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Abstract
Purpose – Today’s software engineers often work in teams to develop complex software systems.
Therefore, successful software engineering in practice require team members to possess not only sound
programming skills such as analysis, design, coding and testing but also soft skills such as communication,
collaboration and self-management. However, existing examination-based assessments are often inadequate
for quantifying students’ soft skill development. The purpose of this paper is to explore alternative ways for
assessing software engineering students’ skills through a data-driven approach.

Design/methodology/approach – In this paper, the exploratory data analysis approach is adopted.
Leveraging the proposed online agile project management tool – Human-centred Agile Software Engineering
(HASE), a study was conducted involving 21 Scrum teams consisting of over 100 undergraduate software
engineering students in multi-week coursework projects in 2014.

Findings – During this study, students performed close to 170,000 software engineering activities logged by
HASE. By analysing the collected activity trajectory data set, the authors demonstrate the potential for this
new research direction to enable software engineering educators to have a quantifiable way of understanding
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their students’ skill development, and take a proactive approach in helping them improve their programming
and soft skills.
Originality/value – To the best of the authors’ knowledge, there has yet to be published previous studies
using software engineering activity data to assess software engineers’ skills.

Keywords Crowd-sourced design and engineering, Task-oriented crowdsourcing,
Agile software engineering, Tools and platforms to support crowd science and engineering

Paper type Research paper

1. Introduction
Most hiring managers in software companies understand that a successful member of the
software engineering team needs to be strong in both programming skills (e.g. software
design, coding and testing skills) and soft skills (e.g. communication, collaboration and self-
management skills). Programming skills can be gauged, at least in part, from students’
performance in examinations and programming contests. Soft skills are much harder to
assess, especially during the limited time given in job interviews. Although the concept of
these skills can be taught, the ability to apply them consistently in practice can only be
acquired through one’s own experience.

In tertiary education institutions, software engineering students are often assessed by a
combination of examinations and coursework projects. Many educators have realized the
limitations of examinations in assessing students’ practical skills. Thus, coursework projects
often serve as an opportunity for students to both practice and demonstrate their skills.
However, as an instructor has to face tens or even hundreds of students in a semester, it is not
practical for him or her to know the weaknesses and strengths in each student’s skills in detail
through observation. Technologies that can subjectively quantify students’ skill development
are needed to enable instructors to proactively and effectively help each student.

With the emergence of systems capable of collecting personal behaviour trajectory big data
(Heymann and Garcia-Molina, 2011), data-driven analysis of people’s characteristics over time
is changing how students’ performance can be measured. Some funding agencies are starting
to support research in data-driven student assessment technologies to complement traditional
examination scores. For example, the Ministry of Education in Singapore has started an
initiative to build technological solutions capable of holistically assessing students’ twenty-
first-century competencies (e.g. critical thinking and self-directed learning skills).

Following a similar line of thinking, in this paper, we explore how software development
behaviour data can be used to assess students’ programming and soft skills. As agile software
development (ASD) involves many human factors reflecting developers’ personal characteristics
compared with other plan-driven methodologies (Cockburn and Highsmith, 2001), we focus on
tracking students’ activities in the ASD process. For this purpose, we conducted a 12-week study
involving 125 undergraduate software engineering students from the Beihang University,
Beijing, China. The students self-organized into 21 ASD teams of five to seven persons. Each
team developed one software system of significant complexity following the ScrumASDmethod
as part of their course requirements. Some examples of the coursework projects include “A
Personal Healthy Living App”, “A Social Network App for Senior Citizens” and “An Activity
TrackingApp for the Elderly”.

Students in this study carry out software engineering activities at various stages of the
Scrum methodology in our online agile project management (APM) tool – the Human-
centred Agile Software Engineering (HASE) platform (www.linjun.net.cn/hase/) (Lin et al.,
2014). HASE mainly supports activities during the sprint planning and sprint review/
retrospective phases. Such activities include proposing tasks; estimating the priority,
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difficulty and time required for each task; deciding how to allocate tasks; gathering
collaboration information; reviewing the timeliness and quality of completed tasks; and
providing feedback on individual team member’s mood at different points in time during a
sprint. During the study, students logged 169,137 ASD activities in the HASE platform. By
analysing the collected data set to reflect students’ programming skills, collaboration and
mood stability, we demonstrate the potential of this research direction and discuss its
implications for software engineering education.

