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Abstract

This paper examines the portfolio optimization of energy futures by using the STARR ratio that can evaluate the risk 

and return relationship for skewed distributed returns. We model the price returns for energy futures by using the 

ARMA(1,1)-GARCH(1,1)-PCA model with stable distributed innovations that reflects the characteristics of energy: 

mean reversion, heteroskedasticity, seasonality, and spikes. Then, we propose the method for selecting the portfolio of 

energy futures by maximizing the STARR ratio, what we call “Winner portfolio”. The empirical studies by using 

energy futures of WTI crude oil, heating oil, and natural gas traded on the NYMEX compare the price return models 

with stable distributed innovations to those with normal ones. We show that the models with stable distributed 

innovations are more appropriate for energy futures than those with normal ones. In addition, we discuss what 

characteristics of energy futures cause the stable distributed innovations in the returns. Then, we generate the price 

returns of energy futures using the ARMA(1,1)-GARCH(1,1)-PCA model with stable ones and choose the portfolio of 

energy futures employing the generated price returns. The results suggest that the selected portfolio of “Winner 

portfolio” performs better than the average weighted portfolio of “Loser portfolio”. Finally, we examine the usefulness 

of the STARR ratio to select the winner portfolio of energy futures. 

Keywords: energy futures markets, portfolio optimization, principal component analysis, -stable distributed 

innovations, t copula. 

JEL Classification: C51, G11, Q40. 

Introduction©

This paper examines the portfolio optimization of 

energy futures by using the STARR ratio that can 

evaluate the risk and return relationship for skewed 

distributed returns. Additionally, we conduct 

empirical studies by using the WTI crude oil, heating 

oil, and natural gas futures traded on the NYMEX. 

Commodities such as energy, agriculture, and metal 

have been considered as the third investment assets, 

compared with the stocks and bonds. Financial 

institutions and hedge funds have recently 

recognized the commodities as the alternative 

investment objects and then tailored their own 

trading strategies in order to generate the cash. 

Down the line commodity trading is providing high 

returns as in Geman (2005) because of the 

diversification effects in the financial portfolio of 

the stocks and bonds. For example, Erb and Harvey 

(2006) and Miffre and Rallis (2007) recently 

examined and discussed the profitability of 

momentum strategies in commodity futures. In 

particular, energy trading, one of the commodities, 

has recently got roaring, because energy is traded not 

only by financial companies that provide the liquidity 
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to the market but also by energy companies that have 

to be responsible for the demand for energy. Under 

the market circumstances, hedge funds, one of savvy 

financial institutions, often have a joy to dive into 

energy markets by employing their trading strategies 

basically tested in financial markets. One of their fa- 

mous trading strategies applied to financial markets is 

a long and short trading strategy that makes zero cost 

portfolio of long and short positions and then 

generates the cash owing to the price convergence, 

which is categorized as the statistical arbitrage and 

convergence trading. In order to investigate the 

performance of the trading, Gatev, Goetzmann, and 

Rouwenhorst (2006) test the pairs trading, one of 

long and short trading strategies, by using historical 

stock prices. In addition, Jurek and Yang (2007) 

compare the performance of their optimal mean 

reversion strategy with that of Gatev, Goetzmann, 

and Rouwenhorst (2006) using the simulated data. 

The pairs trading is very close to zero-investment 

strategy as in Rachev, J si , Stoyanov, and Fabozzi 

(2007) and Rachev, J si , Biglova, and Fabozzi 

(2006) in the sense that the zero cost portfolio by 

using the winner and loser ones historically produces 

the profit. However, the long and short trading 

strategies including pairs trading are not applied to 

energy markets as long as we know. In order to 

conduct the long and short trading strategies in 

energy markets, we have to know how to model the 

energy futures prices and how to construct the 

portfolio to be chosen as the winner or loser portfolio. 

Thus, this paper investigates the portfolio optimization 
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of energy futures by using the STARR ratio that can 

evaluate the risk and return for skewed distributed 

returns often observed in energy futures markets. 

In order to do this, we start with the modeling of 

energy price returns. Energy commodity prices such 

as crude oil and natural gas have four highlighted 

characteristics compared with those of financial 

assets such as stocks and bonds. In the beginning, it 

is well documented that energy prices have mean 

reversion as in Pilipovic (1998) and among others.  

