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Future demands for food will place agricultural systems under pressure to increase

production. Poultry is accepted as a good source of protein and the poultry industry

will be forced to intensify production in many countries, leading to greater numbers of

farms that house birds at elevated densities. Increasing farmed poultry can facilitate

enhanced transmission of infectious pathogens among birds, such as avian influenza

virus among others, which have the potential to induce widespread mortality in poultry

and cause considerable economic losses. Additionally, the capability of some emerging

poultry pathogens to cause zoonotic human infection will be increased as greater

numbers of poultry operations could increase human contact with poultry pathogens.

In order to combat the increased risk of spread of infectious disease in poultry due

to intensified systems of production, rapid detection and diagnosis is paramount.

In this review, multiple technologies that can facilitate accurate and rapid detection

and diagnosis of poultry diseases are highlighted from the literature, with a focus on

technologies developed specifically for avian influenza virus diagnosis. Rapid detection

and diagnostic technologies allow for responses to be made sooner when disease

is detected, decreasing further bird transmission and associated costs. Additionally,

systems of rapid disease detection produce data that can be utilized in decision

support systems that can predict when and where disease is likely to emerge in poultry.

Other sources of data can be included in predictive models, and in this review two

highly relevant sources, internet based-data and environmental data, are discussed.

Additionally, big data and big data analytics, which will be required in order to integrate

voluminous and variable data into predictive models that function in near real-time are

also highlighted. Implementing new technologies in the commercial setting will be faced

with many challenges, as will designing and operating predictive models for poultry
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disease emergence. The associated challenges are summarized in this review. Intensified

systems of poultry production will require new technologies for detection and diagnosis of

infectious disease. This review sets out to summarize them, while providing advantages

and limitations of different types of technologies being researched.

Keywords: influenza virus, poultry, rapid diagnosis, big data, biosensor, infectious disease

INTRODUCTION

Global population growth, along with rising affluence in Asia,
are driving up not only our total demand for food, but also the
amount of protein required to feed all of humanity (1, 2). More
specifically, the world’s population is expected to grow to over 9
billion people by 2050, and demand for poultry, which represents
a relatively healthy and efficient source of protein, is likely to be
double from what it was in 2005. At the same time, it is expected
that the world will consume 40%more chicken eggs (3). Reaching
these levels of production requires intensification of poultry
operations, and this will translate into larger farms with more
poultry houses and birds. A concern is raised in the literature
that intensive systems of livestock production may be more
vulnerable to outbreaks of disease in both farmed animals and
in human populations (4, 5). Despite such worries, technological
advancements that make it possible for farmers to manage the
health status of more birds with less resources are a current
source of research and development. Such technologies include
biosensors, wearable technologies, and non-invasive approaches
of poultry disease surveillance. Additionally, these intensive
systems will be able to utilize data captured from various sensors
and devices, allowing farmers to better monitor and control both
the birds and their environment as a result of better decision
making when concerning management. The ability to analyze
data in real-time may ameliorate threats of emerging infectious
diseases as these tools can allow farmers to stay informed about
the health and welfare status of large numbers of poultry. In
light of both the rising threat of infectious diseases from larger
poultry operations, and the potential for technology to improve
diagnostics, surveillance, and early detection, the purpose of this
review paper is to explore the current scientific understanding of
how technology can be utilized to decrease the threat of infectious
diseases within the poultry industry.

When considering infectious disease, it is essential to
determine precisely when and where infection is occurring on
poultry farms so action can be taken sooner to prevent additional

infection and losses. This will not only help improve productivity
but is also important from a human safety point of concern, as

some poultry pathogens such as avian influenza virus (AIV), pose
a significant risk of human infection and possible pandemics in
human populations (6). Additionally, other poultry pathogens

such as Escherichia coli, Salmonella and Campylobacter jejuni
are capable of inducing human disease (7–9). Incidence of
emerging disease in livestock animals and humans is increasing,
and a primary reason for this is increased contact between wild
animal species, livestock, and humans (10). Additionally, poultry
production will be forced to increase at a time where global

environmental changes are occurring, and as humans continue
to expand the boundaries of cities, living areas, and agricultural
land. All of these factors increase the risk of emergence of new
infectious diseases into the human population. The emergence
of highly pathogenic H7N9 AIV in China is an example of the
problems associated with intensification of poultry production,
which increases the density of poultry populations leading
to more opportunities for transmission between birds and
potentially humans (11). Optimal strategies that will help reduce
the threat of emerging disease in poultry include the ability to
rapidly detect and diagnose bird disease as quickly as possible,
and the ability to predict outbreaks. Predicting infectious diseases
and initiating rapid responses has great value for both the safety
of human populations and for the poultry industry. For example,
in 2014 official detection of a highly pathogenic AIV (HPAIV)
H5N2 in British Columbia turkey and chicken farms led to their
quarantine on December 2 by the Canadian Food Inspection
Agency (12). However, initial signs of infection were noted on
these farms on November 26 and 28, meaning up to 5 days
passed between the onset of disease and actions being taken to
reduce spread. Ultimately, HPAIV infection spread to multiple
other farms in Canada and the USA over the following weeks and
months, and this led to the culling of more than 48 million birds
(13). Situations in the future can be handled better by decreasing
the time that passes between initial poultry infection and an end
diagnosis. Sensor and surveillance technologies can allow for
much faster detection of bird disease in addition to providing
a rapid on-site diagnosis. This will allow for counteractions to
be taken sooner, for example by quarantining poultry houses or
farms, thereby decreasing the chance that infection can spread to
other groups of poultry.

The ability to contain infectious disease on poultry farms
could benefit immensely from systems that first can rapidly
detect unhealthy or sick birds, and secondly devices that can
accurately and rapidly determine the causative agent that led to
disease. Devices that make this a reality are a current source
of research, and comprise a variety of different technologies,
includingmultiple types of biosensors and rapid-assays, real-time
poultry analysis tools that utilize audio or visual components
to assess poultry health, and wearable sensors that additionally
can transmit and analyze data about the health of poultry.
The many devices, or systems, that could be used to rapidly
detect poultry infection and disease vary in strategy, each
having their own advantages and disadvantages. In this review,
some of these technologies are described and are grouped into
three categories: biosensors, wearable poultry sensors, and non-
invasive non-contact analysis mechanisms. Additionally, the
advantages and drawbacks of each category of devices will be
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discussed concerning their role in detecting and predicting
emerging disease in poultry.

Predicting infectious disease in poultry is becoming possible
as new technologies are increasing the availability of data that can
be utilized in predictive models. The data generated from rapid
detection and diagnostic technologies will be a very important
source, however, other data sources can also be used to predict
the likelihood of emerging disease in poultry. Drivers of poultry
disease must be taken into account for producing predictive
models, and these include a wide range of environmental and
geographical inputs such as climate, weather, reservoir host
species distribution, and livestock density. Additionally, web-
based search query and social media data, which have both
been suggested to be effective data sources for predicting human
influenza virus incidence (14), could also be utilized to predict
and track outbreaks and emerging diseases in poultry. Data
collected from rapid detection technologies in addition to the
above-mentioned data sources can also be factored into decision
support systems that can help to determine risk in outbreak
situations, leading producers tomake better decisions concerning
management. In this review, select sources of data that are
relevant to emerging disease in poultry will also be highlighted
and discussed. Additionally, big data and big data analytics will
be highlighted in the context of designing predictive models for
disease emergence in poultry, in addition to data-driven decision
support systems that enhance decision making pertaining to
management practices when faced with the threat of emerging
disease.

PART I

New Technologies That Enable Rapid
Detection and Diagnosis of Infectious
Disease in Poultry
Technologies that are being developed for detecting infection
or disease in poultry are widespread and are applicable to
multiple infectious agents or physiological conditions (15, 16).
The focus of this section is technologies concerned with rapid
diagnosis of poultry infection, focused on AIV, as this is an
important emerging pathogen in the poultry industry and is
the focus of many research efforts. Due to the production of
novel influenza viruses through constant mutation and gene
assortment, combined with their high prevalence in wild bird
reservoirs, AIV constantly threatens to infect farmed poultry
and is capable of causing significant economic losses in the
industry (17). Traditional diagnosis of AIV in poultry consists
of laboratory intensive processes including culture techniques
followed by real-time polymerase chain reaction (RT-PCR), in
addition to enzyme linked immunosorbent assays (ELISA) (16).
Albeit sensitive, these laboratory focused methods can take up
to days to reach a diagnosis of AIV infection and they require
manual labor from experienced personnel (15). Additionally,
some areas where poultry is farmed do not have local laboratories
that can facilitate AIV diagnosis, requiring extensive transport of
samples and further delay of a diagnosis (17). Rapid detection kits
for influenza virus are currently available. These kits can visually

signal the presence of influenza virus through detection of viral
proteins, however, they often exhibit low sensitivity (18, 19).
Rapid and sensitive diagnosis of AIV infection in poultry could
be crucial for curbing transmission of the virus during poultry
outbreak situations. Multiple technologies are being developed
that can help facilitate this. Table 1 provides a summary of the
advantages and limitations of different types of technologies for
rapid detection or diagnosis of infectious diseases in poultry.