2. Related work
To the best of our knowledge, there has yet to be published previous studies using software
engineering activity data to assess software engineers’ skills. Nevertheless, as the skills
assessment has always been an important problem, other methods have been applied in an
attempt to address it.

In 2004, Kitchenham et al. advocated evidence-based software engineering (EBSE)
similar to what is happening with evidence-based medicine (Kitchenham et al., 2004). A
technological platform for tracking and analysing important factors in software engineering
such as skills factors and life-cycle factors were called for, and the benefits of which were
analysed. Nevertheless, the work intends to produce methods to support the development of
high-quality software through objective analysis of performance-related indicators.
Although similar in principle to our work, they do not specify how EBSE can assess the
skills demonstrated by the software engineers or how such insight can be used to improve
software engineering education.

In 2011, Salleh et al. presented the results of a systematic literature review concerning
agile pair programming effectiveness (Salleh et al., 2011). The paper analysed compatibility
factors, such as the feel good, personality and skill level factors, and their effect on pair
programming effectiveness. Four metrics were used in the analysis:

(1) academic performance;
(2) technical productivity;
(3) program/design quality; and
(4) learning satisfaction.

As the study was not focused on assessment, the general findings are not useful for skills
assessment. Nevertheless, it did point towards the importance of soft skills in software
engineering.

In 2014, Lin et al. started to track personal performance data with APM tools to study
task allocation-related decision-making under Scrum (Lin et al., 2014). It used the same
research techniques as reported in this paper. However, the study focused on analysing
students’ programming skills and did not consider their soft skills such as collaboration and
mood.

3. Study design
In this section, we present our research approach and themetrics adopted in our analysis.

3.1 Research approach
We use the HASE APM platform to unobtrusively track the student participants’ activities
in the Scrum ASD process, including their decision-making, collaboration, task assignment
and mood. The platform provides six main features to support APM that cover the sprint
planning and sprint review/retrospective phases:
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(1) Registration: To build user profiles, HASE requires registrants to specify their self-
assessed competence levels in different areas of expertise such as familiarity with
specific programming languages, system design methodologies and user interface
(UI) design tools. This information will only be used to compute an initial
assessment for a user in the absence of peer ratings or performance data. Once
data from these relatively more objective sources become available, the user’s self-
assessment will be excluded from the assessment result.

(2) Team and role management: HASE supports the creation of teams, the selection of
product owners and stakeholders into the teams and the assignment of different
roles within a team (e.g. programmers and UI designers).

(3) Task management: Task information including task description, skills required for
the task and the person who proposed each task is displayed for all team members
to view. The difficulty value of each task T is recorded using an 11-point Likert
scale (Likert, 1932) (with 0 denoting “extremely easy” and 10 denoting “extremely
hard”). Each team member can input his or her estimated difficulty value for each
task into the HASE platform. The HASE platform then uses the average difficulty
value for the task (DT ). The students were asked to take into account the technical
challenge as well as the amount of effort required when judging the difficulty of a
task. The priority value of each task is also recorded using an 11-point Likert scale
(with 0 denoting “extremely low priority” and 10 denoting “extremely high
priority”). Each team member can input his or her estimated priority value for each
task into the HASE platform. The HASE platform then uses the average priority
value for the task.

(4) Sprint planning: HASE records the teams’ decisions on which tasks are assigned
to which team member during each sprint. Once assigned, the status of the task
becomes “Assigned”. The assignee i inputs his or her confidence value (Conf iT )
for each task T on an 11-point Likert scale (with 0 denoting “not confident at all”
and 10 denoting “extremely confident”). Each team member also inputs the
estimated required time to complete each task (in number of days). The HASE
platform uses the average estimated time required to generate the deadline for
the task (Test

T ). Apart from a primary assignee, multiple students can
collaboratively work on a task. The collaborator information for each task is also
recorded by HASE.

(5) Sprint review/retrospective: Once a task is completed, the assignee changes its
status in the HASE platform to “Completed”. This action will trigger HASE to
record the actual number of days (Tact

T ) used to complete this task. HASE also
provides functions for team members to peer review the quality (QualT ) of each
completed task T . The quality of a completed task is recorded in the platform
using an 11-point Likert scale, with 0 representing “extremely low quality” and 10
representing “extremely high quality”. The average quality rating for each task is
used by HASE as the final quality rating for that task.