Then, the volatility in energy prices is larger than 

that in stock prices and time varying. Because of the 

characteristics of the volatility in energy prices, 

energy prices present the inverse leverage effect 

such that the price volatility increases in the prices 

as in Eydeland and Wolyniec (2003), while stock 

prices have the leverage effect as in Black (1975). In 

addition, energy prices have stronger seasonality 

than the financial prices owing to the seasonality of 

supply and demand for energy. In order to 

demonstrate the seasonality in the price models, 

energy price returns are represented by using the 

Principal Component Analysis (PCA) as in Geman 

(2005). It is consistent with the energy market 

observation that the common factor with seasonality 

such as temperature makes different energy prices 

fluctuate in the same direction. Finally, the 

imbalance between supply and demand gives rise to 

the sudden price soaring: spikes often observed in 

deregulated electricity and natural gas markets as in 

e.g., Huisman and Mahieu (2001), Eydeland and 

Wolyniec (2003), Geman and Roncoroni (2006), 

and among others. As discussed in Kanamura 

(2006), energy prices are strongly affected by the 

supply and demand relationship and then the 

innovation terms of energy price returns are more 

skewed than those of stock price returns due to price 

spikes by way of the more upward sloping supply 

curve transformation of the mean-reverting demand 

process than the exponential. Like these since energy 

has four unique characteristics such as ARMA effect 

(mean reversion), GARCH effect (heteroskedasticity), 

PCA (seasonality), and skewed innovations (spikes), 

we should incorporate these characteristics into the 

model of the energy price returns. Down the line we 

model the price returns for energy by using the 

ARMA(1,1)-GARCH(1,1)-PCA model with stable 

distributed innovations by reflecting the 

characteristics of energy prices1,2.Then, we propose 

                                                     
1 The principal component such as temperature produces the seasonality 

in the prices. Thus, we do not incorporate the seasonality in the model 

directly.

2 Spikes are generated partly by supply and demand relationship as in 

Kanamura (2006) and partly by time varying volatility. Thus, we do not 

employ jump diffusion model for our model. 

the method for selecting the portfolio of energy 

futures by maximizing the STARR ratio as in e.g., 

Rachev, Menn,  and Fabozzi (2005) that can evaluate 

the risk and return for skewed distributed returns often 

observed in energy futures markets. 

The empirical studies by using energy futures prices 
of WTI crude oil, heating oil, and natural gas traded 
on the NYMEX compare the price return models for 
energy futures, especially focusing on the 
distributions of the innovations. We show that the 
models with stable ones are more appropriate for 
energy futures than those with normal ones. In 
addition, we offer some arguments that the stable 
innovations may come from price spikes in energy 
futures markets. We then generate the price returns 
by using the proposed ARMA(1,1)-GARCH(1,1)-
PCA model with stable ones and choose the 
portfolio of energy futures by maximizing the 
STARR ratio. The results will illustrate that the 
selected portfolio, what we call “Winner portfolio”, 
performs better than the average weighted portfolio, 
what we call “Loser portfolio”, in energy markets. 
Finally, we examine the usefulness of the STARR 
ratio to select the winner portfolio of energy futures. 

This paper is organized as follows. Section 1 explains 

the ARMA(1,1)-GARCH(1,1)-PCA model with 

stable distributed innovations for energy price returns 

and then proposes the method for choosing the winner 

portfolio in energy markets by using the STARR 

ratio. Section 2 empirically compares price return 

models for energy futures traded on the NYMEX, and 

conducts the portfolio optimization based on the 

procedure as in Section 1. Section 3 concludes and 

offers the directions for our future research. 

1. The model  

1.1. The price return model for energy. Energy
price returns are well known to have mean reversion 
and heteroskedasticity. In addition, they often 
present the large outliers in the distributed noises 
partially due to price spikes. Thus, the return model 
requires the ARMA type model for the mean 
reversion, GARCH type model for the 
heteroskedasticity as in Bollerslev (1986), and the 
stable distributed innovations for the price spikes.

Furthermore, energy prices are correlated with each 

other and they are expected to have common

principal components particularly due to 

seasonality. Thus, this paper models the price return 

of energy futures by using the ARMA(1,1)-

GARCH(1,1)-Principal Component Analysis 

(PCA)3 model with stable distributed innovations as 

in Appendix A as follows. 

                                                     
3 The principal component analysis is introduced by Hotelling (1933). 
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where ei,t denotes stable innovations for each 

variable, and zt has a multivariate distribution 

having  a skewed Student's t copula with stable 

marginals. Note that I, T, and S represent the 

numbers of energy futures, observations, and 

principal components, respectively. 