Technology to Identify Poultry Disease: Biosensors

for Influenza Virus
When compared to standard laboratory methods, a potential
drawback to rapid diagnostic systems is a lack of certainty when
forming a diagnosis. For example, most rapid diagnostic kits for
human influenza infection have lower levels of sensitivity and
they can only detect influenza virus at the species level, detecting
whether a sample is positive for influenza A virus or influenza
B virus (19). Diagnosing AIV infection in poultry beyond the
virus species level is important, as differentiating between high
and low pathogenic viruses is crucial. Nevertheless, biosensors
capable of very specific detection are being developed, and offer
the potential to detect and differentiate between specific subtypes
of AIV.

Biosensors can be described as devices that can convert
the presence of a biological element into a signal that is
recognizable to the user (20). Functionally, a biosensor can be
split into multiple segments including the bioreceptor, which is
responsible for recognition of a biological analyte, a transducer,
which converts detection of the biological analyte into a signal,
electronics, which convert a signal into a displayable result
often requiring amplification or conversion of the signal, and
a display, which supplies the user with a readable output (21).
Recognition by the bioreceptor is facilitated by binding of
a recognition element that is usually fixed, and can include
antibodies, proteins, nucleic acids, enzymes, aptamers, cells, or
other molecules (15). Detection of influenza viruses can be done
using recognition elements such as glycans, which can be divided
into α-2,6 or α-2,3 sialic acids allowing for partial differentiation
between human and avian viruses, antibodies, and aptamers,
both of which are capable of detecting specific influenza virus
subtypes (22). Additionally, multiple different mechanisms of
signal transduction and display have been demonstrated in
different biosensors. The following section summarizes influenza
biosensors in the literature. Biosensors have been grouped based
on the mechanism of bio-reception. Additionally, biosensors that
have been studied in the context of poultry diagnosis specifically
are also highlighted.

Glycan-based influenza virus biosensors
Glycans have been shown to function in the bioreceptor of
biosensors for initial recognition of influenza virus. Glycans can
be synthesized to mimic the carbohydrate structures present
on human and chicken tracheal cells that influenza viruses
bind when infecting a host. A rapid diagnostic assay that
contained glycan-conjugated and anti-H5 antibody-conjugated
nanoparticle probes was shown to recognize both H1 and
H5 influenza proteins in solution (23). The assay utilized
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TABLE 1 | Summary of potential technologies that facilitate rapid detection or diagnosis of disease in poultry.

Detection/diagnosis technology advantages limitations

Biosensors • Specific detection of infectious pathogen

causing disease

• High sensitivity

• Decrease need for lab diagnosis

• Requires manual use

• Devices often limited to detection of single

microorganism

Wearable sensors • Constant surveillance of birds

• Can detect disease in real-time

• Can detect different infectious diseases

• Internet connection facilitates immediate

alarm to producer

• Does not provide specific diagnosis

of infectious pathogen causing disease

• Only feasible to use on a representative

sample of a flock

• Issues with battery life and sensor weight

Non-contact

methods

Image

analysis

Vocalization

analysis

• Constant surveillance

• Can detect patterns of disease in real-time

• Does not require handling of birds

• Has additional uses beyond detection of

infectious disease (weight and behavior

analysis)

• Does not provide specific diagnosis

of infectious pathogen causing disease

• Background sounds/visuals in poultry

houses can disrupt detection

Robot vehicle

surveillance

• Autonomously driven and monitor birds

constantly

• Able to detect diseased or dead birds

• Increase chicken activity

• Increase barn sanitation

• Does not provide specific diagnosis of

infectious pathogen causing disease

• Potential issues with internet connectivity

fluorescence energy resonance transfer (FRET) technology,
where recognition of the (hemagglutinin) HA protein by
the two probes brings them close together and because of
special characteristics of the probes, fluorescence of the glycan-
conjugated probe becomes quenched by the other. This allows
for fluorescence to be measured and can indicate the presence
of the protein and therefore the virus. This dual probe system
of recognition has potential for incorporation into biosensor
devices that do not require equipment to read fluorescence.
Glycan based bio-reception has also been employed in other
styles of sensors including: an impedimetric biosensor capable of
detecting 13 H3N2 viral particles per microlitre of solution (24),
a field effect transistor (FET) based biosensor that was capable
of differentiating between H5 and H1 viruses by utilizing α-
2,6 and α-2,3 sialic acids (25), glycan conjugated nanoparticle
based sensors (26, 27), and a surface plasmon resonance (SPR)
sensor (28). Additionally, using a series of glycan coated gold
nanoparticles, Zheng et al. (27) were able to differentiate
between 14 different influenza viruses using spectroscopy and
colourimetric assays.

Antibody-based influenza virus biosensors
Antibodies have also been studied for use in the bioreceptor in
rapid sensor systems for influenza virus (22). Using polyclonal
antibodies frommice immunized with influenzaM1 protein in an
impedance electrochemical spectroscopy biosensor, Nidzworski
et al. (29) were able to detect multiple strains of influenza.
The M1 protein is similar among influenza A viruses, and
therefore the researchers in the aforementioned study suggested
that this biosensor is able to detect all influenza A viruses.
Additionally, impedance biosensors have been developed with
antibody recognition elements specific for peptides derived from

the HA protein (30). Also, using two antibodies, including an
anti-H5 antibody that sequestered influenza virus in solution,
followed by an electrode mobilized anti-neuraminidase (N1)
antibody, H5N1 virus was able to be more selectively detected
in solution (31). Nevertheless, the sensor developed by Lum et
al. (31) showed false positive reactions when tested with H5N2,
but not H5N3, and this was likely due to shared structures
between N1 and N2 that were both recognized by the anti-N1
antibody. Antibody coated nanoparticle based influenza sensory
systems also have been studied, leading to development of a
gold nanoparticle colourimetric sensor that recognized H3N2
(32) and a silver nanoparticle fluorescence based sensor that
was capable of detecting H1N1 (33). Antibodies have also been
used as recognition elements for H3N2 and H1N1 sensors
using carbon nanotubes decorated with anti-influenza antibodies
(34, 35). An immunogold biosensor that contained immobilized
2011 pandemic influenza virus specific anti-H1 antibodies and
general anti-nucleoprotein antibodies has also been shown to be
able to detect multiple strains of influenza A virus, while also
differentiating detection against the pandemic strain (36). This
technology could be important for the poultry industry if sensors
can be designed that are specific for relevant and pathogenic
strains of influenza virus.

Aptamer-based influenza virus biosensors
Another bioreceptor recognition element that has been employed
for detection of influenza virus experimentally in rapid systems
of detection are aptamers. Aptamers are short oligonucleotide
or peptide sequences that form unique secondary structures
allowing them to selectively bind to large or small molecules or
macromolecules. Libraries of nucleotide sequences are generated
and screened in vitro to identify sequences that recognize
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a target analyte with high specificity, and this technology
has been employed to selectively detect different subtypes of
influenza virus (37). They are favorable to glycans and antibodies
due to their high level of affinity to their target, small size,
stability, and reproducible synthesis. Multiple biosensors that
employ aptamers for influenza virus recognition have been
developed, and most have been specific for H5N1 detection (38).
Additionally, aptamers covalently bound to gold nanoparticle
electrodes have been shown to be able to capture H5N1 virus in
H5N1 spiked human sera when utilized in a sandwich assay that
additionally includes an H5N1 specific antibody (39). Aptamer
coated nanoparticles have been demonstrated in rapid sensor
devices as well. Pang et al. (40) used aptamer coated silver
nanoparticles in a fluorescence assay to detect a recombinant H5
protein, and Fu et al. (41) used aptamer coated magnetic beads
and glycan coated gold nanoparticles in an impedance biosensor
to detect H5N1 virus. H5N1 specific SPR biosensors that employ
aptamers as recognition elements have been developed using a
single aptamer for detection (42), and using a sandwich aptamer
model of detection, where a secondary aptamer conjugated
to a silver nanoparticle was used to enhance the response of
the SPR sensor (43). A sandwich aptamer fluorescence based
biosensor has also been shown to detect H1N1 virus in solution
(44). Very rapid impedance biosensors that utilize aptamers for
detection have been developed against H5N1 (31) and H1N1
(45). In the above-mentioned studies, virus detection took only
15 and 30min, respectively. Aptamers have also been reported
as effective recognition elements in quartz crystal microbalance
sensors for the detection of H5N1 virus. Of the three recognition
elements mainly used for influenza virus detection, aptamers
have shown to be very effective. Due to their enhanced specificity
compared to antibodies and glycans, they are more capable of
differentiating between different subtypes of influenza virus. The
enhanced specificity also has led to the ability for detection of
influenza virus at very low titers (31, 41, 44). A peptide aptamer
based recognition element biosensor has also been developed for
influenza virus detection (46). The ability to detect very low levels
of influenza virus in complex biological samples is essential for an
effective rapid biosensor device for poultry diagnostics.