(6) Team morale monitoring: During the sprint planning meeting, team members can
report their current mood values into the HASE platform. A person i’s mood at the

beginning of a sprint t mbegin
i tð Þ

� �
is represented on a five-point Likert scale, with 1

representing “very low” and 5 representing “very high”. During the sprinter view/
retrospective meeting, each task assignee i can report his or her mood after
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completing a task at the end of a sprint t mend
i tð Þ

� �
using the same five-point Likert

scale.

The input data to the HASE platform required from ASD teams are as a result of students’
activities following the Scrum methodology. In this way, users of HASE can behave as if
they are using any APM tool without expending additional effort to help with data
collection. Thus, the data collection process remains unobtrusive to the participants. Over
the 12-week period of the coursework project, the HASE platform collected 169,137
behaviour trajectory records related to software engineering activities from the 125 students
who participated in this study.

3.2 Metrics
In this paper, we adopt the exploratory data analysis (EDA) approach (Tukey, 1977) to
analyse the data collected. EDA is an approach for analysing data sets to summarize their
main characteristics, often with visual methods. It is primarily for understanding what can
be learnt from the data beyond the formal modelling or hypothesis testing task. We use the
following metrics to facilitate our analysis:

� Technical productivity (m i): It refers to the average amount of workload a student i
can complete during a sprint. In this study, we use the task difficulty value as an
indicator of the workload of a task, as the task difficulty values reported by students
denote both the technical challenge and the amount of effort required to complete
the task.

� Competence (Compi): It refers to the probability a student i can complete a task
assigned to him or her with satisfactory quality before the stipulated deadline. In
this paper, the outcome of a task needs to achieve an average quality rating higher
than five out of ten to be considered as having satisfactory quality. This metric is
similar to a student’s reputation. Thus, we adopt a reputation computation model –
the beta reputation model (Jøsang et al., 2007) – which is widely used in the fields of
online services, artificial intelligence and network communications (Pan et al., 2009;
Yu et al., 2010, 2011; Liu et al., 2013; Yu et al., 2013a). It is calculated as follows:

Compi ¼
ai þ 1

ai þ 1ð Þ þ b i þ 1ð Þ 2 0; 1ð Þ (1)

where ai and b i are calculated as:

ai ¼
X
T 21 ið Þ

1 Tact
T �Test

T # 0 and QualT > 5½ �DT (2)

b i ¼
X
T 21 ið Þ

1 Tact
T �Test

T > 0 and QualT # 5½ �DT (3)

The function 1[condition] in equation (2) and equation (3) equals to1 if “condition” is true.
Otherwise, 1[condition] equals to 0.1 ið Þ denotes the set of tasks i has previously worked
on until the current point in time. The “þ1” terms in the numerator and denominator of
equation (1) are Laplace smoothing terms (Wang and Singh, 2007) which ensure that if i
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has no previous track record, Compi evaluates to 0.5, indicating maximum uncertainty
about i’s performance:

� Team morale (begin) (Mbegin
j tð Þ): It refers to the average of the mood values reported

by members of team j during the sprint planning meeting of sprint t.
� Team morale (end) (Mend

j tð Þ): It refers to the average of the mood values reported by
members of team j during the sprint review/retrospective meeting of sprint t.

4. Results and analysis
An EDA has identified certain personal characteristics that may become useful markers for
assessing students’ skills in the future. Figure 1 shows the participants’ competence scores
versus their productivity scores at the end of the study. It can be observed that the
participants’ performances in terms of these metrics are quite distinguishable. In general,
participants who demonstrated high competence tend to also be able to handle high
workloads allocated to them (r = 0.7443, r < 0.01). One participant achieved significantly
higher competence and productivity scores than the rest of the participants.

Collaboration is generally regarded as a useful way to improve the effectiveness and
efficiency of a software team. Figure 2 shows a heat map of the number of collaborators per
task each participant had for each of the 12 weeks. The lighter the colour of a point on the
figure, the more collaborators per task that the participant had for that particular week. The
colour scale mapping different colour gradients to the actual number of collaborators per
task is shown on the right-hand side of the figure. Participants are ranked according to their
average number of collaborators per task per week. Those who are shown at the bottom of
the figure ranked the highest among their peers. It can be observed that this metric can
distinguish the behaviours among different participants clearly.

