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Although many researches have shown that edge-based information is more important 
than surface-based information in object recognition, it remains unclear whether edge-
based features play a more crucial role than surface-based features in category learning. 
To address this issue, a modified prototype distortion task was adopted in the present 
study, in which each category was defined by a rule or a similarity about either the edge-
based features (i.e., contours or shapes) or the corresponding surface-based features 
(i.e., color and textures). The results of Experiments 1 and 2 showed that when the 
category was defined by a rule, the performance was significantly better in the edge-based 
condition than in the surface-based condition in the testing phase, and increasing the 
defined dimensions enhanced rather than reduced performance in the edge-based 
condition but not in the surface-based condition. The results of Experiment 3 showed 
that when each category was defined by a similarity, there was also a larger learning effect 
when the category was defined by edge-based dimensions than by surface-based 
dimensions in the testing phase. The current study is the first to provide convergent 
evidence that the edge-based information matters more than surface-based information 
in incidental category learning.

Keywords: category learning, incidental category learning, the prototype distortion task, edge-based features, 
surface-based features

INTRODUCTION

Edge-based information (e.g., line, shape, and contour) always appears at boundaries to separate 
the object from the background and could be preserved in line drawings. Surface characteristics 
(e.g., color, brightness, and texture) always define the physical description of the stimulus and 
are included in color photographs rather than line drawings. Although it remains controversial 
whether edge-based information plays a primary role in object recognition (Delorme et  al., 
2000; Gegenfurtner and Rieger, 2000; Tanaka et al., 2001; Bramão et al., 2011; Moreno-Martínez 
and Rodríguez-Rojo, 2015; Rokszin et  al., 2015), a substantial number of studies have shown 
that edge-based representations are sufficient for object or scene recognition, whereas surface 
characteristics are less efficient routes for accessing the memorial representation (Biederman, 
1987; Biederman and Ju, 1988; Diesendruck and Bloom, 2003; Elder and Velisavljević, 2009; 
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Walther et  al., 2011; Rokszin et  al., 2015; Fu et  al., 2016). For 
example, it has been found that the mean reaction times and 
error rates in the naming task and the verification task were 
identical for common objects of line drawings and color pictures 
when the images were presented briefly (Biederman, 1987; 
Biederman and Ju, 1988), and there were no significant differences 
in the performance for rapid natural scene categorization of 
color and gray images (Delorme et  al., 2000, 2010). It has 
been also demonstrated that surface-based information, such 
as color, could facilitate visual processing only when shape 
information is degraded (Tanaka and Presnell, 1999) or when 
there was no time limit for the stimulus presentation (Wurm 
et  al., 1993).

If category representation consists primarily of edge-based 
information, as novel representations of different categories 
are formed during category learning, one would expect that 
edge-based and surface-based information might also have 
different roles in category learning. Most studies on category 
learning focused on what type of category representations are 
formed (Ashby and Maddox, 2005, 2011; Ashby and O’Brien, 
2005; Richler and Palmeri, 2014; Serre, 2016) and how they 
are learned and generalized (Nosofsky and Zaki, 2002; Ashby 
et al., 2003; Maddox and Ashby, 2004; Casale and Ashby, 2008; 
Seger and Miller, 2010; Ell et  al., 2017). However, to the best 
of our knowledge, no study has addressed the roles of edge-
based and surface-based features in category learning, although 
examining this issue has important implications for computational 
models and theories of category learning.

It has been demonstrated that the category could be represented 
by a rule or a similarity in category learning. The rule-
based theory posits that the category representation consists 
of a verbal rule of prominent features (Maddox et  al., 2003; 
Maddox and Ashby, 2004; Ashby and Maddox, 2005, 2011; 
Carpenter et  al., 2016; Ashby and Valentin, 2017), which 
specifies definitively whether an object or an event is of a 
particular sort or not (Shanks, 1995, p.  152). Different from 
the rule-based theories, the similarity-based theory posits that 
people form a summary representation in the form of prototypes 
crucial to the category representation (Knowlton and Squire, 
1993; Reber et  al., 1998a,b; Reed et  al., 1999; Smith, 2002; 
Smith and Minda, 2002; Bozoki et  al., 2006; Homa et  al., 
2011), or store category members as individuated memory 
representations that constitute the category representation 
(e.g., Nosofsky and Zaki, 2002; Zaki and Nosofsky, 2004, 
2007; Tunney and Fernie, 2012). The models of the similarity-
based theory hold that the categorization of novel stimuli is 
achieved by comparing them with the category representation. 
However, neither theory takes into account the role of edge-
based and surface-based features in category learning.

To address this issue, a modified prototype distortion task 
was adopted in the present study. Typically, in the prototype 
distortion task, the category is created by first defining a category 
prototype and then creating the category members by randomly 
distorting the prototype (Knowlton and Squire, 1993; Reed 
et  al., 1999; Bozoki et  al., 2006; Nosofsky et  al., 2012; Gorlick 
and Maddox, 2013; Heindel et  al., 2013). All dimensions of 
the prototype are relevant to the category membership. In the 

training phase, participants were presented with low or high 
distortions of the prototype. They were asked to give likability 
ratings or memorize them, which have no reference to subsequent 
testing. Then, in the testing phase, they were informed that 
the stimuli presented in the training phase belong to one 
category, and they were asked to judge whether novel items, 
i.e., the unseen prototypes and different types of distortions, 
belong to that category in the training phase. Generally, the 
results showed that participants endorsed the previous unseen 
prototype as belonging to the category with the highest probability, 
followed by the low-level distortions, high-level distortions, and 
random patterns, which is termed as “prototype gradient effect” 
(Knowlton and Squire, 1993; Bozoki et  al., 2006; Homa et  al., 
2011; Zannino et  al., 2012). It is argued that the prototype 
gradient effect indicated that category knowledge might 
be  acquired by abstracting information across encounters with 
examples in the training, i.e., in the form of information about 
prototype (Knowlton and Squire, 1993). As no trial-by-trial 
feedback is provided in the training and testing phase, this 
incidental task is more typical of the real-world learning situations 
(Love, 2002, 2003).

