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A stochastic model for loan interest rates 

Abstract 

The topic of interest rate restrictions and their legal implications represents a delicate subject about which a recent 

inventory of EU authorities was developed. This is aimed to inspection of the so called principle of “good morals” 

against usury for the Member States. 

The most recent Italian law regulating legal rates of interest applied in loans, sets a threshold under which loan interest 

rates have to remain for being nonusurious, in the sense that if the loan rate lies outside the threshold, it becomes a 

usury rate and has to be prosecuted. The threshold is stated by Bank of Italy precisely each three-month period. In the 

paper the authors propose a stochastic process modelling the non-usurious interest rates applied in loans, in order to 

control its quarterly behavior. It is studied in the form of a modification of the Cox, Ingersoll and Ross model moving 

between two bands and closed expressions for its expected value and variance are given both conditional and uncondi-

tional. The model parameters are estimated by the Indirect Inference Method; the behavior of the expected value and 

variance functions are illustrated with graphs. 

Keywords: Italian loan interest regulation, CIR model, conditional moments, indirect inference, Monte Carlo simu-

lation.

JEL Classification: G17, G28. 

Introduction  

An inventory of interest rate restrictions against 

usury in the EU Member States was achieved at the 

end of 2010. In particular the EU authorities’ atten-

tion focused on the Interest Rate Restrictions (IRR) 

established on precise legal rules restricting the 

credit price, both directly by fixed thresholds as 

well as indirectly by intervening on the calculation 

of compound interest (Directorate-General of the 

European Commission, 2011). 

Since May 2011 the Italian law governs interest 

rates in loans with a new regulation, fixing a thre-

shold above which interest rates applied in loans are 

considered usurious. The law fits in the civil and 

penal case in point of the usury crime the objective 

element of the interest rate over which penalties and 

civil sanctions go off. The borderline rate is calcu-

lated as 125 per cent of the reference rate TEGM 

plus 4 per cent. The acronym TEGM stands for 

Average Effective Global Rate. Therefore the max-

imum admissible value is: 

Threshold rate = 1.25 TEGM + 0.04. 

The law states that the difference between the thre-

shold rate and TEGM cannot go further on 8%, this 

implying that the maximum value admissible for the 

reference rate cannot exceed 16%. TEGM value, 

quarterly settled and published by Bank of Italy, is 

based on annual interest rates applied by banks and 

financial intermediaries in financial operations of 

the same type, annually classified by Italian Minis-

try of Economics and Finance. TEGM includes 

commissions and general expenses while taxes are 

left out. In the framework the law prescribes, we 

propose a model for representing the stochastic 

                                                     
 Emilia Di Lorenzo, Albina Orlando, Marilena Sibillo, 2013. 

movement of loan interest rates as a control tool for 

informing both in the loan interest rate trend and in 

option pricing forecasting. 

In literature basic contributions to the study of the 
interest rates in a stochastic environment are well 
known and usually adopted in financial evaluation 
problems. In the particular case of exchange rates, 
the application to problems concerning the target 
zone had an important initial impulse with Krugman  
(Karatzas and Shreve, 1991) and from this contri-
bute on, a large production has taken place, dedi-
cated to both realignment and no realignment hy-
potheses. In particular De Jong et al. (Gouri´eroux 
and Monfort, 1996) presents a modification of the 
CIR model for exchange rates in a target zone in 
both cases. 

Within the abovementioned Italian law, we propose 
a simply tractable stochastic model for controlling 
the behaviour of the loan interest rates in period of 
quarter; due to the nature of the process we are going 
to study, the model will be with no realignments, be-
ing no changes of the fixed TEGM in the each quarter 
time interval. 

It is the aim of the paper to provide a stochastic repre-
sentation of the evolution in time of non-usurious 
interest rates, in order to obtain information concern-
ing returns/costs of loans. 

The layout of the paper is the following. In section 1 

we construct the model, set the stochastic differential 

equation of the process and show the existence and 

uniqueness of its solution. In section 2 we introduce a 

modification of the model serving as a means for sim-

plifying moment calculation procedures. In section 3 

we present stochastic calculus lines for getting condi-

tional and unconditional expected value of the interest 

rate process while section 4 is dedicated to its va-

riance. Section 5 is centred in the process parameter 
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estimation and, finally, in section 6 numerical re-

sults are illustrated. Some concluding remarks close 

the paper. 