Stability of mood is a sign showing one’s maturity and self-management skills. Figure 3
shows a heat map of the intra-week mood change (which is computed as
Dmi tð Þ ¼ mend

i tð Þ �mbegin
i tð Þ 2 �5; 5ð Þ for each week) over the 12 weeks. In all, 102 out of

the 125 participants provided valid reports on theirmbegin
i tð Þ andmend

i tð Þ values. The colour

Figure 1.
Students’ competence
versus productivity
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scale mapping different colour gradients to the intra-week mood change is shown on the
right-hand side of the figure. Participants are ranked according to their average intra-week
mood change values per week over 12 weeks. Those who are shown at the bottom of the
figure ranked the highest among their peers. It can be observed that this metric can
distinguish the behaviours among different participants quite clearly. The mood of those
who ranked high on this metric tends to increase at the end of a week after a sprint of
development. And as their mood at the beginning of the week also tends to be high, the
increments are generally small. Thus, their mood remain relatively stable throughout a
sprint. Those who ranked low on this metric (top part of the figure) tend to have big negative
mood swings, especially towards the end of the study.

Figure 3.
Intra-weekmood

variation

Figure 2.
Average number of

collaborators per task

Software
engineering

skills
assessment

129



To explore if the assessment of participants’ skills may help us identify students who are
good at hands-on software engineering but did not stand out in examinations, we construct
a skills score to aggregate the effect of competence, productivity, collaboration and mood
stability into one scalar measurement. In this study, the skills score, Sskills ið Þ, for a
participant i is computed as:

Sskills ¼
Sm i

þ SCompi þ Scoli
1� SDmi

� 100
3

(4)

where Sm i
2 0; 1½ �, SCompi 2 0; 1½ �, Scoli 2 0; 1½ � and SDmi 2 �1; 1ð Þ are the normalized

scores for i in terms of productivity, competence, collaboration and mood stability,
respectively (Sskills ið Þ 2 0; 100½ �).

Figure 4 plots the participants’ skills scores against their examination scores for the
subject of software engineering in the same semester. The examination paper used was the
standard software engineering end-of-semester examination paper from the Beihang
University, which has been designed by the professors in charge of the course and reviewed
by the university examination board. It can be observed that, according to their exam scores,
their performance clustered in the range of 80 to 100 marks, enabling almost all of them to
achieve a grade of A or Aþ. However, their skills scores spread from as low as 10 marks to
as high as 80 marks, making their performance more distinguishable compared with their
exam scores. The skills scores have only a weak positive correlation with the exam scores
(r = 0.2129, r < 0.05). Furthermore, the top three best-performing participants in terms of
skills scores achieved only average exam scores among their peers, and many participants
with high exam scores achieved low skills scores.

We acknowledge that there may be other ways to compute the skills score and we refrain
from claiming that our current formulation for the skills score is the most effective.
Nevertheless, the results show that the data-driven skills score can potentially help us
distinguish the performance of software engineering students better than examination-
based assessments.

Figure 4.
Participants’ skills
score versus their
examination score
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Figure 5 shows the distribution of students’ average self-reported mood values during the
sprint planning meeting at the start of each sprint. The colour scale represents the average
self-reported mood values. The average mood value is 3.86 out of 5. The correlation between
students’ mood during the sprint planning meetings and their competence values is r =
0.0025, r< 0.9394, indicating no statistically significant correlation. The correlation between
students’ mood during the sprint planning meetings and their technical productivity values
is r= 0.1505, r< 0.01, indicating a statistically significant albeit weak positive correlation.

Figure 6 shows the distribution of students’ average self-reported mood values during
the sprint review/retrospective meeting at the end of each sprint. The colour scale represents
the average self-reported mood values. The average mood value is 3.80 out of 5, which is
slightly lower than at the beginning of the sprint. The correlation between students’ mood
during the sprint review/retrospective meetings and their competence values is r = 0.0148,
r < 0.5946, indicating no statistically significant correlation. The correlation between
students’ mood during the sprint review/retrospective meetings and their technical
productivity values is r = 0.4207, r < 0.01, indicating a statistically significant positive
correlation. Therefore, based on these analyses, team members with high technical
productivity tend to have a high morale, especially at the end of a sprint after completing the
tasks allocated to them.

5. Implications
By providing a technological platform for the longitudinal tracking of software engineers’
behaviour trajectory data related to software development, we open up new possibilities for
different parties involved in software engineering, namely, researchers, educators and
practitioners.