To investigate the role of different types of features in 
category learning, we divided stimulus features into edge-based 
features and surface-based features. Each category was defined 
by either edge-based features or surface-based features. Only 
dimensions of the defined features were relevant to the category 
membership. In Experiment 1, to ensure that participants could 
learn the categories, the category was defined by a three-feature-
based rule. That is, the category members presented in the 
training phase shared same features of the defined dimensions. 
In Experiment 2, we  increased the defined dimensions from 
three to four to further explore whether participants would 
express implicit knowledge under this incidental situation and 
whether they would have higher accuracy in the edge-based 
condition than in the surface-based condition. In Experiment 3, 
to increase the learning difficulty, each category was defined by 
a five-feature-based similarity. Stimuli with four defined features 
identical to the prototypes, i.e., low distortions, were presented 
in the training phase. That is, no same defined feature was 
shared by all stimuli in the training phase, which was consistent 
with the typical prototype distortion task. If edge-based features 
are more important than surface-based features in the formation 
of the categorical representations, we  would expect that the 
classification accuracy in the testing phase would be  higher 
when the category was defined by edge-based features than 
by surface-based features whenever the category is defined by 
a rule or a similarity; otherwise, the classification accuracy in 
the testing phase would be  higher when the category was 
defined by surface-based features than by edge-based features, 
or there would be no difference in the learning effects between 
the two conditions.

EXPERIMENT 1

We adopted stimuli from the study of Gorlick and Maddox 
(2013) in which cartoon animals were constructed from 10 
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binary dimensions and each dimension has two features. For 
example, the shape of the horn can be  like a comb or the 
moon; the shape of the head can be acutilingual or lamellirostral. 
To compare the roles of edge-based features and surface-based 
features in category learning, five edge-based dimensions, 
including the shapes of the horn, head, body, tail, and leg, 
were maintained, and five corresponding surface-based 
dimensions, including the color of the horn, head, tail, and 
the texture of the body and leg, were added. As a result, the 
current stimuli varied along 10 binary dimensions, with five 
edge-based dimensions (i.e., contours or shapes), and five 
surface-based dimensions (i.e., colors or textures) as shown 
in Figure 1A. To ensure that the category could be  learned, 
each category was defined by a three-feature-based rule in 
Experiment 1. That is, the category members all possess the 
same features in the three defined dimensions but different 
features in the other seven dimensions. For example, in the 
edge-based condition, category members would be  those with 
a comb horn, a paw-shaped leg, and a short and round tail. 
In the surface-based condition, category members would be those 
with a violet horn, a cuspidal leg, and a green tail.

Method
Participants
Forty-two university students (20 females and 22 males) 
voluntarily participated in the experiment. They were randomly 
assigned to one of the two conditions. There were 20 (9 females; 
mean age = 21.8 years, SD = 2.12) in the edge-based condition 
and 22 (11 females; mean age  =  22.05  years, SD  =  4.74) in 
the surface-based condition. All participants reported normal 
or corrected to normal vision and were paid for their attendance. 
All experiments were approved by the Institutional Review 
Board of the Institute of Psychology, Chinese Academy of 
Sciences. Data from one participant in the edge-based condition 
and data from two participants in the surface-based condition 
were excluded from further analysis because their reaction 

times or accuracies were larger than the means plus two 
standard deviations.

Materials
The stimuli were cartoon animals that varied along 10 binary 
dimensions, with five edge-based dimensions, including the 
shape of the horn, head, body, tail, and leg, and five surface-
based dimensions, including the color of the horn, head, tail, 
and the texture of the body and leg. Each dimension has two 
features. Each category member was created by a rule of three 
fixed features in three defined dimensions. For the edge-based 
condition, the category members were defined by a rule of 
three fixed features in regard to the shape of the horn, tail, 
and leg; correspondingly, for the surface-based condition, the 
category members were defined by a rule of three fixed features 
in regard to the color of the horn and tail and the texture 
of the leg (see Figure 2A, the defined features were marked 
with dotted boxes). The features of the three defined dimensions 
were fixed, and the features of the other seven dimensions 
could change randomly. Thus, there were a total of 128 category 
members in each condition. Sixty-eight category members were 
used in the training phase, and the remaining 60 members 
were used in the testing phase. In order to form the stimuli 
that did not belong to the category, one defined feature was 
changed for half of the 60 category members and two defined 
features were changed for the other half, while the other features 
were maintained. Therefore, there were three types of testing 
stimuli according to the features of the defined dimensions: 
stimuli with one, two, or three defined features in the three 
defined dimensions.

Design and Procedure
The experimental design was a one factor (defined dimensions: 
edge-based vs. surface-based) between-subject design. Each 
condition included a training phase, a testing phase, and a 
probability rating phase (as shown in Figure 1B).