Influenza virus biosensors for poultry diagnosis
Many of the technologies being developed for influenza
biosensors are designed with the intention of human point-
of-care diagnostics, however, these strategies can be applicable
to poultry as well. AIVs replicate in the mucosal tissues of
poultry species and for diagnostic purposes it is important that
biosensors can accurately detect the virus from these sources.
Additionally, some highly pathogenic avian influenza viruses
gain entry to the systemic circulation of chickens and therefore
detection from serum samples is also important. Of the multiple
biosensors or rapid assays that have been developed for influenza
virus detection, some have been tested using biological samples
originating from poultry species. For example. using an aptamer
recognition element in an impedance biosensor, the detection
limit for an H5N1 virus spiked in chicken tracheal swab material
was 1 HA unit/50 µl (HAU), while the limit for virus diluted
in PBS was found to be 0.25 HAU (47). Impedance biosensors

that utilize monoclonal antibodies against the H5 protein
have demonstrated different results when compared to RT-
PCR results from swabs from influenza virus infected chickens;
Lin et al. (48) detected H5N1 in cloacal and oropharyngeal
swabs with their impedance biosensor with equal sensitivity to
RT-PCR, while Wang et al. (48) detected H5N2 in tracheal
swabs with an equal level of sensitivity to RT-PCR, but at
a lower sensitivity when cloacal swabs were the source. SPR
biosensors have also been tested with chicken swab material.
Wang et al. (37) used SPR to select a highly specific aptamer
for H5N1 that demonstrated higher specificity than an anti-H5
monoclonal antibody when exposed to tracheal swabs spiked
with other H5 influenza viruses, suggesting aptamers to be
beneficial to monoclonal antibodies for use as a recognition
element in biosensors for poultry diagnosis. Additionally, an
SPR biosensor with an aptamer recognition element had a
detection limit of 0.128 HAU for anH5N1 virus spiked in chicken
throat swab samples (42), and a FET biosensor employing an
anti-influenza nucleoprotein monoclonal antibody recognition
element detected H9N2 virus from chicken cloacal swabs 4
days after experimental infection (18). Also, a quartz crystal
microbalance biosensor with immobilized anti-H5 antibodies
as a recognition element was shown to detect H5N1 spiked in
chicken tracheal swabs with a detection limit of 0.128 HAU
(49). Most biosensor devices applicable to poultry diagnostics
have been developed for influenza virus, however there are other
relevant pathogens that biosensor devices should be developed
for. Accordingly, an SPR based biosensor with a bioreceptor that
employedmonoclonal antibodies against NDV has been reported
(50). Future rapid detection biosensor studies should continue
to focus on influenza virus detection from complex biological
poultry samples, in addition to other pathogens that are relevant
in the poultry industry. Also, detection from swabs of infected
chickens as opposed to influenza spiked swabs should be a focus
of future studies.

The ability to rapidly diagnose poultry disease and infection
can be enhanced with biosensors and rapid detection assays.
The specificity and speed that biosensor diagnostic technologies
present is promising, however, these point-of-care devices
require manual sampling. Biosensors would likely have to be used
after clinical signs of disease are evident in poultry, where they
will then replace lab-based methods of diagnosis, shaving days
to weeks off the time to reach an official diagnosis. Nevertheless,
the need for manual sampling is a detractor from biosensor-
based diagnostics. Real-time sensing of infection in poultry is
an ultimate target, as precious time can pass from when poultry
initially become infected with a pathogen, to when clinical
signs are noticed, and diagnostic devices can be used. Real-
time detection of infection and disease in poultry is possible,
and current strategies being researched include wearable sensors,
and non-invasive methods of surveillance, such as a vocalization
analysis and various imaging techniques. In addition to providing
data to producers on animal health status in real-time, these
detection methods are additionally beneficial as they decrease the
need for routine human monitoring of poultry houses, thereby
decreasing the chance for introduction of infectious agents into
poultry flocks.
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Technology for Detection of Poultry Disease:

Wearable Sensors
Wearable sensors for livestock management are already widely
deployed by the agricultural industry, with multiple uses
ranging from stress detection, behavior analysis, physiological
monitoring, and detecting health and disease status of animals
(16). Precision farming practices havemade the usage of wearable
sensors in other livestock sectors common, including dairy
farming, where a variety of devices have been developed to
track health and production variables of individual animals (51).
Additionally, as sensory devices gain the ability to connect to
the internet, producers can get a much better understanding of
animal health and production about individual animals in real-
time. A barrier to wearable sensors in the poultry industry is the
number of birds that are managed on large poultry operations,
as fitting every bird with sensory devices is not likely plausible.
Nevertheless, fitting a proportion of the flock with sensors is
possible, and the data generated from these birds can be used to
assess total flock health (52).

Limited research has been done thus far on wearable sensors
for pathogen detection in poultry. Wearable sensors that have
been developed for poultry diagnostics have focused on H5N1
HPAIV. During infection with HPAIV, chickens and other
poultry show severe clinical signs of disease that include lethargy
and sometimes fever (53, 54). These physiological changes
that occur during infection have been the target of detection
of wearable sensors for influenza virus infection in poultry.
Specifically, Okada et al. (55) first developed a wearable sensor
that contained an accelerometer and thermistor probe that in
total weighed 5.2 grams. The thermistor probe was able to assess
chicken body temperature without making contact with the skin,
and the accelerometer was used to assess activity level. The sensor
was battery powered and to increase battery life to 2 weeks, the
sensor functioned on and off on 20 s intervals. Okada et al. (55)
tested the sensor by applying it to the abdominal skin of 4-week
old chickens and challenging the chickens with three different
strains of H5N1 HPAIV. In the study, all three strains of virus
produced detectable decreases in activity prior to death, while
two of three strains of virus led to increased body temperatures.
From the data recorded in this experiment, an algorithm
was designed to predict when chickens were infected. Three
parameters, including a threshold body temperature exceeding
42◦C or below 38◦C, and a measure of activity that compared
current activity level with those recorded over a period of 24 h
prior were included in the calculation. Average time until death
after infection was approximately 6–7 days depending on the
strain of the virus, however, using the wearable sensor, detection
of infection was noticed in chickens several hours before death,
ranging from an average of approximately 6–36 h prior. This
style of sensor has additionally been used to assess pathogenicity
and transmission of high and low pathogenic influenza viruses
in chickens (54, 56). Following the initial study by Okada et
al. (55), a modified wearable sensor was then developed that
focused solely on activity status by using an accelerometer and
abolishing the thermistor probe (57). This was because data has
demonstrated that not all strains of H5N1 induce a fever in
infected chickens, and it is also found to be difficult to keep the

thermistor probe close to the skin of the chicken. Okada et al.
(57) demonstrated that using an accelerometer only biosensor,
detection of infection prior to death occurred twice as fast when
compared to the thermistor only biosensor.

Wearable sensors for detecting influenza virus infection
typically focus on tracking specific physiological changes that
occur during infection with an H5N1 HPAIV. As such,
they provide an indication of infection several hours before
death occurs, which is valuable to producers as an additional
surveillance method combined with visual monitoring of birds.
The main advantage of a wearable sensor, is that it can be
constantly functioning and transmitting data remotely, and
therefore can notify producers in near real-time as problems
are detected. This saves even more time when compared to
normal detection of a HPAIV infected flock, which would
be likely only be noticed after morbidity and mortality has
become widespread. Earlier detection allows for actions to be
taken much sooner, including increasing biosecurity practices,
culling of infected birds, or administration of prophylactic
treatments. This not only can save producers from incurring
higher losses, but it additionally can keep infection localized,
decreasing the chance of an outbreak occurring. The downside
to wearable sensors is a loss of specificity, as deceased levels
of chicken activity or changes in body temperature could be
induced by other factors (57). A possible solution to this could
be utilizing wearable sensors for initial detection of decreased
chicken health, followed by immediate use of a point-of-care
biosensor assay that can specifically determine if influenza or
some other poultry pathogen is the causative agent. Additionally,
it remains to be seen if low pathogenic influenza virus infection in
chickens would be detectable using wearable sensor technology.
Low pathogenic influenza virus infection in chickens normally
produces subclinical infection in poultry, although, depending
on the strain of virus, some symptoms such as lethargy are
suggested to occur in infection in some birds (53). Nevertheless,
real-time surveillance of poultry for diagnostic purposes extends
beyond wearable devices as other less invasive methods of disease
detection exist.

Technology for Detection of Poultry Disease:

Non-contact Methods
Real-time analysis of poultry houses can be achieved using
a variety of different surveillance methods. Techniques that
can collect large and diverse data about poultry activity exist,
but making use of the data that are collected is a challenge.
Nevertheless, machine learning and other tools are making
analysis of large complex data sets possible, andmachine learning
and big data analytics have been demonstrated in the analysis of
data sets pertaining to livestock farming (58). The use of machine
learning has already been employed to study a variety of wild and
farmed animal behaviors (59). Conceivably, for the purpose of
poultry disease diagnostics, machine learning algorithms could
be employed to analyze poultry surveillance data and detect
when disease behaviors or activities arise. Likely technologies
that have potential for the poultry industry include vocalization
and imaging analysis, in addition to the use of robotic
surveillance.

