in glycolipid metabolism, such
as hepatocyte and pancreatic cells. As a consequence, SIK2 may
act as both tumor promoter and suppressor due to the diversity
of cancer cell types or different genetic background. The SIK2
inhibitors HG-9-91-01, ARN-3236, and KIN-112 have succeeded
in cancer therapy approaches, validated in cultured cells and in
vivo animal models (17, 36, 48), although additional optimization
of these small molecules is required for therapeutic investigation.
Further evaluation of these small molecules is necessary to
achieve potent SIK2 inhibition in the uncontrolled signaling
pathways of tumor cells while preserving the homeostatic and
tumor-protective functions of SIK2 in other cell types.

CONCLUSION

In this mini-review, we discussed the role of the newly identified
protein kinase, SIK2, in tumorigenesis, specifically focusing
on different signaling pathways involving SIK2. SIKs present
significant physiological functions, including novel roles in

tumorigenesis and tumor progression. While most studies reveal
SIK2 to be a tumor promoter, some claims indicate that
SIK2 provides protection from cancer. Thus, the dichotomous
function and mechanism between SIK2 and cancer must be
further elucidated. As described earlier, SIK2 targeting may
be applied as a novel strategy for treating multiple cancer
types. Future studies to investigate the molecular mechanisms
underlying the precise role of SIK2 in intersecting signaling
pathways, as well as the therapeutic effects of SIK2 in preclinical
and clinical trials, are recommended.
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