A B

FIGURE 1 | Stimuli and procedure. (A) Examples of stimuli with different features on 10 dimensions and (B) the trial procedure of the training, the testing and the 
probability rating phases in Experiment 1.
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Training Phase
The stimuli were presented on a 17-inch CRT monitor and 
subtended a visual angle of less than 12° (see Nosofsky et  al., 
2012). Each trial began with a fixation cross at the center for 
800 ms, and then, a stimulus was presented for 2000 ms. Participants 
were instructed to carefully observe each stimulus and rate how 
likeable it was from 1 (very unlikeable) to 4 (very likeable) after 
it disappeared on each trial. The inter-trial interval was 1,000 ms. 
There were 20 trials in the training phase. The stimuli were 
randomly selected from 68 category members for each participant.

Testing Phase
After the training phase, participants were informed that all of 
the stimuli they had seen in the training phase belonged to one 
category and they were asked to judge whether the novel stimuli 
belonged to the category or not in the testing phase. On each 
trial, a stimulus appeared and remained on the screen until 
participants made a response by pressing one of two keys with 
labels “yes” and “no.” After their response, the stimulus disappeared 
without feedback. The next trial was initiated following a 1,000-ms 
inter-trial interval. There were 120 trials in the testing phase, in 
which 60 stimuli belonged to the category and 60 stimuli did 
not belong to the category (including 30 stimuli with one defined 
feature changed and 30 stimuli with two defined features changed).

Probability Rating Phase
In the final part, each defined dimension with different features 
such as comb-like horn in blue was presented, and participants 
were asked to report the probability that the stimuli including 
the feature of the dimension belonged to the category in the 
training phase, i.e., the probability for the “yes” response. 
Participants indicated the probability on a continuous sliding 
scale from 0 to 100, where 0  =  definitely no, 50  =  equally 
likely to be  yes or no, and 100  =  definitely yes. There were 
12 trials in the probability rating phase as there were three 
defined dimensions.

Results
Accuracy in the Testing Phase
Figure 3A shows the accuracy for each condition in Experiment 1. 
A one-sample t test was used to examine whether participants 
could learn the category in incidental category learning. The 
result revealed that participants in both conditions performed 
significantly above chance (0.50), tcontour (18)  =  7.94, p  <  0.001, 
Cohen’s dz  =  1.82; tsurface (19)  =  4.65, p  <  0.001, Cohen’s 
dz = 1.04, indicating that all participants learned how to classify 
the stimuli. To explore the role of different types of features 
in incidental category learning, an independent-sample t test 
was conducted. The result showed that the accuracy in the 
edge-based condition (M  =  0.70, SD  =  0.11) was significantly 
higher than in the surface-based condition (M  =  0.57, 
SD  =  0.07), t(37)  =  4.28, p  <  0.001, Cohen’s d  =  1.42. Thus, 
consistent with our prediction, participants in the edge-based 
condition performed better than those in the surface-based 
condition.

Categorization Proportions in the Testing Phase
Figure 3B shows the proportions of “yes” responses for different 
types of testing stimuli in the two conditions. To examine 
whether the number of the defined features included in the 
testing stimuli influenced classification performance, a 2 
(condition: edge-based vs. surface-based)  ×  3 (the defined 
features: 1 vs. 2 vs. 3) mixed ANOVA on the proportion of 
“yes” responses was conducted. There was a significant main 
effect of defined features, F(2, 74) = 72.86, p < 0.001, hp

2  = 0.66, 
which was modulated by the condition, F(2, 74)  =  13.97, 
p  <  0.001, hp

2   =  0.27. The main effect of condition was not 
significant, F(1, 37)  =  0.12, p  =  0.74. Simple effect analysis 
showed that for stimuli with one defined feature, the proportion 
of “yes” responses (i.e., the false alarm rate) was significantly 
lower in the edge-based condition than in the surface-based 
condition, F(1, 37)  =  7.18, p  <  0.05, hp

2   =  0.16; for stimuli 
with three defined features, the proportion of “yes” responses 

A B

FIGURE 2 | Examples of category members in Experiments 1 and 2. (A) Examples of category members in Experiment 1 and (B) examples of category members 
in Experiment 2. The three defined features in Experiment 1 and the four features in Experiment 2 were marked with dotted boxes.
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(i.e., the hit rate) was significantly higher in the edge-based 
condition than in the surface-based condition, F(1, 37) = 14.18, 
p  <  0.01, hp

2   =  0.28. That is, compared with the surface-based 
condition, participants in the edge-based condition could more 
correctly reject non-category members and accept category 
members. In addition, the proportion of “yes” responses 
significantly increased with the number of defined features in 
both conditions (both ps  <  0.001), suggesting that participants 
learned to combine the features of three dimensions to classify 
the novel stimuli.