Frontiers in Veterinary Science | www.frontiersin.org 6 October 2018 | Volume 5 | Article 263

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Astill et al. Detecting and Predicting Disease in Poultry

Vocalization analysis
Poultry vocalization has been studied for a variety of different
applications relevant to animal welfare, production, and health
management. Vocalization analysis has been used to model and
predict the weight and age of broiler chickens (60–62) and to
detect the incidence of feather pecking in layer flocks (63).
That said, to date there has not been a significant body of
research created pertaining to infectious diseases of poultry and
vocalization, especially for influenza virus. Sadeghi et al. (64)
recorded broiler vocalization after infection with Clostridium
perfringens and compared it to healthy broiler vocalization using
Fisher’s discriminate analysis to select five specific features that
showed strong separation between healthy and infected birds.
Then, using these five features a neural network was applied to
detect healthy or infected chickens and was able to differentiate
at an accuracy level of 66.6 and 100% on day 2 and day 8
post-infection, respectively. Additionally, by recording chickens
infected with infectious bronchitis virus (IBV), and training
a computer algorithm with manually labeled recordings, IBV
infected chickens can be detected based on vocalization (65).
The algorithm used in the aforementioned study was trained
to recognize rales, which are commonly produced from IBV
infected chickens, and was able to detect increased rale frequency
days before clinical signs of disease were evident. Also using
IBV infected chicken recordings, Rizwan et al. (66) compared
an extreme learning machine algorithm and a support vector
machine algorithm, and determined that both could detect
increased frequencies of rales, but the support vector machine
algorithm demonstrated decreased incidences of false positive
results for rale detection. Vocalization analysis of poultry is
promising for early detection of infectious disease and could be
potentially used for high and low pathogenic AIV, as rales can
be a sign of infection in chickens (53). An important note for
future vocalization algorithms concerns the recordings that are
used for training, as potential biases can be introduced if training
data is skewed to favor other characteristics, such as chicken age
or background noises.

Image analysis
Similar to vocalization, image analysis techniques can also be
used to collect data on poultry at a low level of invasiveness
and in real-time. Multiple image analysis strategies have been
studied to monitor livestock, including image analysis, optical
flow, and infrared imaging (67). Most poultry imaging studies
have been focused on behavior, welfare, and production status
of poultry (67, 68). Nevertheless, there are potential uses for
diagnostics, as infection can lead to detectable differences in
movement patterns and other attributes that can be detected
with imaging technology. For example, using optical flow,
which is a relatively simple imaging technique that measures
changes in brightness in a series of images, infection with
Campylobacter in chickens can be detected (69). Interestingly, as
Campylobacter is a commensal bacterium in chickens, infection
is thought to be subclinical, however subtle differences in chicken
movements can be detected with optical flow patterns. This
highlights the ability that machines and algorithms possess for
detecting differences when compared to humans. Additionally,

infrared thermal imaging can generate images demonstrating the
superficial surface temperatures of poultry, and has been used
to measure temperature changes associated with heat stress and
diet (70). Infectious agents that induce fever in poultry could
potentially be detectable with infrared thermal imaging due to
changes in body temperature. However, research is needed to
examine this further.

Robotic surveillance
Beyond the traditional surveillance mechanisms that entail
digitally listening to and watching poultry, the use of robotics
has also become a possible candidate for early detection of
disease and infection. Multiple companies have begun producing
robots that function in poultry houses to perform a variety of
tasks. These robots are typically self-driving small vehicles that
can enhance barn sanitation and increase chicken activity, in
addition to performing other jobs (71). One task that these
types of robots can perform is the detection of severely sick
or dead chickens. Using a mounted camera to rapidly take
multiple photos, robots can determine non-responsive and likely
sick or dead poultry (72). These robots can provide early
detection of disease, leading to removal of the animal and follow-
up on the cause of death. Also, employing robots like the
above-mentioned robots could decrease the need for humans
to monitor poultry houses for sick birds, therefore, decreasing
the chance of introduction of infectious agents into the poultry
house.

Due to the ability of surveillance technologies and analytical
tools like machine learning, complex data pertaining to large
poultry flocks can provide valuable insights to the health and
infection status of poultry. Detection of infection and disease
in poultry is likely possible through the identification of subtle
patterns of change of vocalization, activity, and physiology. These
surveillance mechanisms provide potential for poultry to be
tracked in real-time resulting in earlier detection of altered states
of health. Moreover, point-of-care devices will provide the ability
to quickly determine if infectious disease is specifically present.
Taken together, early detection and rapid diagnostics will allow
producers to respond to situations of infectious disease much
sooner than previously possible. In the context of production
in the poultry industry, this will decrease losses and inhibit the
spread of infection to other birds. Decreasing transmission of
infectious agents in poultry can also potentially diminish the
threat of zoonotic transmission to humans, decreasing the threat
of outbreaks associated with the future projected intensification
of poultry production.

PART II

Exploiting Data to Predict Disease
Emergence in Poultry
The devastation that infectious disease can cause in the
poultry industry, highlighted by AIV outbreaks such as the
2014/2015 North American outbreak, is a constant reminder
that infectious disease must be contained quickly and efficiently
in poultry. Early diagnosis of infectious disease in poultry
is important for reducing losses due to infection, containing
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infection to a small group of birds, and decreasing the
chance of zoonotic disease emergence in human populations.
In addition, earlier detection of infectious disease could also
become an important source of data for use in predictive
models of emerging disease in poultry. Rather than reacting
to situations of outbreak and disease, predicting when and
where domestic poultry are at risk of becoming infected is
ultimately desired. As intensification of poultry production
increases, predicting disease emergence may be necessary to
decrease potential losses attributed to infectious disease. Accurate
predictive models require data associated with drivers of
emerging disease, including environmental, geographical, farm,
and internet-based data sources. Not only could predictive
models incorporate dynamic sources of data to help with
decision making, but doing so very quickly or potentially
in real-time is becoming possible with the development and
usage of on farm sensors in addition to development of
internet of things (IoT) devices. The implementation of data-
driven decision support systems is important as humans will
likely struggle to make optimal decisions when faced with
the dynamic data that will be available. With well-designed
models, protective actions can be taken sooner in at-risk areas
to prevent outbreaks, and these could include administering
prophylactic treatments or increasing biosecurity measures. The
following section describes two important data sources that have
strong potential for inclusion in predictive infection models
for poultry and a discussion of how big data and big data
analytics will be essential in predictive systems of disease in
poultry. Also, a summary of the challenges that are likely to
be faced when implementing predictive models for poultry is
included.

Data Sources for Predicting Disease in Poultry

Internet based data sources
The availability of data via the internet has great potential for
industries or companies as it is produced constantly and is
available for real-time analyses. Examples of data sources on
the internet include search query and social media data from
sources like Google and Twitter, respectively (14). Monitoring
the incidence of human cases with various diseases has been
demonstrated by tracking mentions of things such as flu-like
symptoms on twitter or using data on the extent to which
people search the internet on symptoms of flu. Such systems
rely on people who become infected to use the internet to
search about their condition, leading to measurable changes in
the frequency of searches of certain keywords or phrases (73).
For example, using Google Trends, which is a web-based tool
for analyzing Google searches, incidence of regional influenza
outbreaks can be detected prior to detection by the Centers
for Disease Control and Prevention surveillance systems (74).
Additionally, social media platform such as twitter also have
been used to detect increased frequency of disease through user
driven updates pertaining to their conditions. A Twitter based
model has been demonstrated to predict the peak of seasonal
influenza epidemics 6 weeks in advance with good accuracy
(75). Despite the successes of detecting disease outbreaks in
humans using web-based data, there are still challenges such as

the lack of internet in some populations, in addition to biases
generated by searches or posts that contain tracked words or
phrases, but as a whole are not relevant to surveillance (73).
Web-based data has allowed for syndromic surveillance and
earlier warning of outbreaks in humans, yet for the purposes of
poultry production this will not likely be able to be replicated
entirely. Web-based systems that track human illnesses rely on
users to generate data and this cannot be replicated for poultry,
nonetheless, it has been shown that analyzing Twitter posts can
efficiently summarize online reports to do with official AIV
surveillance. Specifically, using four keywords related to poultry
infection with AIV, Robertson and Yee (76) created an automated
data extraction and analysis pipeline to analyze Twitter posts
pertaining to AIV. In a period from 2015 to 2016, their model
positively correlated AIV-related Twitter posts to avian influenza
cases in birds reported by the World Organization for Animal
Health (76). The use of Twitter therefore could act as a tool
to provide access to various online reports pertaining to avian
influenza surveillance and tracking these posts in real time
could provide important data for monitoring and predicting
the incidence of AIV in poultry. Nevertheless, it is important
to take into account differences between internet based data
generated by humans who become sick and internet based data
related to outbreaks of poultry disease, as these differences will
have implications in their respective efficacies for predictive
capabilities.