5.1 Implications for software engineering researchers
The availability of large software engineering behaviour data sets will present new
challenges to researchers to develop new analytics techniques. With detailed information on

Figure 5.
Students’ average

morale before a sprint
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each user’s demographics, skills indicator values over time, detailed interactions with the
software engineering tools provided, interactions with other team members and decisions
made, the high dimensionality of the data sets makes it a challenge to identify which feature,
or combination of features, can form accurate predictors for certain behaviours of interest.
Machine learning (Anzai, 1992) can be leveraged to develop useful techniques for this
purpose.

However, before this step can happen, additional efforts are needed to complement the
behaviour data sets with labelled meta-data on what the observed behaviour patterns mean.
This can potentially be achieved by conducting follow-up interview-based studies with the
participants through carefully designed questionnaires once unique behaviour patterns
have been identified. This also further opens up the research question on how to present the
behaviour pattern data in a human-interpretable format to facilitate the interviews.

5.2 Implications for software engineering educators
Software engineer educators may be a viable source of knowledge in the effort of building up a
repository of meta-data for the behaviour patterns obtained by the tracking platform. As they
frequently interact with students who may be using the proposed tracking platform, they can
potentially provide insights into the meanings of the behaviour patterns. The challenge here is
for software engineering researchers to provide tools to enable educators who are willing to
contribute meta-data for the behaviour patterns to do so with ease. Techniques from the field of
crowdsourcing (Doan et al., 2011) may offer a starting point for such an effort.

Once new techniques for automatically assessing a student’s skill development based on
his or her behaviour patterns are developed, new forms of real-time personalized inventions
may become available to educators. The simplest possibility is for the system to send out
alerts on students who may require help in specific areas to course instructors. Through
mining the behaviour patterns of many students and cross-checking with their academic
performance, or even employment prospects if such data are available, the system may be
able to suggest behaviour trajectories that are the most beneficial for students from different
backgrounds, thereby making data-driven personalized software engineering training

Figure 6.
Students’ average
morale after a sprint
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possible. The envisioned behaviour data tracking platform can potentially convert software
engineering education into a test bench for open science and enable a more adaptive and
individualized learning experience.

5.3 Implications for software engineering practitioners
The behaviour data are tracked in an unobtrusive manner by the APM tool automatically.
The peer review-related functions represent activities that an ASD team member already
has to perform when following the ASD practice. Overall, the proposed APM tool-based
behaviour data tracking approach does not require software engineers to incur additional
overhead. However, the data analytics functions provide ASD teams with insights into
detailed team dynamics and performance information that can be useful for decision-
making. Furthermore, with the behaviour data as input, automatic context-aware software
engineering task allocation decision support mechanisms (Lin, 2013) become a distinct
possibility. These mechanisms can be based on similar mechanisms available in the field of
crowdsourcing (Yu et al., 2013b, 2013c, 2015).

6. Discussions and future work
In this paper, we explore a novel data-driven approach to assess software engineering
students’ skills. Different from traditional interview/internship-based methods, our study is
based on participants’ ASD activity trajectory data collected unobtrusively during normal
ASD processes through our HASE APM platform. This type of data objectively reflects
developers’ASD activities and performance at fine granularity.

As the data collection and analytics technologies further develop, software engineering
students may eventually perform all coursework activities in a technology platform capable
of unobtrusively collecting their behaviour data and continuously assessing a wide range of
their skills over time. In this way, the students’ practical skill development can be monitored
by their instructors so that pedagogical methods can be personalized to help individual
students in specific areas. Such a tool will enable software engineering educators to have a
quantifiable way of understanding their students’ skill development and take a proactive
approach in helping them develop programming and soft skills. The skills scores may, one
day, be part of a student’s academic profile and be taken into consideration by industry
recruiters to help companies identify well-rounded software engineering talents suitable for
their teams.

From this study, we see the start of a series of research and applications in data-driven
software engineering skills assessment. In future research, we plan to conduct surveys/
interviews to understand more in-depth how students collaborate. We will continue using
the HASE platform to collect agile programming activity data over subsequent semesters
and expand our data collection effort to include more universities so as to investigate the
possible effects of socio-cultural factors. More finely grained data such as the time each
student spent on a task and the breakdown of the usage of the time will also be collected in
future versions of the HASE platform.
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