Probability Ratings
To examine whether participants were aware of the relation 
between the defined features and the category membership, 
we first calculated the average rating when the defined dimension 
had or did not have the defined feature separately and then 
obtained the difference ratings between them (as shown in 
Figure 4). If the difference rating was significantly above zero, 
it would indicate that participants might be  aware that the 
defined features were related to the category membership, and 
vice versa. The one-sample t test revealed that the difference 
ratings of the shape of the horn, tail, and leg in the edge-
based condition were significantly above zero [horn shape: 
t(18) = 3.93, p < 0.01, Cohen’s dz = 0.90; tail shape: t(18) = 7.31, 
p  <  0.001, Cohen’s dz  =  1.68; leg shape: t(18)  =  2.93, p  <  0.01, 
Cohen’s dz  =  0.67]. The difference ratings of the color of the 
tail and the texture of the leg in the surface-based condition 
were significantly above zero [tail color: t(19)  =  2.73, p  <  0.05, 
Cohen’s dz  =  0.61; leg texture: t(19)  =  2.14, p  <  0.05, Cohen’s 
dz  =  0.48]. The results indicated that participants in both 
conditions might be  partially aware of the relation between 
the defined features and the category membership.

In order to figure out whether participants indeed utilized 
the knowledge they reported in the probability ratings to make 
classifications in the testing phase, the accuracy was regressed 
on the significant rating differences of the defined dimensions. 
For the edge-based condition, the rating difference of the horn 
shape, tail shape, and leg shape did significantly predict the 
accuracy in the testing phase, F(3, 15)  =  3.98, p  <  0.05, with 
an adjusted R2 of 0.32. For the surface-based condition, the 
rating difference of the tail color and leg texture did significantly 

A B

FIGURE 3 | Performance in the testing phase in Experiment 1. (A) Accuracy in the edge-based and surface-based conditions. (B) Proportions of “yes” responses 
for stimuli with different numbers of defined features in the edge-based and surface-based conditions. Error bars depict standard errors. *p < 0.05, **p < 0.01, 
***p < 0.001.

FIGURE 4 | The difference scores of the probability rating for defined 
dimensions in the edge-based and surface-based conditions in Experiment 1. 
Error bars depict standard errors. *p < 0.05, **p < 0.01, ***p < 0.001.
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predict the accuracy in the testing phase, F(2, 17)  =  6.53, 
p  <  0.01, with an adjusted R2 of 0.37. The results indicated 
that the awareness scores in the probability rating phase could 
account for accuracy in the classification task in the testing 
phase in both conditions.

Discussion
The results of Experiment 1 showed that participants performed 
significantly above chance in each condition, indicating that 
they learned how to classify the stimuli incidentally. Importantly, 
consistent with our expectation, participants in the edge-based 
condition performed better than those in the surface-based 
condition, and they could more correctly reject non-category 
members and accept category members. The results suggest 
that the edge-based information is more important than the 
surface-based information in incidental category learning. 
Moreover, in both conditions, the “yes” responses gradually 
increased with the numbers of defined features, which were 
similar to the typical results of the “prototypical gradient” in 
previous studies (Knowlton and Squire, 1993; Reed et  al., 
1999; Bozoki et al., 2006). On the one hand, the results indicate 
that the features of the three defined dimensions can 
be combined to make correct classification; on the other hand, 
the results support the notion that participants might form 
the category representation in the form of a prototype that 
includes the features of three defined dimensions. Interestingly, 
although people learned the category incidentally, the awareness 
scores in the probability rating phase indicated that they might 
be  partially aware of the relation between the defined features 
and the category membership and they could use these 
knowledge to make classification in the testing phase.

EXPERIMENT 2

It has been found that increasing the complexity of a defined 
rule makes it less likely for observers to learn a category 
through an explicit reasoning process (Ashby and Casale, 2003). 
Thus, in Experiment 2, we  increased the defined dimensions 
from three to four to further explore whether participants 
would express implicit knowledge under this incidental situation 
and whether they would have higher accuracy in the edge-
based condition than in the surface-based condition.

Method
Participants
Forty-seven university students (26 females and 21 males) 
voluntarily participated in the experiment. They were randomly 
assigned to one of the two conditions. There were 24 (12 
females; mean age = 22.75 years, SD = 2.29) in the edge-based 
condition, and 23 (14 females; mean age = 21.82 years, SD = 4.50) 
in the surface-based condition. All participants reported normal 
or corrected to normal vision and were paid for their attendance. 
Data from one participant in the edge-based condition and 
one participant in the surface-based condition were excluded 
from further analysis because their accuracy was lower or 

higher than the mean accuracy minus or plus two standard 
deviations.

Materials
The stimuli were similar to Experiment 1 except that the category 
was defined by the features of four defined dimensions (as shown 
in Figure 2B, the four defined features were marked with dotted 
boxes). For the edge-based condition, the defined dimensions 
were the shape of the horn, tail, leg, and head. For the surface-
based condition, the defined dimensions were the color of the 
horn, tail, and head and the texture of the leg. The features of 
the defined dimensions were fixed, while the features of the 
other would change randomly. As a result, there were 64 category 
members in each condition. Twenty members were used in the 
training phase, and the other 44 members were used in the 
testing phase. In order to form the stimuli that did not belong 
to the category, we  changed one or two or three of the defined 
features of the 44 stimuli, respectively, while the features of the 
other dimensions remained unchanged. There were four types 
of testing stimuli according to the number of defined features 
for the 44 examples, for a total of 176  in each condition.

Design and Procedure
The design and procedure were identical to Experiment 1 
except that there were 176 trials in the testing phase and 16 
trials in the probability rating phase.