Environmental data sources
Emergence of infectious diseases into both human and poultry
populations are largely induced by interaction with the
environment, specifically due to interaction with wildlife species
that can transmit zoonotic infection. In humans, around 70%
of zoonotic diseases originate from wildlife species and while
some transmit directly to humans, many infect livestock species
prior to human infection (77). The 2014 outbreak of H5 HPAIV
in North America was discovered to have been brought from
Japan and South Korea to northern Russia, and finally to
North America via migratory birds infected with the virus
(78). Phylogenetic analyses revealed further that infection in
farmed poultry followed specific flyways that migratory birds
use, including the pacific, central, and Mississippi flyways
(78). Extensive surveillance in the USA prior to the outbreaks
indicated statistically that HPAIV was not present in wild birds
from 2006 to 2009 (79). This further demonstrates the role
of migratory birds held in the 2015 outbreak and highlights
the need for modified surveillance systems. An opportunity to
enhance wild bird surveillance could be facilitated through better
targeted surveillance strategies. Using network analyses of tagged
migratory birds, more specific biological flyways of different
species of birds in North America have been discovered, in
addition to identification of important regions in North America
for flyway determination (80). Incorporating this information
into surveillance systems could lead to better aimed wild bird
surveillance, possibly allowing for efforts to be focused into
certain important regions. Additionally, wild bird surveillance
for infectious pathogens relies on laboratory based methods
that take days or weeks to determine results. The use of rapid
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detection biosensors and devices for surveillance of influenza
virus or other relevant infectious pathogens could enhance the
speed of detection for surveillance. By combining data from rapid
diagnostic devices and data concerning specific flyway migration
patterns into decision support systems, it could be possible to
identify regions where farmed poultry are at increased risk of
infection. For example, by incorporating multiple data sources
including: past low pathogenic avian influenza virus infection in
wild birds, geographical density of broiler farms, and distance to
coastlines, Belkhiria et al. (81) developed a disease distribution
map to predict HPAIV risk in the state of California. The
map associated areas of California with the risk of incidence
of HPAIV infection, which would help to direct appropriate
actions in the case of an outbreak. Predictive risk maps could
also be designed to incorporate additional data sources, such
as farm generated diagnostic data. In addition, risk maps or
predictive models should be able to incorporate data in real-
time in order to provide accurate predictions based on current
events.

Big Data Analytics and Decision Support Systems
To best predict when and where farmed poultry are at risk of
infection, predictive models must integrate multiple sources of
data into decision support systems. These include multiple web-
based data sources, data from environmental inputs highlighted
by, but not limited to, migratory bird surveillance, poultry farm
location data, and importantly should include data collected
by diagnostic devices and sensors present on poultry farms.
Incorporating data from multiple farms that each contain
multiple devices will produce enormous volumes of data,
especially considering that poultry surveillance data could
include media such as images or recordings taken from the
barn to assess infection status. Similarly, data collected from
these various sources present a very heterogenous pool of
data for a predictive model to incorporate. Importantly, the
best predictive model of emerging disease in poultry should
be able to incorporate data and function in real-time, for
rapid identification of areas that are at risk. Incorporating
dynamic data into decision support systems is a problem fit
for big data analytics. Big data can be described by datasets
that contain the “v’s,” including the most applicable attributes:
volume, variety, and velocity (82). Big data analytics can
add value to industries or corporations in many ways (83).
For the poultry industry, it presents a way to incorporate
voluminous and heterogenous pools of data into decision
support systems that can function in real-time to provide an
indication of where disease may emerge in farmed poultry,
allowing for actions to be taken in a specific directed
manner.

Challenges and Barriers to Implementing Predictive

Infection Models for Poultry
Developing a harmonized system to predict disease emergence
in poultry will be faced with multiple challenges ranging from
problems to do with infrastructure to issues of data governance.
Sensors and biosensors for diagnosis of poultry infection are
still largely in development and will require more research to

produce technology that can function accurately in a commercial
poultry house setting. Another barrier is the lack of internet
access on farms, which are often located in rural settings. Even
in Canada, a significant portion of farms do not have access
or consistent access to broadband (84). A lack of broadband
inhibits implementation of new technologies and devices that
require internet connection to function and provide data in real-
time, such as wearable sensors for poultry. For predictive models
to function in real-time or close to real-time, data collection
should also be automated and collected continuously. This is
feasible for certain devices, such as wearable sensors, and barn
imaging/recording devices, although it is not likely feasible at
this time for specific biosensors or for surveillance data from
environmental sources. When considering farm technologies,
there will be a need for producers to obtain education and
skills related to the new technologies that are implemented.
Another challenge predictive models face will be dealing with
bias and noise associated with certain data sources. For example,
web-based sources are known to generate lots of meaningless
data and noise, which must be removed from analyses (73).
A major issue going forward when considering harmonized
predictive models involving multiple stakeholders and farmers
pertains to data governance, which will likely be a concern
of farmers (85). For the most accurate prediction of emerging
disease, models should incorporate data from as many farms
as possible, however producers are likely to not want to
make their data publicly available. Anonymization of data is
possible, but it has been demonstrated that techniques of data
reidentification are becoming simple to perform (86). Amid
the value that predictive models of emerging disease could
provide for the poultry industry, multiple challenges are still
faced, and should be a source of innovation and initiative going
forward.

CONCLUSIONS

As poultry production increases, poultry farms will be forced to
become larger in size with greater numbers of birds. The demand
for increased production will force producers to be efficient,
and decreasing losses will be crucial, yet highly populated
poultry farms will likely only increase the chance of incurring
losses due to infectious disease. Simply put, traditional systems
of monitoring disease and infection will not be sufficient if
future production goals are to be achieved. Instead, rapid
detection systems that constantly monitor poultry for disease
can complement pre-existing systems of infectious disease
detection and diagnosis. Rapid real-time detection can alert
and locate producers to problems immediately. Additionally,
biosensors will provide producers with a specific diagnosis
that is performed on-site. The combination of early detection
and rapid diagnosis provides great value to producers as it
allows for immediate action to be taken in order to prevent
any subsequent spread of infection to other birds, therefore
saving potential losses that likely would have occurred had
traditional methods been used. As these devices become common
on farms, they will also provide data that could help to
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predict emerging diseases in poultry. In addition to farm
generated data, web-based, environmental, and geographical
data will also become important for collection and inclusion
in predictive models. The dynamic data that will be included
in these models will require systems of big data analytics
in order to account for the volume and variety of the
data in addition to the need for real-time analysis. The
implementation of technologies in the poultry production
industry that enhance detection, diagnosis, and prediction of
infectious diseases currently faces multiple challenges, however
they will be necessary to achieve rates of production required in
the future.

AUTHOR CONTRIBUTIONS

JA, EF, RD, and SS produced an outline and performed the
literature review. JA wrote the manuscript. EF, RD, and SS
critically edited the manuscript. All authors read and approved
the manuscript.

ACKNOWLEDGMENTS

This research is supported in part by the University of Guelph’s
Food from Thought initiative, thanks to funding from the
Canada First Research Excellence Fund.

REFERENCES

1. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et

al. Food security: the challenge of feeding 9 billion people. Science (2010)

327:812–8. doi: 10.1126/science.1185383

2. Fraser E, Legwegoh A, KC K, CoDyreM, Dias G, Hazen S, et al. Biotechnology

or organic? Extensive or intensive? Global or local? A critical review of

potential pathways to resolve the global food crisis. Trends Food Sci Technol.

(2016) 48:78–87. doi: 10.1016/J.TIFS.2015.11.006

3. Smith D, Lyle S, Berry A, Manning N, Zaki M, Neely A. Internet of animal

health things opportunities and challenges data and analytics. Internet of

Animal Health Things (2015).

4. Liverani M, Waage J, Barnett T, Pfeiffer DU, Rushton J, Rudge JW, et al.

Understanding and managing zoonotic risk in the new livestock industries.

Environ Health Perspect. (2013) 121:873–877. doi: 10.1289/ehp.1206001

5. Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, et al. Zoonosis

emergence linked to agricultural intensification and environmental change.

Proc Natl Acad Sci USA. (2012) 110:8399–8404. doi: 10.1073/pnas.1208059110

6. Kelland K. Proliferation of Bird Flu Outbreaks Raises Risk of Human

Pandemic. Scientific America. (2017) Available online at: https://www.

scientificamerican.com/article/proliferation-of-bird-flu-outbreaks-raises-

risk-of-human-pandemic1/.

7. Mellata M. Human and avian extraintestinal pathogenic Escherichia coli :

infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog

Dis. (2013) 10:916–932. doi: 10.1089/fpd.2013.1533

8. Hermans D, Pasmans F, Messens W, Martel A, Van Immerseel F, Rasschaert

G, et al. Poultry as a host for the zoonotic pathogen campylobacter jejuni.