By using this model, we simulate the price returns of 

energy futures in order to choose two portfolios of 

energy futures: high and low performance portfolios. 

1.2. Portfolio selection based on the price return 

model. In order to conduct a long and short trading, 

we have to construct high and low performance 

portfolios, what we called “Winner portfolio” and 

“Loser portfolio”, respectively. This section 

proposes the method for selecting the winner 

portfolio of energy futures by using the STARR 

ratio that can evaluate risk and return of skewed 

distributed returns.

Denote by zpl the weight of asset l in a portfolio of n
assets, and denote by r(p) the total random return of 

the portfolio consisting of n assets: 

n

l

lpl

p rzr
1

)(
,          (5) 

where rl is the random daily return of asset l. Denote 

by R(p) the total expected daily return of the portfolio 

of n assets: 

n

l

lpl

pp RzrER
1

)()( )( ,       (6) 

where Rl represents the expected return of asset l.

We define the objective function of the portfolio 

optimization by using the STARR ratio1 as in e.g., 

Rachev, Menn, and Fabozzi (2005) and Biglova and 

Rachev (2007) as follows: 

                                                     
1 The STARR ratio is also called as the CVaR ratio. 

2 The location parameter  and the scale parameter  are the mean 

and the standard deviation, respectively in the case of normal 

distribution hypothesis.

)(
)(

)(

)(
)(

p

p
p

rETL

R
rSTARR .      (7) 

STARR ratio represents the ratio between the 
expected excess return and its Expected Tail Loss 
(ETL). Note that the ETL is a downside tail risk 
measure, also known as Total Value-at-Risk 
(TVaR), Expected Shortfall (ES), and Conditional 
Value-at-Risk (CVaR), and defined as  

0
)(

1
)( dqXVaRXETL q ,      (8) 

where

})(/inf{)()(
1

xXPxFXVaR X

is the Value-at-Risk (VaR) of the random return X.
If we assume a continuous distribution for the 
probability law of X, ETL can be interpreted as the 
average loss beyond VaR as in Rachev, Ortobelli, 
Stoyanov, Fabozzi, and Biglova (2007). 

We choose the portfolio weights zpl to maximize the 
STARR in Eq. (7). 

)(max )( p

z
rSTARR

pl

,         (9) 

s.t.
n

l

plp zz
1

1 ,           (10) 

zpl>0.                 (11) 

The selected portfolio is set to be the winner portfolio 

in energy futures markets. On the other hand, we 

define the loser portfolio as the equally weighted 

portfolio of energy futures in order to examine the 

performance of the winner portfolio comparing to the 

average return in energy futures markets. 

2. Empirical studies for energy futures prices 

2.1. Data. The studies use three series of daily 

closing prices of WTI crude oil, heating oil, and 

natural gas futures traded on the New York 

Mercantile Exchange (NYMEX). They include six 

different delivery months from one to six whose 

sources are obtained from Bloomberg and whose 

observations start from April 3, 2000 to July 10, 

2003. The price quotes of the WTI crude oil, heating 

oil, and natural gas futures are US dollars per barrel, 

cents per gallon, and dollars per mmBtu, respectively. 

2.2. Comparisons of price return models for 

energy prices. In this section, we compare the 

stable assumption for price returns of energy futures 

with the normal assumption by fitting the data with 

joint stable and normal distributions, respectively. 

We implicitly assume that returns are uniquely 

determined by the location parameter  and the 

scale parameter  as in Appendix A2. Assuming 
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that the observations are i.i.d., we estimate two main 

parameters of the stable law as in Appendix A: the 

index of stability  and skewness parameter ,

which characterize the heavy-tailedness and 

asymmetry of the price return distributions of 

energy futures, respectively. For the Gaussian fit, 

we compute the first moment and standard 

deviation. Finally, to test the normal and stable 

distribution hypotheses, we compute the 

Kolmogorov-Smirnov (KS) statistic according to 

|)(ˆ)(|sup xFxFKS S
Rx

,          (12) 

where )(xFS is the empirical sample distribution 

and )(ˆ xF  is the standard normal cumulative 

distribution function evaluated at x for the Gaussian 

or stable fit, respectively. This statistic emphasizes 

deviations around the median of the fitted 

distribution. It is a robust measure in the sense that 

it focuses only on the maximum deviation between 

the sample and fitted distributions. 