1. The stochastic model for loan interest 

rates. The construction 

We denote by it the stochastic interest rate applied 

in loans and by the TEGM, the constant quarterly 

rate fixed as previously explained. According to the 

present Italian regulation, it has to move within the 

following interval: 

0 1.25 0.04
t
i                                                 (1) 

in which the upper bound is known. 

From equation (1) we can express the relation in 

term of the instantaneous interest rate: 

1 1.25 0.04
0 ln (1 ) ln (1 ) ln

1
ti          (2) 

indicating by: 

ln(1 )

ln(1 )                             

1 1.25 0.04
ln            

1

t t
i

m m R

k k R

                      (3) 

equation (2) becomes: 

0
t

m k                                                           (4) 

In what follows we describe the process t as a sto-

chastic interest rate constrained within the two 

bands in equation (4), both prefixed and known. 

The description of this specific rate process asks for 

two basic behavioral conditions. The strong compe-

titiveness among loan bidders in a sector characte-

rized by an increasing transparency, makes suitable 

thinking to a process subject to the mean reverting 

elasticity property. In the model we propose, this 

aspect is represented by an autoregressive term 

attracting the interest stochastic rate it towards ,

that is t towards m. Moreover we ask the model to be 

heteroskedastic: in particular, its diffusion coefficient 

has to decrease when approaching the threshold rate, 

that is when t approaches m+k, and at the same time 

has to avoid negative values. No realignment prob-

lems are recognized: in each quarter time horizon, the 

model will not suffer changes in the fixed value,

being TEGM constant in each period. 

Basing on these considerations, the stochastic 

process for the loan instantaneous interest rate can 

be described by the following differential equation: 

( ) [ ( )]t t t t td m dt k m dW               (5) 

with 0 t m + k, m, p, and k positive parame 

ers, with 0 the initial position of the process and Wt

a Wiener process. 

The existence and uniqueness of the solution of 
equation 5 is based on well known results in sto-

chastic differential equations theory.

.
2. The centred model 

The model in equation (5) can be rewritten in the 
centred version. This handling allows the use of 
straightforward procedures useful for the moment 
calculations we will develop in sections 3 and 4. 

Posing: 

*

t t
m                                                     (6)

the stochastic differential in equation (5) becomes: 

( )( )
* * * *

t t t t t
d dt m k dW                (7) 

with: *

t
m k. 

The process 
*
t is centred around m and the long 

term mean converges almost everywhere to 0. 
Moreover it is immediate to observe that the ex-
pected values of the processes in (5) and (7) only 
differ by m having nevertheless the same autocova-
riance function. 

3. The expected value of the process 

Applying Ito’s theorem to equation (7), we have: 

( )( )* t t * *

t t t td e e m k dW                        (8) 

and integrating in (u,u + h]
5
 with h  0 we can write: 

( )

( , ]

( )( )
* * - h - h t-u * *

u+h u t t t

u u h

e e e m k dW    (9) 

Setting: 

( )

t

( , ]

( )( ) .- h t-u * *

u+h t t

u u h

e e m k dW           (10) 

equation (9) can be expressed as follows: 

.* * - h

u+h u u+h
e                                        (11) 

Recalling a property of the martingale process 
(Gerber, 1979) and after some lines of algebra, we 
write the conditional expected value of the process: 

( )* - h *

u u+h u
E e                                                 (12) 

from which we get immediately the unconditional 
expected values: 

E ( *

t
) = 0, 

E (
m

) = m.                                                          (13) 



Banks and Bank Systems, Volume 8, Issue 4, 2013 

96 

4. The variance of the process 

Let’s consider the conditional variance of the 

process: 

2 2( ) ( ) ( ).* -ph *

u u+h u u u u u+h
Var Var e h E           (14) 

that, resorting to the properties of Ito stochastic 

integral, can be rewritten as (Gerber, 1979). 

2 ( )

[ , )( ) [( )( )]* p t u * *

u u+h u u h e u t tVar E m k dt. (15)          

After some lines of algebra, we obtain: 

2 2 ( ) -2 ( )

( , ]
( ) e [ ( ) ( )]* ph -p t u * p t u *

u u+h u u h u u u
Var mk k m e e Var dt.                                                                

Multiplying by e
2ph 

 and setting: 

2( ) ( )ph *

u u+h
g h  = e  Var                                             (16) 

we can write: 

2 2 2( ) ( ) + [ ( )

]

ph

ph * 2*

u u

g' h  = - g h e mk + k - m

e
                   (17) 

with the boundary condition g (0)=0. It derives:

2
2 2

2 2

2 2

e ( 2 ) 1 e ( )
( ) [ ( 1)]

2 2

h h
- h * 2* h

u u

p  p  
g h  = e mk  +  (k  m) e

p p
                                                                   

from which, on the basis of equation (16), the con-

ditional variance follows: 

( ) [ 2 ] ( )*

u u+h
Var exp ph g h                                  (18) 

and the unconditional variance directly flows: 

2

2
( ) .