Results
Accuracy in the Testing Phase
Figure 5A shows the accuracy for each condition in Experiment 2. 
As in Experiment 1, in order to examine whether a participant 
could learn the category in incidental category learning, we first 
used a one-sample t test to compare the performance in each 
condition with chance (0.50). The result revealed that participants 
in both the edge-based condition and the surface-based condition 
learned how to classify the stimuli [edge-based: M  =  0.77, 
SD = 0.09, t(22) = 14.96, p < 0.001, Cohen’s dz = 3.12; surface-
based: M  =  0.57, SD  =  0.10, t(21)  =  3.23, p  <  0.01, Cohen’s 
dz  =  0.67]. An independent-sample t test was used to explore 
the roles of different types of features in incidental category 
learning. The result revealed that the accuracy in the edge-
based condition was significantly higher than that in the 
surface-based condition, t(43)  =  7.22, p  <  0.001, Cohen’s 
d  =  2.12. Thus, consistent with Experiment 1, the results 
confirmed that participants performed better in the edge-based 
condition than those in the surface-based condition.

Comparison Between Accuracies in Experiments 1 
and 2
To compare the influence of the number of defined dimensions 
on the classification performance in incidental category learning, 
a 2 (condition: edge-based vs. surface-based)  ×  2 (the number 
of defined dimensions: 3 vs. 4) between-subject ANOVA was 
conducted on accuracy. The results revealed a significant main 
effect of condition, F(1, 80)  =  65.23, p  <  0.001, hp

2   =  0.45 and 
a marginal significant interaction of condition by the number 

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhou et al. Incidental Category Learning

Frontiers in Psychology | www.frontiersin.org 7 February 2019 | Volume 10 | Article 183

of defined dimensions, F(1, 80)  =  3.70, p  =  0.058, hp
2   =  0.044. 

The main effect of the number of defined dimensions was not 
significant, F(1, 80)  =  3.05, p  =  0.085. The simple effect analysis 
revealed that the accuracy was higher when the number of 
defined dimensions was four in Experiment 2 than when it 
was three in Experiment 1  in the edge-based condition, F(1, 
80)  =  6.71, p  <  0.05, hp

2   =  0.08 but was not in the surface-
based condition, F(1, 80) = 0.02, p > 0.80. The results suggested 
that increasing the defined dimensions can improve performance 
in the edge-based condition but not in the surface-based condition.

Categorization Proportions in the Testing Phase
Figure 5B shows the proportions of “yes” responses of different 
kinds of stimuli in the two conditions. As in Experiment 1, 
we  analyzed the proportions of “yes” responses for different 
types of testing stimuli to examine whether the number of 
defined features influenced participants’ responses. A 2 (condition: 
edge-based vs. surface-based)  ×  4 (defined features: 1 vs. 2 
vs. 3 vs. 4) mixed ANOVA conducted on the proportion of 
“yes” responses revealed a significant main effect of defined 
features, F(3, 129) = 146.82, p < 0.001, hp

2  = 0.77, a significant 
effect of condition, F(1, 43)  =  7.28, p  <  0.05, hp

2   =  0.15, and 
a significant interaction of condition by the defined features, 
F(3, 129)  =  36.04, p  <  0.001, hp

2   =  0.46. The simple effect 
analysis revealed that when the number of defined features 
was one or two, the proportion of “yes” responses (i.e., the 
false alarm rate) was significantly lower in the edge-based 
condition than in the surface-based condition (both ps < 0.05); 
on the contrary, when there were four defined features, the 
proportion of “yes” responses (i.e., the hit rate) was significantly 
higher in the edge-based condition than in the surface-based 
condition [F(1, 43)  =  11.08, p  <  0.01, hp

2   =  0.21]. That is, 
consistent with the results of Experiment 1, participants in 

the edge-based condition more correctly rejected non-category 
members and accepted category members than those in the 
surface-based condition. In addition, the proportion of “yes” 
responses significantly increased with the number of defined 
features in both conditions (both ps  <  0.05), suggesting that 
participants learned to combine the features of four dimensions 
to classify the novel stimuli.

Probability Ratings
To explore whether participants were aware of the relation 
between the defined features and the category membership, 
we also calculated the difference rating for each defined dimension 
as in Experiment 1 (see Figure 6). A one-sample t test revealed 
that in the edge-based condition, the difference ratings of the 
shape of the horn, tail, leg, and head were significantly above 
zero [horn shape: t(22)  =  3.74, p  <  0.01, Cohen’s dz  =  0.78; 
tail shape: t(22)  =  6.64, p  <  0.001, Cohen’s dz  =  1.38; leg 
shape: t(22)  =  3.45, p  <  0.01, Cohen’s dz  =  0.72; head shape: 
t(22)  =  5.94, p  <  0.001, Cohen’s dz  =  1.24]. In the surface-
based condition, the difference rating of the color of the head 
was significantly above zero [t(21)  =  4.35, p  <  0.001, Cohen’s 
dz  =  0.95], while the difference ratings of the horn color, tail 
color, and leg texture were not (ps > 0.05). The results indicated 
that participants were partially aware of the relation between 
the defined features and the category membership.

As in Experiment 1, the accuracy was regressed on the 
significant rating differences of the defined dimensions. For 
the edge-based condition, the rating differences of the shape 
of the horn, tail, leg, and head did not predict the accuracy 
in the testing phase [F(4, 18) = 2.84, p > 0.05]. For the surface-
based condition, the rating difference of head color also did 
not predict the accuracy in the testing phase [F(1, 20)  =  3.42, 
p  >  0.07].