Our sample comprises returns of 18 risky assets of 
energy markets for the period from April 3, 2000 to 
July 10, 2003. 

In the simple setting of the i.i.d. returns model, we 
have estimated the values for the four parameters of 
the stable Paretian distribution using the method of 
maximum likelihood. Figure 1 shows the scatter plots 

of the estimated pairs of  and  for all assets. 

A comparison between the Gaussian and stable 
hypotheses clearly indicates that stable distributions 
approximate the returns' distribution much better 
than the Gaussian one. With KS test we can compare 
the empirical cumulative distribution of several 
assets returns with either a simulated Gaussian or a 
simulated stable distribution.   

Table 1 shows that we can generally reject the 
hypothesis of normality of returns' distribution at 
different levels of confidence considered. 
Analogously, we cannot generally reject the stable 
distribution hypothesis for return distributions at 
different levels of confidence considered.  

Table 2 shows that the average KS statistic across 
different energy futures prices equals about 0.74, 
when FS(x) is the cumulative Gaussian distribution 
for the case of confidence level equal to 0.05. When 
FS(x) is the cumulative stable distribution, the 
average KS statistic among different assets is about 
0.07. The KS statistic for the stable non-Gaussian 
test is almost 10 times smaller than the KS distance 
in the Gaussian case.

We notice from Figure 1 that all estimates of 
parameter  are less than 2. We see also from 

Table 2 that the third quartile for  is 

approximately 1.90. This implies that none of the 
asset returns is normally distributed.  

The majority of energy futures prices have negative 

estimate  as it can be seen from Figure 1. The 

mean of  is equal to about -0.54 as in Table 2. 

This fact also confirms that the stable fit 

outperforms the Gaussian one. 

Table 1. Normality and stable distribution 

hypotheses for i.i.d. model 

Confidence level 95% 99% 99.9% 99.95% 99.99% 

% of energy futures 
prices for which the 
normal distribution 
hypothesis is rejected 

73.98 74.00 74.04 74.40 74.24 

% of energy futures 
prices for which the 
stable distribution 
hypothesis is rejected  

7.10 7.14 7.37 7.13 6.62 

Table 2. Summary of statistics for sample of 18 

assets on i.i.d. model 

KS distances 
(normal)

KS distances 
(stable) 

Mean 1.8754 -0.5396 0.7398 0.0710 

Median 1.8923 -0.5368 0.7407 0.0677 

1 quartile 
(25%)

1.8653 -0.7606 0.7241 0.0431 

3 quartile 
(75%)

1.9021 -0.4082 0.7524 0.0997 

Fig. 1. Scatter plots between index of stability  and 

skewness parameter  for daily returns of 18 assets

As a next step, we estimate the normal and stable 

GARCH(1,1) models for energy futures price 

returns. The assumptions of i.i.d. returns and 

conditional homoskedasticity are often violated in 

energy data where we observe volatility clustering. 

Such behavior is captured by Autoregressive 
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Conditional Heteroskedastic (ARCH) models and 

their generalization (GARCH models, see Bollerslev 

(1986)). Accordingly, as the second test we consider 

the GARCH models with normal and stable 

distribution innovations. Recall that the GARCH model 

of the asset returns (yt)'s can be represented by the 

expressions that assume that return process is given by 

ttt zy ,               (13) 

where zt's are i.i.d. mean zero and unit variance 

random variables representing the innovations of the 

return process and where the conditional variance in 

the GARCH(p,q) model is given by  

p

j

jtj

q

i

itit byaa
1

2

1

2

0

2
.        (14) 

In the most common form of the GARCH model, zt

~ N(0,1), so that the returns are conditionally 

normal. We observe that the GARCH model with a 

conditionally normal return distribution can lead to 

heavy tails in the unconditional return distribution.  

If we assume that the distribution of the historical 

innovations zt-n, ... , zt is heavier-tailed than the 

normal, then the returns will not be conditionally 

normal any more so that the GARCH model will 

exhibit non-Gaussian conditional distribution. Note 

that in this model, t  given by Eq. (14) can be 

interpreted as a scale parameter and not necessarily 

volatility, since for some distributional choices for 

zt, the variance may not exist. Specifically, in the 

case that zt 's are realizations from a -stable non-

Gaussian distribution, the GARCH model is 

represented by the modified expression:   

p

j

jtj

q

i

itit byaa
11

0 .         (15) 

Note that the index of stability  for the stable 

distribution is constrained to be greater than one1.