2

*

u u

mk
Var

p
                                               (19) 

5. Parameter estimation 

In models for which the likelihood function is ana-

lytically intractable or too difficult to evaluate, the 

indirect inference is a very useful simulation proce-

dure. It was first introduced by (Smith 1990; 1993) 

and later extended in an interesting paper by (Gou-

riéroux, Monfort and Renault 1993).  

The central idea is to use an auxiliary model which 

can be estimated using either the observed data or data 

simulated from the model itself. The aim is to find the 

parameter vector of the model so that these two sets of 

parameter estimates are as close as possible. 

The process t we are going to calibrate is observed 

at discrete times equally spaced and the approach 

we will follow consists in replacing the initial con-

tinuous model in equation (5) with its Euler discre-

tization.

We recall that, referring to the general stochastic 

differential equation: 

( , ( )) ( , ( )) ,t td t t t t dW                             (20) 

where Wt is a Wiener process, the Euler discretiza-

tion can be expressed as follows:  

1 1 1( ; ) ( ; ) ,t t - t - t - tr r r r                               (21) 

where 1,2{ }t t= ,...,Tr  are the available observations cor-

responding to the dates 1, 2, T,  = [ , m, k, ] is the 

parameter vector to be estimated and k is a Gaus-

sian white noise. Referring to model in equation (5), 

the Euler discretization can be written as follows: 

1 1 1 1( ) ( ( )) .t t- t- t- t- tr r p m r r k r m            (22) 

Indicating by  (r, ) the likelihood function re-

ferred to the Euler discretization, we can estimate 

the model using the observed data. In particular we 

apply the maximum log-likelihood estimation me-

thod to the approximated model in equation (22) to 

get parameter estimates . Formally, ’ results: 

ˆ argmax log( ( , ).r
                                       (23) 

Referring to equation (21) we can rewrite equation 

(23) as follows (Ahangarani, 2005):

2

2 1 1

1 21
1

[ ( )]1
arg max { 0.5log ( ) }.

2 ( )

T t - t -

t -t -
t -

r r
r

r

                                                                      

(24) 

It is immediate to rewrite equation (24) considering 

the discretization introduced in equation (22). 

Being the Euler discretization an approximation, the 
model in equation (22) is misspecified. By means of 
the indirect inference method, to correct the asymp-

totic bias of ’ we can use simulations performed

under the initial model finding asymptotically con-
sistent estimators of model in equation (5) (Ahanga-
rani, 2005).  

In order to simulate the continuous process we can 

use a finer Euler discretization involving a very 

small discretization step  such that: 
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( ) ( ) ( )

( 1) ( ) (k )( ; )
k k k

r r r                     (25) 

where t = k (k =1,2,…,T/ ) and 
k

N (0, ),

Given the set of random errors 
k

 and the structural 

parameter vector , from equation (25) we generate

M statistically independent simulated data sets,  
( ){ } 1, 2, ...., ,m

k
r m M  where ( ) ( ) ( ) ( )

2{ } ( , ,..., ).m m m m

k k T
r r r r

Each of the M simulated data sets is built using the 
same set of random errors. At this point we will 
maximize the log of the likelihood function across 
the M simulations, getting the following equation: 

2

2 1 1

1 21 1
1

[ ) ( )]1
arg max { 0.5log ( ) ) }.

2 ( ) )

m m
M MM m t- t -

t - mm m
t-

r r
r

r
                                                  (26) 

The last step is the calibration of parameter esti-
mates. We need to choose a formal metric to meas-

ure the ‘distance’ between ’ and ’
M

 and to this aim 

we implement the Wald approach consisting in choos-
ing  in equation 26 such that the quadratic form in the 

vector ( ’  ( ’
M

( )results minimized (Keane and 

Smith, Jr., 2004): 

ˆ
ˆ arg min ( ( ( ) ( ( ( ))Wald M M

' ' W ' ' (27)

having indicated by W a positive definite ‘weight-
ing’ matrix. It has been shown that for T sufficiently 
large, the choice of W can be arbitrary (Gourieroux 
and Monfort, 1996). So we can assume W an Identi-
ty matrix. 