A B

FIGURE 5 | Performance in the testing phase in Experiment 2. (A) Accuracy in the edge-based and surface-based conditions. (B) Proportion of “yes” responses 
for stimuli with different numbers of defined features in the edge-based and surface-based conditions. Error bars depict standard errors. *p < 0.05, **p < 0.01, 
***p < 0.001.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Zhou et al. Incidental Category Learning

Frontiers in Psychology | www.frontiersin.org 8 February 2019 | Volume 10 | Article 183

Discussion
Consistent with Experiment 1, the results of Experiment 2 
showed that participants performed significantly better in the 
edge-based condition than in the surface-based condition when 
the defined dimensions increased to four, confirming that edge-
based features play a more important role than surface-based 
features in incidental category learning. Interestingly, increasing 
the number of defined dimensions enhanced rather than decreased 
performance in the edge-based condition, while it did not 
significantly change performance in the surface-based condition. 
This further suggests that edge-based information and surface-
based information play different roles in incidental category 
learning. The probability rating results suggest that people might 
be  partially aware of the relation between the defined features 
and the category membership, but these awareness scores in 
the probability rating phase could not account for accuracy in 
the classification task in the testing phase.

EXPERIMENT 3

In the first two experiments, each category was defined by a 
rule of three or four defined features and the category members 
presented in the training phase shared same features. However, 
in the typical prototype distortion task, some distortions were 
presented in the training phase, while the previous unseen 
prototypes and other distortions were presented in the testing 
phase. As no same features were shared by all stimuli in the 
training phase, it might be more difficult to learn the category 
defined by a similarity to the prototypes than by a rule. Thus, 
to increase the learning difficulty, the category members were 
defined by a similarity, which was manipulated through varying 
features in the five defined dimensions in Experiment 3. 
Specifically, the prototypes were created by defining the features 
of the five defined dimensions and then randomly changing 
the features of the other five non-defined dimensions; the 

different levels of distortions were created by remaining the 
non-defined features of the prototypes and then randomly 
changing the defined features of the prototypes. Thus, the 
prototypes and the distortions differed only in the defined 
features rather than the non-defined features. Consistent with 
the typical prototype distortion task, the stimuli with four 
defined features identical to the prototypes, i.e., low distortions, 
were presented during the training phase; the prototypes and 
the other distortions were presented during the testing phase. 
As in the previous research, there were no definitive criteria 
about which distortions can be  classified as belonging to the 
category; we  focused on the analysis of the proportions of 
“yes” responses to different distortions during the testing phase.

Method
Participants
Thirty-two university students (16 females and 16 males) voluntarily 
participated in the experiment. They were randomly assigned 
to one of the two conditions. There were 16 (9 females; mean 
age  =  21.50  years, SD  =  2.85) in the edge-based condition and 
16 (7 females; mean age = 21.06 years, SD = 2.46) in the surface-
based condition. All participants reported normal or corrected 
to normal vision and were paid for their attendance. Two 
participants in the edge-based condition and one participant in 
the surface-based condition were excluded because their proportions 
of “yes” responses for the stimuli with high similarity were lower 
than the mean proportion minus two standard deviations.

Materials
The prototypes for the edge-based category were defined by 
the features of five edge-based dimensions and the features 
for the other surface-based dimensions could change randomly. 
Similarly, the prototypes for the surface-based category were 
defined by the features of five surface-based dimensions, and 
the features for the other edge-based dimensions could change 
randomly. Thus, there were a total of 32 prototypes in each 
category. Among them, two prototypes that have five defined 
features of the prototypes or non-prototypes in the other 
condition were excluded. As a result, there were 30 prototypes 
remained in each condition. We  first created 60 stimuli by 
changing one defined feature of the remained 30 prototypes 
and maintaining the other features in the non-defined dimensions 
in each condition. Among them, 30 stimuli were presented 
during the training phase and the other 30 stimuli were presented 
during the testing phase. To create the stimuli with two, three, 
four, or five defined features different from the prototype in 
the testing phase, we  changed one, two, three, or four defined 
features of the 30 stimuli that originally only have one defined 
feature changed, respectively. Thus, the stimuli in the testing 
phase differed only in the number of the defined features and 
all the non-defined features occurred with the same probability.

Design and Procedure
The design and procedure were similar to Experiment 1 except 
that there were 30 trials in the training phase, 180 trials in 
the testing phase, and 20 trials in the probability rating phase. 

FIGURE 6 | The difference scores of the probability rating for defined 
dimensions in the edge-based and surface-based conditions in Experiment 2. 
Error bars depict standard errors. *p < 0.05, **p < 0.01, ***p < 0.001.
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Moreover, after the probability rating phase, there was an 
importance rating phase. The name of 10 dimensions was listed 
in a questionnaire, and participants were asked to rate how 
important each dimension was in their classification on a 
continuous scale from 0 to 100, where 0  =  not important at 
all, 50  =  moderately important, and 100  =  very important.

Results
There were no significant differences between the proportions 
of “yes” response for stimuli with zero and one defined features 
(both ps  >  0.90), between the proportions of “yes” response 
for stimuli with two and three defined features (both ps > 0.20), 
and between the proportions of “yes” response for stimuli 
with four and five defined features (both ps  >  0.90) in both 
conditions. Therefore, stimuli with zero and one defined feature 
of the prototypes were combined as the stimuli with low 
similarity; stimuli with two and three defined features of the 
prototypes were combined as the stimuli with medium similarity; 
stimuli with four and five defined features of the prototypes 
were combined as the stimuli with high similarity.