We call the representation Eq. (15) with its 

assumption “a stable-GARCH model”. 

Similar to common GARCH models that do not 
assume stable distributed innovation processes, the 
stable-GARCH model may prove beneficial to 
model the conditional distribution of asset returns 
by capturing the temporal dependencies of the return 
series appropriately. To test the goodness-of-fit of 
the models, the standard Kolmogorov distance 
statistic can be applied. We fit the GARCH(1,1) 
models in Eqs. (14) and (15) with the Gaussian 

                                                     
1 Note that term yt-i

2 in assuming stable innovation process zt can

become infinite rendering the whole expression meaningless. The 

condition of  > 1 means that we impose a finite mean condition. 

innovations and -stable distributions, respectively. 

The model parameters are estimated using the method 
of maximum likelihood assuming the normal 
distribution of innovations. In this the strong 
consistency property of estimators of the model under 
the stable Paretian hypothesis is preserved since the 
index of stability of the innovations is greater than 1 
as in Rachev and Mittnik (2000). After estimating the 
GARCH(1,1) model parameters, we computed the 
model residuals and then verified which distributional 
assumption is more appropriate.  

Table 3 shows the results of testing the normal and 

stable distribution hypotheses for stable-

GARCH(1,1) models of energy futures prices with 

normal and stable innovations, respectively. The 

results show that at the 95% confidence level, the 

hypothesis of normality is rejected for 37% of assets 

residuals and the hypothesis of stable distribution is 

rejected only for 4% of assets with residuals. 

Comparing the results in Table 3 to those in Table 1, 

we observe that the Gaussian model is rejected in 

fewer cases in the GARCH(1,1) model than in the 

simple i.i.d. model. 

Table 3. Normality and stable distribution 

hypotheses for GARCH (1,1) model 

Confidence level 95% 99% 99.9% 99.95% 99.99% 

% of energy futures 
prices for which the 
normal distribution 
hypothesis is rejected 

36.86 36.78 37.37 37.41 37.95 

% of energy futures 
prices for which the 
stable distribution 
hypothesis is rejected 

4.37 4.72 5.06 4.65 4.69 

Table 4. Summary of statistics for sample of 18 

assets on GARCH(1,1) model 

KS distances 
(normal)

KS distances 
(stable) 

Mean 1.9087 -0.6633 0.3686 0.0437 

Median 1.9113 -0.7610 0.3700 0.0437 

1 quartile 
(25%)

1.8910 -0.8663 0.3559 0.0344 

3 quartile 
(75%)

1.9279 -0.4855 0.3768 0.0517 

A summary of the computed statistics for the 

residuals of the GARCH(1,1) model is reported in 

Table 4. The results in Table 4 show that the 

average KS statistic across different innovation 

series equals about 0.37, when FS(x) is the 

cumulative Gaussian distribution for the case of 

confidence level equal to 0.05. When FS(x) is the 

cumulative stable distribution, the average KS

statistic among different innovation series is about 

0.04. The KS statistic for the stable non-Gaussian 
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test is almost 10 times smaller than the KS distance 

in the Gaussian case. Generally, the results imply that 

the stable Paretian distribution is more adequate as a 

probabilistic model for the innovations compared to 

the Gaussian assumption. A plausible model for asset 

returns is then a model that exhibits the properties of 

volatility clustering captured by the GARCH process 

and heavy-tails captured with stable non-Gaussian 

innovations in the GARCH model. 

Figure 2 shows the scatter plots of the estimated 

pairs of and  for all assets' innovation series. 

We notice from Figure 2 that all estimates of 

parameter  are less than 2. We see also from 

Table 4 that the third quartile for  is 

approximately 1.93. This implies that none of the 

asset returns is normally distributed.  

The majority of energy futures prices have negative 

estimate  as it can be seen from Figure 2. The 

mean of  is equal to about -0.66 as in Table 4. 

This fact also confirms that the stable fit 

outperforms the Gaussian one.  

Fig. 2. Scatter plots between index of stability  and 

skewness parameter  for innovations of GARCH(1,1) fit 

of daily returns of 18 assets 

Comparing Tables 3 and 1, the stable distribution 

model is rejected in fewer cases in the GARCH(1,1) 

model than in the simple i.i.d. model. It implies that 

by removing the heteroskedasticity from price returns 

that may cause the transformation of normally 

distributed innovations, i.e., stable ones, the stable 

distribution innovations are highlighted. It may be 

helpful to increase the possibility of justifying our 

assumption that the stable distributed innovations in 

price returns stem from the price spikes. 