5. Some results 

In this section we illustrate the behaviour of the con-

ditional expected value and variance functions. 

The parameter estimation procedure described in 
section 4 has been applied to the historical series of 
the Italian average rates on loans referring to the 
period 1/04/1997-1/07/2011. Being the optimization 
procedure very time consuming we choose to simu-
late M = 50 paths. The optimization routine was 

implemented on Matlab. The initial values for the 

estimation procedure have been obtained by the 

historical series using the Least Squares methods 

implemented on E-Views 5.0. The procedure gives 

the following results for the parameters of the mod-

el in equation (5): p = 0.1165, with p =0.1165 m = 

0.0575, k= 0.050371,  = 0.0035. 

The behavior of the conditional expected value of 

the centred rate *

t
 is shown considering daily ob-

servations within the quarter and different values of 

the rate observed at the beginning of the period. In 

Figure1 we illustrate the trend of the process *

t
 as 

function of the time and of the initial state values. 

Fixing the time of valuation, the conditional ex-

pected value increases with the rate observed at the 

beginning of the period. On the other hand, fixing 

the initial rate, when the time increases the expected 

value decreases and tends to zero, the unconditional 

expected value. For low initial rates, expected *

t
ra-

pidly increases at the beginning of the period and 

we can also observe that it is noticeably different 

from 0 as far as the initial part of the quarter for any 

initial rate value. 

Fig. 1. Expected value function { *
u 0,0. 05} {h, 1,90 days} 

Figure 2 below shows the behavior of the va-

riance function. Fixing the rates, the variance 

increases with time while it slightly decreases as 

function of the initial rate. The variance values 

tend to stabilize and converge to the unconditional 

variance value. 
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Fig. 2. Variance function{ *
u0,0. 05} {h, 1,90 days} 

As already observed for the expected value, the 
variance too is subjected to considerable variations 
during the initial part of the quarter. 

In Figure 3 we refer to the stochastic process t de-
scribed by (5). We fit the model considering the last 
quarter of the data set used to estimate parameters. 
The red line is the actual maximum cap. We exem-

plify the trends of the process t choosing four dif- 

ferent values of the initial rate and simulate 10000 

trajectories of t, employing the euler discretization 

(22). We observe that, as the time increases, all the 

values tend to the mean m = 0.0575, that is to the 

expected value of the process. Moreover for each 

time of valuation, the process takes values lower 

than the cap and after 20 days the process tends to 

level off. 

Note: Initial values: 4%, 6%, 8%, 10%. 

Fig. 3. Simulated trajectories for  (t)

Conclusions 

The study provides micro-financial indications go-
verning the relationship between creditor and debtor, 
which is represented by the interest rate with bounda-
ries originated with legal measures. 

This is useful for planning of financing transactions, 
within an environment constrained by benchmarks 
set by the law, even in the perspective of transactions 
within leveraged finance. The characteristic parame-

ters, taken with respect to the time of evaluation, 
provide straight and synthetic addresses concerning 
the evolution in time of non-usurious interest rates, 
from the point of view of both parties. 

The paper concerns the stochastic analysis of the 

behaviour of the loan interest rates according to the 

current Italian law, in the framework of the principles 

of fairness against usury, as it is consolidated in the 

EU member states. The study is restricted in a quar-
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ter time interval, coming into line with the time lag 

chosen by the legislator. In each three month period 

the upper threshold rate is fixed and consequently the 

loan rates, laying out of the this barrier, become usu-

rious rates. In a three month period perspective, the 

system moves in a fixed target zone and, for its con-

nection with the exchange rates modelling, is ranked 

in the no realignment cases. 

The process describing the three month period be-

haviour of the loan rate is proposed as a modifica 

tion of the Cox Ingersoll and Ross model. It results 
as the unique solution of a stochastic differential 
equation and the expected value and the variance are 
calculated in conditional and unconditional hy-
pothesis. The procedure for estimating the parame-
ters characterizing the model is deepened and the 
numerical application closing the paper shows the 
results obtained for the parameters on the basis of 
an updated dataset of interest rates; the trends of 
expected value and variance of the process are 
shown with illustrations.
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