Categorization Proportions in the Testing Phase
Figure 7 shows the proportions of “yes” responses of different 
types of stimuli in the two conditions. A one-sample t test 
was used in order to explore whether participants learned the 
category. In the edge-based condition, the proportion of “yes” 
responses was significantly above chance level (0.50) for stimuli 
with high similarity [t(13) = 9.10, p < 0.001, Cohen’s dz = 2.43] 
but not for stimuli with medium and low similarities (both 
ps  >  0.08). In the surface-based condition, the proportion was 
significantly above chance level for stimuli with high and 
medium similarities [high: t(14)  =  3.31, p  <  0.01, Cohen’s 
dz  =  0.86; medium: t(14)  =  2.34, p  <  0.05, Cohen’s dz  =  0.60] 
but not for stimuli with low similarity (p  >  0.10).

To examine whether the similarity to the prototype influenced 
performance in classification, a 2 (condition: edge-based vs. 
surface-based)  ×  3 (similarity: low vs. medium vs. high) mixed 
ANOVA on the proportion of “yes” responses was conducted. 
The results revealed a significant main effect of similarity, F(2, 
54)  =  26.98, p  <  0.001, hp

2   =  0.50, a significant main effect of 
condition, F(1, 27) = 5.11, p < 0.05, hp

2  = 0.16, and a significant 
interaction between similarity and condition, F(2, 54)  =  7.49, 
p  <  0.01, hp

2   =  0.22. The simple effect analysis showed that, 
in the edge-based condition, the proportion for stimuli with 
high similarity was significantly higher than the proportion for 
stimuli with medium and low similarities (both ps  <  0.001). In 
the surface-based condition, however, the proportions for stimuli 
with high and medium similarities were significantly higher than 
that for stimuli with low similarity (both ps  <  0.05). More 
importantly, for stimuli with high similarity, the proportion of 
“yes” responses was significantly higher in the edge-based condition 
than in the surface-based condition [F(1, 27) = 24.27, p < 0.001, 
hp

2   =  0.47]. Therefore, participants from both groups learned 
the category representation and participants performed better 
in the edge-based condition than in the surface-based condition, 
which were consistent with the results in Experiments 1 and 2.

Probability Ratings in the Testing Phase
To explore whether participants could be aware of the relation 
between the defined features and the category membership, 
we  also calculated the difference rating for each defined 
dimension as in Experiment 1 (see Figure 8). A one-sample 
t test revealed that only the difference rating of the shape of 
the tail in the edge-based condition was significantly above 
zero [t(13)  =  2.64, p  <  0.05, Cohen’s dz  =  0.70]. The results 
indicated that participants in edge-based condition might 
be  only aware of the relation between the shape of the tail 
and the category membership.

As in Experiments 1 and 2, when the proportions of “yes” 
response for stimuli with high similarity was regressed on the 
rating difference of the shape of the tail in the edge-based 
condition, the results showed that the rating difference of the 
tail shape did not predict the proportions of “yes” response 
for stimuli with high similarity in the testing phase [F(1, 
12)  =  0.10, p  =  0.76]. The results indicate that people mainly 
acquire implicit category knowledge.

Importance Rating
To explore whether participants were more reliant on edge-
based or surface-based information in classification, we calculated 
the mean importance rating for the five edge-based and five 
surface-based dimensions separately in each condition (see 
Figure 9). A 2 (dimensions: edge-based vs. surface-based)  ×  2 
(condition: edge-based vs. surface-based) mix ANOVA revealed 
only a significant main effect of dimensions [F(1, 27)  =  26.47, 
p  <  0.001, hp

2   =  0.50]. The main effect of condition [F(1, 
27)  =  0.024, p  =  0.88] and the interaction [F(1, 27)  =  0.54, 
p  =  0.47] did not reach significance. Therefore, regardless of 
whether the category was defined by edge-based or 

FIGURE 7 | Proportion of “yes” responses for different types of stimuli in the 
edge-based and surface-based conditions in Experiment 3. Error bars depict 
standard errors. *p < 0.05, **p < 0.01, ***p < 0.001.
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surface-based dimensions, participants always consider the 
edge-based dimensions as more important than the surfaced-
based dimensions.

Discussion
Consistent with the results of Experiments 1 and 2, the results 
of Experiment 3 showed that the proportion of “yes” response 
for stimuli with high similarity was higher in the edge-based 
condition than in the surface-based condition, confirming that 
there was a larger learning effect in the edge-based condition 

than in the surface-based condition. Interestingly, although 
participants in the edge-based condition were aware that the 
shape of the tail might be  associated with the category 
membership, these awareness scores did not account for the 
performance in the testing phase, indicating that participants 
mainly acquire implicit category knowledge.

Moreover, although the category was defined by a similarity, 
participants might make classification based on one defined 
feature. If they did it in this way, the proportions of “yes” 
responses for stimuli with high similarity, medium similarity, 
and low similarity would be  0.90, 0.50, and 0.10, respectively. 
As the expected proportion for stimuli with medium similarity 
was equal to the chance level, we compared only the proportions 
for stimuli with high and low similarities with 0.90, and 0.10, 
respectively. One-sample t test revealed that the proportion 
for high similarity stimuli was significantly lower than 0.90  in 
both edge-based condition and surface-based condition (both 
ps < 0.01), while the proportions for stimuli with low similarity 
were significantly higher than 0.10 (both ps  <  0.001). The 
results indicated that participants did not use one-single-defined-
feature strategy during the testing phase.