Vector-Borne Zoonotic Dis. (2012) 12:89–98. doi: 10.1089/vbz.2011.0676

9. Desin TS, Köster W, Potter AA. Salmonella vaccines in poultry: past, present

and future. Expert Rev Vacc. (2013) 12:87–96. doi: 10.1586/erv.12.138

10. Bayry J. Emerging viral diseases of livestock in the developing world. Indian J

Virol. (2013) 24:291–4. doi: 10.1007/s13337-013-0164-x

11. Gilbert M, Xiao X, Robinson TP. Intensifying poultry production systems

and the emergence of avian influenza in China: a “One Health/Ecohealth”

epitome. Arch Public Heal. (2017) 75:1–7. doi: 10.1186/s13690-017-

0218-4

12. Reuters. TIMELINE-Tracing the Bird Flu Outbreak in N. American

Poultry Flocks. (2015) Available online at: https://www.reuters.com/article/

health-birdflu-usa-timeline/timeline-tracing-the-bird-flu-outbreak-in-n-

american-poultry-flocks-idUSL1N0Y334G20150612

13. Shriner SA, Root JJ, Lutman MW, Kloft JM, VanDalen KK, Sullivan HJ, et al.

Surveillance for highly pathogenic H5 avian influenza virus in synanthropic

wildlife associated with poultry farms during an acute outbreak. Sci Rep.

(2016) 6:1–11. doi: 10.1038/srep36237

14. Sharpe JD, Hopkins RS, Cook RL, Striley CW. Evaluating Google, Twitter,

and Wikipedia as tools for influenza surveillance using bayesian change point

analysis: a comparative analysis. JMIR Public Heal Surveill. (2016) 2:e161.

doi: 10.2196/publichealth.5901

15. Vidic J, Manzano M, Chang C, Jaffrezic-renault N. Advanced biosensors

for detection of pathogens related to livestock and poultry. Vet Res. (2017)

48:1–22. doi: 10.1186/s13567-017-0418-5

16. Neethirajan S. Recent advances in wearable sensors for animal

health management. Sens Bio-Sensing Res. (2017) 12:15–29.

doi: 10.1016/j.sbsr.2016.11.004

17. B Jordan A, Gongora V, Hartley D, Oura C. A Review of eight high-priority,

economically important viral pathogens of poultry within the caribbean

region. Vet Sci. (2018) 5:14. doi: 10.3390/vetsci5010014

18. Park S, Choi J, Jeun M, Kim Y, Yuk SS, Kim SK, Song CS, Lee S,

Lee KH. Detection of avian influenza virus from cloacal swabs using

a disposable well gate FET sensor. Adv Healthc Mater. (2017) 6:1–6.

doi: 10.1002/adhm.201700371

19. Cho CH, Woo MK, Kim JY, Cheong S, Lee CK, An SSA, Lim CS, Kim WJ.

Evaluation of five rapid diagnostic kits for influenza A/B virus. J Virol Methods

(2013) 187:51–6. doi: 10.1016/j.jviromet.2012.09.003

20. Du X, Zhou J. Application of biosensors to detection of epidemic diseases in

animals. (2018) 118:444–8. doi: 10.1016/j.rvsc.2018.04.011

21. Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays

Biochem. (2016) 60:1–8. doi: 10.1042/EBC20150001

22. Gopinath SCB, Tang T-H, Chen Y, Citartan M, Tominaga J, Lakshmipriya

T. Sensing strategies for influenza surveillance. Biosens Bioelectron (2014)

61:357–69. doi: 10.1016/j.bios.2014.05.024

23. Chen L, Neethirajan S. A homogenous fluorescence quenching based assay for

specific and sensitive detection of influenza virus A hemagglutinin antigen.

Sensors (Basel) (2015) 15:8852–65. doi: 10.3390/s150408852

24. Hushegyi A, Pihíková D, Bertok T, Adam V, Kizek R, Tkac J. Ultrasensitive

detection of influenza viruses with a glycan-based impedimetric biosensor.

Biosens Bioelectron. (2017) 79:644–9. doi: 10.1016/j.bios.2015.12.102

25. Hideshima S, Hinou H, Ebihara D, Sato R, Kuroiwa S, Nakanishi T, et al.

Attomolar detection of influenza a virus hemagglutinin human H1 and avian

H5 using glycan-blotted field effect transistor biosensor. Anal Chem. (2013)

85:5641–44. doi: 10.1021/ac401085c

26. Kamikawa TL, Mikolajczyk MG, Kennedy M, Zhang P, Wang W,

Scott DE, et al. Nanoparticle-based biosensor for the detection of

emerging pandemic influenza strains. Biosens Bioelectron (2010) 26:1346–52.

doi: 10.1016/j.bios.2010.07.047

27. Zheng L, Wei J, Lv X, Bi Y, Wu P, Zhang Z, et al. Detection and differentiation

of influenza viruses with glycan-functionalized gold nanoparticles. Biosens

Bioelectron. (2017) 91:46–52. doi: 10.1016/j.bios.2016.12.037

28. Suenaga E, Mizuno H, Kumar PKR. Influenza virus surveillance using surface

plasmon resonance. Virulence (2012) 3:464–70. doi: 10.4161/viru.21822

29. Nidzworski D, Pranszke P, Grudniewska M, Król E, Gromadzka B. Universal

biosensor for detection of influenza virus. Biosens Bioelectron (2014) 59:239–

42. doi: 10.1016/j.bios.2014.03.050

30. Jarocka U, Sawicka R, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W,

Radecki J, et al. An immunosensor based on antibody binding fragments

attached to gold nanoparticles for the detection of peptides derived from

avian influenza hemagglutinin H5. Sensors (Switzerland) (2014) 14:15714–28.

doi: 10.3390/s140915714

31. Lum J, Wang R, Lassiter K, Srinivasan B, Abi-Ghanem D, Berghman L, et al.

Rapid detection of avian influenza H5N1 virus using impedancemeasurement

of immuno-reaction coupled with RBC amplification. Biosens Bioelectron.

(2012) 38:67–73. doi: 10.1016/j.bios.2012.04.047

Frontiers in Veterinary Science | www.frontiersin.org 10 October 2018 | Volume 5 | Article 263

https://doi.org/10.1126/science.1185383
https://doi.org/10.1016/J.TIFS.2015.11.006
https://doi.org/10.1289/ehp.1206001
https://doi.org/10.1073/pnas.1208059110
https://www.scientificamerican.com/article/proliferation-of-bird-flu-outbreaks-raises-risk-of-human-pandemic1/
https://www.scientificamerican.com/article/proliferation-of-bird-flu-outbreaks-raises-risk-of-human-pandemic1/
https://www.scientificamerican.com/article/proliferation-of-bird-flu-outbreaks-raises-risk-of-human-pandemic1/
https://doi.org/10.1089/fpd.2013.1533
https://doi.org/10.1089/vbz.2011.0676
https://doi.org/10.1586/erv.12.138
https://doi.org/10.1007/s13337-013-0164-x
https://doi.org/10.1186/s13690-017-0218-4
https://www.reuters.com/article/health-birdflu-usa-timeline/timeline-tracing-the-bird-flu-outbreak-in-n-american-poultry-flocks-idUSL1N0Y334G20150612
https://www.reuters.com/article/health-birdflu-usa-timeline/timeline-tracing-the-bird-flu-outbreak-in-n-american-poultry-flocks-idUSL1N0Y334G20150612
https://www.reuters.com/article/health-birdflu-usa-timeline/timeline-tracing-the-bird-flu-outbreak-in-n-american-poultry-flocks-idUSL1N0Y334G20150612
https://doi.org/10.1038/srep36237
https://doi.org/10.2196/publichealth.5901
https://doi.org/10.1186/s13567-017-0418-5
https://doi.org/10.1016/j.sbsr.2016.11.004
https://doi.org/10.3390/vetsci5010014
https://doi.org/10.1002/adhm.201700371
https://doi.org/10.1016/j.jviromet.2012.09.003
https://doi.org/10.1016/j.rvsc.2018.04.011
https://doi.org/10.1042/EBC20150001
https://doi.org/10.1016/j.bios.2014.05.024
https://doi.org/10.3390/s150408852
https://doi.org/10.1016/j.bios.2015.12.102
https://doi.org/10.1021/ac401085c
https://doi.org/10.1016/j.bios.2010.07.047
https://doi.org/10.1016/j.bios.2016.12.037
https://doi.org/10.4161/viru.21822
https://doi.org/10.1016/j.bios.2014.03.050
https://doi.org/10.3390/s140915714
https://doi.org/10.1016/j.bios.2012.04.047
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Astill et al. Detecting and Predicting Disease in Poultry

32. Liu Y, Zhang L,WeiW, ZhaoH, Zhou Z, Zhang Y, et al. Colorimetric detection

of influenza A virus using antibody-functionalized gold nanoparticles.Analyst

(2015) 140: doi: 10.1039/c5an00407a

33. Li Y, Hong M, Qiu B, Lin Z, Chen Y, Cai Z, Chen G. Highly

sensitive fluorescent immunosensor for detection of influenza virus

based on Ag autocatalysis. Biosens Bioelectron. (2013) 54:358–64.

doi: 10.1016/j.bios.2013.10.045

34. Lee J, Ahmed SR, Oh S, Kim J, Suzuki T, Parmar K, et al. A plasmon-assisted

fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes

for monitoring the influenza virus. Biosens Bioelectron (2014) 64:311–7.

doi: 10.1016/j.bios.2014.09.021

35. Singh R, Sharma A, Hong S, Jang J. Electrical immunosensor based on

dielectrophoretically-deposited carbon nanotubes for detection of influenza

virus H1N1. Analyst (2014) 139:5415–21. doi: 10.1039/c4an01335b

36. Apiwat C, Wiriyachaiporn N, Maneeprakorn W, Dharakul T, Thepthai C,

Puthavathana P, et al. Simultaneous discrimination and detection of influenza

A(H1N1)pdm09 and seasonal influenza A viruses using a rapid immunogold

biosensor. Arch Virol. (2014) 159:1603–11. doi: 10.1007/s00705-013-1974-2

37. Wang R, Zhao J, Jiang T, Kwon YM, Lu H, Jiao P, et al. Selection and

characterization of DNA aptamers for use in detection of avian influenza virus

H5N1. J Virol Methods (2013) 189:362–9. doi: 10.1016/j.jviromet.2013.03.006

38. Li Y, Wang R. Aptasensors for detection of avian influenza virus H5N1, In:

Rasooly A, Prickril B, editors. Biosensors and Biodetection, New York, NY:

Humana Press, 379–402.