As a next step, we estimate ARMA(1,1)-

GARCH(1,1) model. The sequence h = (hn) is 

described by the ARMA model, if  

nnnh ,              (16) 

where

)()( 2211110 qnqnnpnpnn bbbhahaa .  (17) 

From Eqs. (16) and (17) we find that 

][)( 2211011 qnqnnnpnpnn bbbahahah .  (18) 

Notice that in the case of q = 0, the model is reduced 

to the case of AR(p) model. In the case of p = 0, the 

model is reduced to the case of MA(q) model. The 

special case of ARMA(p,q) is ARMA(1,1), which is 

the combination of AR(1) and MA(1) models: 

nnnn bhaah 11110 .        (19) 

For the case of |a1| < 1, the time series, described by 

the model, is stationary. Figure 3 presents the 

computer realization of the sequence, for which the 

ARMA(1,1) model holds.  

Fig. 3. Simulation of ARMA(1,1) model of 

nnnn bhaah 11110 , where a0 = -1, 

a1 = 0.5, b1 = 0.1, and 1.0

The algorithm is offered in Appendix B. 

We test the hypotheses about the stable and normal 

distributions of innovations applying the KS statistics. 

We have estimated the values for the four parameters 

of the stable Paretian distribution using the method of 

maximum likelihood for the sequences of innovations. 

Figure 4 shows the scatter plots of the estimated pairs 

of  and  for the innovations of GARCH(1,1) fit 

of residuals, obtained from ARMA(1,1) fit of daily 

returns of 18 assets. A comparison between the 

Gaussian and stable hypotheses clearly indicates that 

stable distributions approximate the innovations' 

distribution much better than the Gaussian one. With 

KS test we can compare the empirical cumulative 

distribution of innovations with either a simulated 

Gaussian or a simulated stable distribution. Table 5 

shows that we can generally reject the hypothesis of 

normality of innovations' distribution at different 

levels of confidence considered. 

Analogously, we cannot generally reject the stable 

distribution hypothesis for innovations' distributions 

at different levels of confidence considered. 
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Table 5. Normality and stable distribution 

hypotheses for ARMA (1,1)-GARCH (1,1) model 

Confidence level 95% 99% 99.9% 99.95% 99.99% 

% of energy futures 
prices for which the 
normal distribution 
hypothesis is rejected 

37.60 36.26 36.85 36.99 36.52 

% of energy futures 
prices for which the 
stable distribution 
hypothesis is rejected 

4.63 4.51 4.37 4.47 4.33 

Table 6 shows that the average KS statistic across 

different energy futures equals about 0.38, when 

FS(x) is the cumulative Gaussian distribution for the 

case of confidence level equal to 0.05.  

Table 6. Summary of statistics for sample of 18 

assets on ARMA(1,1)-GARCH(1,1) model 

KS distances 
(normal)

KS distances 
(stable) 

Mean 1.9096 -0.6730 0.3760 0.0463 

Median 1.9074 -0.8505 0.3750 0.0480 

1 quartile 
(25%)

1.8939 -0.9562 0.3645 0.0357 

3 quartile 
(75%)

1.9289 -0.4451 0.3903 0.0529 

When FS(x) is the cumulative stable distribution, the 

average KS statistic among different assets is about 

0.05. The KS statistic for the stable non-Gaussian 

test is almost 8 times smaller than the KS distance in 

the Gaussian case. 

We notice from Figure 4 that all estimates of 

parameter  are less than 2. We see also from 

Table 6 that the third quartile for  is 

approximately 1.91. This implies that none of the 

innovation sequences is normally distributed.  

Fig. 4. Scatter plots between index of stability  and 

skewness parameter  for innovations of ARMA(1,1)-

GARCH(1,1) fit of 18 assets 

The majority of innovations have negative estimate 

 as it can be seen from Figure 4. The mean of  is 

equal to -0.67 as in Table 6. This fact also confirms 

that the stable fit outperforms the Gaussian one. 