GENERAL DISCUSSION

The purpose of this present study was to explore whether edge-
based features play a more crucial role than surface-based 
features in incidental category learning. As expected, the results 
of Experiments 1 and 2 showed that when each category was 
defined by a rule, participants performed much better in the 
edge-based condition than in the surface-based condition, and 
increasing the number of defined dimensions enhanced rather 
than reduced the performance in the edge-based condition but 
not in the surface-based condition. When each category was 
defined by a similarity, the results of Experiment 3 also showed 
that participants could learn the two categories and that there 
was also a larger learning effect when the category was defined 
by edge-based dimensions than when defined by surface-based 
dimensions. The current study is the first to provide the convergent 
evidence that edge-based information is more important than 
surface-based information in the representation’s formation in 
incidental category learning.

Why is edge-based information more important than surface-
based information in both object recognition and incidental 
category learning? One explanation is that edge-based features 
such as shape provide more salient holistic information compared 
with local information (Bell and Badcock, 2008; Bell et  al., 2010; 
Osugi and Takeda, 2013), whereas surface-based features such 
as color and textures make it difficult to combine local parts to 
form a holistic representation. Thus, global precedence enables 
attention to be  first directed to edge-based features, and the 
visual short-term memory might operate more efficiently on 
edge-based features than on surface-based features as a result 
(Alvarez and Cavanagh, 2008). Furthermore, edge-based information 
receives prior processing (Fu et  al., 2016), and the human visual 
system might use schematic representations to encode and process 
object or scene categories (Walther et  al., 2011).

FIGURE 8 | The difference scores of the probability rating for defined 
dimensions in the edge-based and surface-based conditions in Experiment 3. 
Error bars depict standard errors. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 9 | The importance ratings for the five edge-based dimensions and 
five surface-based dimensions in the edge-based and surface-based 
conditions in Experiment 3. Error bars depict standard errors. *p < 0.05, 
**p < 0.01, ***p < 0.001.
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Another explanation is from an evolutionary point of view: 
edge-based information such as shape is more stable than 
surface-based information such as color. For example, the colors 
of fruits change dramatically during growth, but their shapes 
do not. This might lead edge-based features to be  more salient 
and important in object recognition and category learning. It 
has been found that infants use boundary information in object 
recognition earlier than they can use surface information. For 
example, four-month-old infants can use shape and boundary 
features to segment objects (Needham, 1999) and can use both 
color and shape information to individuate objects only by 
the age of 12  months (Tremoulet et  al., 2000).

Interestingly, we found that increasing the number of defined 
dimensions enhanced rather than reduced performance in the 
edge-based condition but not in the surfaced-based condition. 
It may be  because that increasing the number of defined 
dimensions makes the holistic processing of the perceptual 
representation easier to be  learned in the edge-based condition 
but not in the surface-based condition. Importantly, not only 
was the category learning performance better in the edge-based 
condition than in the surface-based condition, but also the 
edge-based dimensions were rated as more important than 
the surface-based dimensions regardless of whether the category 
was defined by edge-based or surface-based dimensions, providing 
further convergent evidence that edge-based information plays 
a more important role in incidental category learning.

In our experiments, categories were defined by multidimensions 
and participants reported that they made their classification on 
multiple dimensions in Experiments 1 and 2. If they used rule-
based strategies, the proportion of “yes” responses should be identical 
to the stimuli with defined features changed. However, our results 
showed that the proportion of “yes” responses increased with the 
number of defined features in Experiments 1 and 2. This was 
true in both edge-based and surface-based conditions, although 
it was more salient in the edge-based condition than in the 
surface-based condition. The results suggest that, although participant 
could combine all defined features in classification, they might 
use similarity-based strategy to make classifications. This was 
consistent with studies showing that incidental learning promotes 
similarity-based processing, whereas rule-based processing is 
involved in intentional learning (Wattenmaker, 1991; Love, 2002).

Finally, in our experiments, participants were asked to 
carefully observe each stimulus and rate how likeable it was 

in the training phase and were not asked to learn the category 
directly, and no trial-by-trial feedback was provided in both 
the training and the testing phases. This guaranteed that the 
learning process occurred incidentally. To examine whether 
participants were aware of the acquired knowledge, they were 
asked to report the probability that the stimuli including different 
features of the defined dimension belonged to one category. 
In Experiment 1, the rating results, which could account for 
the accuracy in the testing phase, indicated that participants 
were aware of the relation between the defined features and 
the category membership to some extent. Interestingly, with 
an increase in the defined dimensions from three to four in 
Experiment 2, these awareness scores in the probability rating 
phase could not account for accuracy in the classification task 
in the testing phase. Moreover, in Experiment 3, only participants 
in the edge-based condition were aware of the relation between 
one defined dimension and the category membership, but this 
awareness score also did not account for performance in the 
testing phase. This indicated that participants can acquire 
implicit category knowledge in incidental category learning.

To summarize, our results showed that people performed 
much better in the edge-based condition than in the surface-
based condition regardless of whether a category is defined 
by a rule or a similarity. The results suggested that the category 
representation formed in incidental category learning might 
consist primarily of edge-based information rather than surface-
based information, and future studies need to distinguish the 
different roles of different features in category learning.
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