39. Diba F, Kim S, Jin Lee H. Amperometric bioaffinity sensing platform for avian

influenza virus proteins with aptamer modified gold nanoparticles on carbon

chips. Biosens Bioelectron (2015) 72:355–61. doi: 10.1016/j.bios.2015.05.020

40. Pang Y, Rong Z, Wang J, Xiao R, Wang S. A fluorescent aptasensor

for H5N1 influenza virus detection based-on the core–shell nanoparticles

metal-enhanced fluorescence (MEF). Biosens Bioelectron. (2014) 66:527–32.

doi: 10.1016/j.bios.2014.10.052

41. Fu Y, Callaway Z, Lum J, Wang R, Lin J, Li Y. Exploiting enzyme catalysis

in ultra-low ion strength media for impedance biosensing of avian influenza

virus using a bare interdigitated electrode. Anal Chem. (2014) 86:1965–71.

doi: 10.1021/ac402550f

42. Bai H, Wang R, Hargis B, Lu H, Li Y. A SPR aptasensor for detection

of avian influenza virus H5N1. Sensors (Switzerland) (2012) 12:12506–18.

doi: 10.3390/s120912506

43. Nguyen VT, Seo H Bin, Kim BC, Kim SK, Song CS, Gu MB. Highly

sensitive sandwich-type SPR based detection of whole H5Nx viruses

using a pair of aptamers. Biosens Bioelectron. (2016) 86:293–300.

doi: 10.1016/j.bios.2016.06.064

44. Tseng Y-T, Wang C-H, Chang C-P, Lee G-B. Integrated microfluidic

system for rapid detection of influenza H1N1 virus using a sandwich-based

aptamer assay. Biosens Bioelectron. (2016) 82:105–11. doi: 10.1016/j.bios.2016.

03.073

45. Kiilerich-Pedersen K, Daprà J, Cherré S, Rozlosnik N. High sensitivity point-

of-care device for direct virus diagnostics. Biosens Bioelectron. (2013) 49:374–

9. doi: 10.1016/j.bios.2013.05.046

46. Bahadur T, Tada S, Zhu L, Uzawa T, Minagawa N, Luo S-C, et al.

In vitro selection of electrochemical peptide probes using bioorthogonal

tRNA for influenza virus detection
†
. Chem Commun. (2018) 54:5201.

doi: 10.1039/c8cc01775a

47. Karash S, Wang R, Kelso L, Lu H, Huang TJ, Li Y. Rapid detection of

avian influenza virus H5N1 in chicken tracheal samples using an impedance

aptasensor with gold nanoparticles for signal amplification. J Virol Methods

(2016) 236:147–56. doi: 10.1016/j.jviromet.2016.07.018

48. Lin J, Wang R, Jiao P, Li Y, Li Y, Liao M, Yu Y, Wang M. An impedance

immunosensor based on low-cost microelectrodes and specific monoclonal

antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs.

Biosens Bioelectron (2015) 67:546–52. doi: 10.1016/j.bios.2014.09.037

49. Li D, Wang J, Wang R, Li Y, Abi-Ghanem D, Berghman L, Hargis B,

Lu H. A nanobeads amplified QCM immunosensor for the detection

of avian influenza virus H5N1. Biosens Bioelectron. (2011) 26:4146–54.

doi: 10.1016/j.bios.2011.04.010

50. Luo B, Xu Y, Wu S, Zhao M, Jiang P, Shi S, et al. A novel immunosensor based

on excessively tilted fiber grating coated with gold nanospheres improves

the detection limit of Newcastle disease virus. Biosens Bioelectron. (2018)

100:169–75. doi: 10.1016/j.bios.2017.08.064

51. Neethirajan S, Tuteja S, Huang ST, Kelton D. Recent advances in wearable

sensors for animal and livestock health management. Biosens Bioelectron.

(2017) 98:398–407. doi: 10.1016/j.bios.2017.07.015

52. Dallimore K. Canadian Poultry - Precision Livestock Farming (2017). Available

online at: https://www.canadianpoultrymag.com/health/precision-livestock-

farming-30052

53. Pantin-Jackwood MJ, Swayne DE. Pathogenesis and pathobiology of avian

influenza virus infection in birds. Rev Sci Tech Off int Epiz. (2009) 28:113–36.

doi: 10.20506/rst.28.1.1869

54. Suzuki K, Okada H, Itoh T, Tada T, Mase M, Nakamura K, et al. Association

of increased pathogenicity of asian H5N1 highly pathogenic avian influenza

viruses in chickens with highly efficient viral replication accompanied by

early destruction of innate immune responses. J Virol. (2009) 83:7475–86.

doi: 10.1128/JVI.01434-08

55. Okada H, Itoh T, Suzuki K, Tsukamoto K.Wireless sensor system for detection

of avian influenza outbreak farms at an early stage. IEEE Sensors (2009)

1374–77. doi: 10.1109/ICSENS.2009.5398422

56. Suzuki K, Okada H, Itoh T, Tada T, Tsukamoto K. Phenotypes influencing the

transmissibility of highly pathogenic avian influenza viruses in chickens. J Gen

Virol. (2010) 91:2302–6. doi: 10.1099/vir.0.023267-0

57. Okada H, Suzuki K, Kenji T, Itoh T. Applicability of wireless activity sensor

network to avian influenzamonitoring system in poultry farms. J Sens Technol.

(2014) 4:18–23. doi: 10.4236/jst.2014.41003

58. Morota G, Ventura R V, Silva FF, Koyama M, Fernando SC. Big data analytics

and precision animal agriculture symposium: Machine learning and data

mining advance predictive big data analysis in precision animal agriculture.

J Anim Sci. (2018) 96:1540–50. doi: 10.1093/jas/sky014

59. Valletta JJ, Torney C, Kings M, Thornton A, Madden J. Applications of

machine learning in animal behaviour studies. Anim Behav. (2017) 124:203–

20. doi: 10.1016/j.anbehav.2016.12.005

60. Fontana I, Tullo E, Butterworth A, Guarino M. An innovative approach to

predict the growth in intensive poultry farming.Comput Electron Agric. (2015)

119:178–83. doi: 10.1016/j.compag.2015.10.001

61. Fontana I, Tullo E, Scrase A, Butterworth A. Vocalisation sound pattern

identification in young broiler chickens. Animal (2016) 10:1567–74.

doi: 10.1017/S1751731115001408

62. Fontana I, Tullo E, Carpentier L, Berckmans D, Butterworth A, Vranken E, et

al. Sound analysis tomodel weight of broiler chickens. Poult Sci. (2017) 96:1–6.

doi: 10.3382/ps/pex215

63. Bright A. Vocalisations and acoustic parameters of flock noise from feather

pecking and non-feather pecking laying flocks. Br Poult Sci. (2008) 49:241–9.

doi: 10.1080/00071660802094172

64. Sadeghi MI, Banakar A, Ii KM, Banakar A. An intelligent procedure

for the detection and classification of chickens infected by clostridium

perfringens based on their vocalization. Brazil J Poult. (2015) 17:537–44.

doi: 10.1590/1516-635x1704537-544

65. Carroll BT, Anderson D V., Daley W, Harbert S, Britton DF, Jackwood MW.

Detecting symptoms of diseases in poultry through audio signal processing.

In: 2014 IEEE Global Conference on Signal and Information Processing 2014.

Atlanta, GA (2014). p. 1132–5.

66. Rizwan M, Carroll BT, Anderson D V., Daley W, Harbert S, Britton DF,

et al. Identifying rale sounds in chickens using audio signals for early

disease detection in poultry. In: 2016 IEEE Global Conference on Signal and

Information Processing 2016. Washington, DC (2017). p. 55–9.

67. Sassi N Ben, Averos X, Estevez I. Technology and poultry welfare. Animals

(2016) 6:1–21. doi: 10.3390/ani6100062

68. Corkery G, Ward S, Kenny C, Hemmingway P. Incorporating smart sensing

technologies into the poultry industry. J World’s Poult Res. (2013) 3:106–28.

69. Colles FM, Cain RJ, Nickson T, Smith AL, Roberts SJ, Maiden MCJ, et al.

Monitoring chicken flock behavior provides early warning of infection by

human pathogen Campylobacter. Proc R Soc B Biol Sci. (2016) 283:1–6.

doi: 10.1098/rspb.2015.2323

70. Nääs IA, Garcia RG, Caldara FR. Infrared thermal image for assessing

animal health and welfare. J Anim Behav Biometeorol. (2014) 2:66–72.

doi: 10.14269/2318-1265/jabb.v2n3p66-72

Frontiers in Veterinary Science | www.frontiersin.org 11 October 2018 | Volume 5 | Article 263

https://doi.org/10.1039/c5an00407a
https://doi.org/10.1016/j.bios.2013.10.045
https://doi.org/10.1016/j.bios.2014.09.021
https://doi.org/10.1039/c4an01335b
https://doi.org/10.1007/s00705-013-1974-2
https://doi.org/10.1016/j.jviromet.2013.03.006
https://doi.org/10.1016/j.bios.2015.05.020
https://doi.org/10.1016/j.bios.2014.10.052
https://doi.org/10.1021/ac402550f
https://doi.org/10.3390/s120912506
https://doi.org/10.1016/j.bios.2016.06.064
https://doi.org/10.1016/j.bios.2016.03.073
https://doi.org/10.1016/j.bios.2013.05.046
https://doi.org/10.1039/c8cc01775a
https://doi.org/10.1016/j.jviromet.2016.07.018
https://doi.org/10.1016/j.bios.2014.09.037
https://doi.org/10.1016/j.bios.2011.04.010
https://doi.org/10.1016/j.bios.2017.08.064
https://doi.org/10.1016/j.bios.2017.07.015
https://www.canadianpoultrymag.com/health/precision-livestock-farming-30052
https://www.canadianpoultrymag.com/health/precision-livestock-farming-30052
https://doi.org/10.20506/rst.28.1.1869
https://doi.org/10.1128/JVI.01434-08
https://doi.org/10.1109/ICSENS.2009.5398422
https://doi.org/10.1099/vir.0.023267-0
https://doi.org/10.4236/jst.2014.41003
https://doi.org/10.1093/jas/sky014
https://doi.org/10.1016/j.anbehav.2016.12.005
https://doi.org/10.1016/j.compag.2015.10.001
https://doi.org/10.1017/S1751731115001408
https://doi.org/10.3382/ps/pex215
https://doi.org/10.1080/00071660802094172
https://doi.org/10.1590/1516-635x1704537-544
https://doi.org/10.3390/ani6100062
https://doi.org/10.1098/rspb.2015.2323
https://doi.org/10.14269/2318-1265/jabb.v2n3p66-72
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Astill et al. Detecting and Predicting Disease in Poultry

71. Connolly A. Flocking to Digital: Re-Imagining the Future of Poultry Through

Innovation. (2017) Available online at: https://www.linkedin.com/pulse/how-

technology-transforming-poultry-industry-aidan-connolly-7k-/

72. Ho P. Robot Nannies Look After 3 Million Chickens in Coops of the Future -

Bloomberg. (2017) Available online at: https://www.bloomberg.com/news/

articles/2017-01-12/china-tries-nanny-robots-to-keep-chickens-healthy

[Accessed May 21, 2018]

73. Milinovich GJ, Williams GM, Clements ACA, Hu W. Internet-based

surveillance systems for monitoring emerging infectious diseases. Lancet

Infect Dis. (2014) 14:160–8. doi: 10.1016/S1473-3099(13)70244-5

74. Carneiro HA, Mylonakis E. Google Trends: a web-based tool for real-

time surveillance of disease outbreaks. Clin Infect Dis. (2009) 49:1557–64.

doi: 10.1086/630200

75. Singer T. Twitter Used to Track the Flu in Real Time. (2017) Available online

at: https://www.sciencedaily.com/releases/2017/05/170509121952.htm

76. Robertson C, Yee L. Avian influenza risk surveillance in North

America with online media. PLoS ONE (2016) 11:e0165688.

doi: 10.1371/journal.pone.0165688

77. Sleeman JM, Deliberto T, Nguyen N. JVS Optimization of human, animal, and

environmental health by using the One Health approach. J Vet Sci. (2017)

1818:1–263. doi: 10.4142/jvs.2017.18.S1.263

78. Lee D-H, Torchetti MK, Winker K, Ip HS, Song C-S, Swayne DE.

Intercontinental spread of asian-origin H5N8 to north america

through beringia by migratory birds. J Virol. (2015) 89:6521–4.

doi: 10.1128/JVI.00728-15

79. Deliberto TJ, Swafford SR, Nolte DL, Pedersen K, Lutman MW, Schmit BB, et

al. Surveillance for highly pathogenic avian influenza in wild birds in the USA.

Integr Zool. (2009) 4:426–39. doi: 10.1111/j.1749-4877.2009.00180.x

80. Buhnerkempe MG, Webb CT, Merton AA, Buhnerkempe JE, Givens GH,

Miller RS, et al. Identification of migratory bird flyways in North America

using community detection on biological networks. Ecol Appl. (2016) 26:740–

51. doi: 10.1890/15-0934/suppinfo

81. Belkhiria J, Hijmans RJ, Boyce W, Crossley BM, Martínez-López B.

Identification of high risk areas for avian influenza outbreaks in California

using disease distribution models. PLoS ONE (2018) 13:e0190824.

doi: 10.1371/journal.pone.0190824

82. Bansal S, Chowell G, Simonsen L, Vespignani A, Viboud C. Big data for

infectious disease surveillance and modeling. J Infect Dis. (2016) 214:375–9.

doi: 10.1093/infdis/jiw400

83. Manyika J, Chiu M, Brown B, Bughin J, Dobbs R, Roxburgh C, et al. Big

Data: The Next Frontier for Innovation, Competition, and Productivity (2011).

Available online at: www.mckinsey.com/mgi

84. Canadian Federation of Agriculture. Expanding and Improving Rural

Broadband Access | CFA-FCA. (2018) Available onlline at: https://www.cfa-

fca.ca/issues/expanding-and-improving-rural-broadband-access/

85. Wolfert S, Ge L, Verdouw C, Bogaardt MJ. Big Data in Smart Farming?

A review. Agric Syst. (2017) 153:69–80. doi: 10.1016/j.agsy.2017.

01.023

86. Ferris JL. Data Privacy and Protection in the Agriculture Industry: is federal

regulation necessary? Minnesota J Law Sci Technol JL Sci Tech. (2017) 18.

Available online at: https://scholarship.law.umn.edu/mjlst [Accessed May 28,

2018].

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Astill, Dara, Fraser and Sharif. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Veterinary Science | www.frontiersin.org 12 October 2018 | Volume 5 | Article 263

https://www.linkedin.com/pulse/how-technology-transforming-poultry-industry-aidan-connolly-7k-/
https://www.linkedin.com/pulse/how-technology-transforming-poultry-industry-aidan-connolly-7k-/
https://www.bloomberg.com/news/articles/2017-01-12/china-tries-nanny-robots-to-keep-chickens-healthy
https://www.bloomberg.com/news/articles/2017-01-12/china-tries-nanny-robots-to-keep-chickens-healthy
https://doi.org/10.1016/S1473-3099(13)70244-5
https://doi.org/10.1086/630200
https://www.sciencedaily.com/releases/2017/05/170509121952.htm
https://doi.org/10.1371/journal.pone.0165688
https://doi.org/10.4142/jvs.2017.18.S1.263
https://doi.org/10.1128/JVI.00728-15
https://doi.org/10.1111/j.1749-4877.2009.00180.x
https://doi.org/10.1890/15-0934/suppinfo
https://doi.org/10.1371/journal.pone.0190824
https://doi.org/10.1093/infdis/jiw400
www.mckinsey.com/mgi
https://www.cfa-fca.ca/issues/expanding-and-improving-rural-broadband-access/
https://www.cfa-fca.ca/issues/expanding-and-improving-rural-broadband-access/
https://doi.org/10.1016/j.agsy.2017.01.023
https://scholarship.law.umn.edu/mjlst
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles

	Detecting and Predicting Emerging Disease in Poultry With the Implementation of New Technologies and Big Data: A Focus on Avian Influenza Virus
	Introduction
	PART I
	New Technologies That Enable Rapid Detection and Diagnosis of Infectious Disease in Poultry
	Technology to Identify Poultry Disease: Biosensors for Influenza Virus
	Glycan-based influenza virus biosensors
	Antibody-based influenza virus biosensors
	Aptamer-based influenza virus biosensors
	Influenza virus biosensors for poultry diagnosis

	Technology for Detection of Poultry Disease: Wearable Sensors
	Technology for Detection of Poultry Disease: Non-contact Methods
	Vocalization analysis
	Image analysis
	Robotic surveillance



	PART II
	Exploiting Data to Predict Disease Emergence in Poultry
	Data Sources for Predicting Disease in Poultry
	Internet based data sources
	Environmental data sources

	Big Data Analytics and Decision Support Systems
	Challenges and Barriers to Implementing Predictive Infection Models for Poultry


	Conclusions
	Author Contributions
	Acknowledgments
	References