2.3. Principal component models for energy 

futures price returns. We modeled price returns of 

energy futures so far and then found that the price 

return models with stable distributed innovations are 

more appropriate for energy futures than those with 

normal ones. However, they have dependent structure 

not only for the different maturity futures prices of 

the same energy but also for the different energy 

futures prices. For example, temperature often affects 

demand for energy. Accordingly, it is possible that 

the corresponding prices move together. In order to 

capture the whole dependency structure for energy, 

we test the asset return models based on the Principal 

Component Analysis (PCA) as in Rachev, Mittnik, 

Fabozzi, Focardi, and J si  (2007).    

In the beginning, we perform the PCA for the 

analyzed asset returns in an effort to examine how 

many factors influence them. We consider the 

influence of factors, which are combinations of 

analyzed assets. We replace the original n (n = 18 

for our case) correlated time series Xi with n
uncorrelated time series Pi, supposing that each Xi

is a linear combination of the Pi. Supposing that 

only p of the portfolios Pi have a significant 

variance, while the remaining n-p have very small 

variances, we implement a dimensionality 

reduction by choosing only those portfolios whose 

variance is significantly different from zero. We 

call these portfolios factors F. We can then 

approximately represent each series Xi as a linear 

combination of the factors plus a small 

uncorrelated noise (e):

eFPFX
p

i

ii

p

i

n

pi

iiiii

11 1

.     (20) 

The PCA works either on the variance-covariance 
matrix or on the correlation matrix. Although the 
technique is the same, the results are generally 
different. The PCA applied to the variance-covariance 
matrix is sensitive to the units of measurement, which 
determine variances and covariances. This 
observation does not apply to returns, which are 
dimensionless quantities. Therefore, we apply the 
PCA to the correlation matrix, as the returns of our 
analyzed assets are heavy tailed.  

Having performed the PCA by using the correlation 
matrix of analyzed asset returns, we obtained 18 
principal components, which are linear 

combinations of the original series, X = (X1,..., Xn) ,
i.e., they are obtained by multiplying X by the 
matrix of the eigenvectors. 

Table 7 shows the total variance explained by a 
growing number of components. Thus, the first 
component explains about 66.82% of the total 
variance, the first two components explain about 
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90.81% of the total variance and so on. Obviously 
18 components explain 100% of the total variance. 
From Table 7 it follows that 7 of the portfolios Pi

explain 99% of total variance. Therefore, we 
implement a dimensionality reduction by choosing 
only the first 7 factors for further analysis of their 
distributions' properties. We consider that each 
series Xi of asset returns can be represented as a 
linear combination of these 7 factors plus a small 
uncorrelated noise. 

Table 7. % of total variance by growing # of 

components on covariance matrix 

Principal
component 

% of variance explained 
% of total variance 

explained

1  66.8151 66.8151 

2  23.9985 90.8136 

3  3.5411 94.3548 

4  1.8570 96.2118 

5  1.3153 97.5272 

6  0.9210 98.4482 

7  0.5769 99.0251 

8  0.3256 99.3508 

9  0.2547 99.6056 

10  0.1323 99.7380 

11  0.1084 99.8465 

12  0.0698 99.9164 

13  0.0339 99.9503 

14  0.0271 99.9774 

15  0.0117 99.9892 

16  0.0067 99.9960 

17  0.0030 99.9990 

18  0.0009 100 

In the simple setting of the i.i.d. returns model, we 

have estimated the values for the four parameters of 

the stable Paretian distribution using the method of 

maximum likelihood. Figure 5 shows the scatter 

plots of the estimated pairs of  and  for all 

analyzed factors. 

A comparison between the Gaussian and stable 

hypotheses clearly indicates that stable distributions 

approximate the factors' distribution much better 

than the Gaussian one. With KS test we can compare 

the empirical cumulative distribution of several 

assets returns with either a simulated Gaussian or a 

simulated stable distribution.  

As Table 8 shows we can generally reject the 

hypothesis of normality of factors' distributions at 

different levels of confidence considered. 

Analogously, we cannot generally reject the stable 

distribution hypothesis for factors' distributions at 

different levels of confidence considered. 

Comparing the results in Table 8 to those in Table 1, 

we observe that the Gaussian model is rejected in 

fewer cases in the i.i.d. model of factors than in the 

simple i.i.d. model of asset returns. 

The results in Table 9 show that the average KS

statistic across different energy futures equals about 

0.75, when FS(x) is the cumulative Gaussian 

distribution for the case of confidence level equal to 

0.05. When FS(x) is the cumulative stable 

distribution, the average KS statistic among different 

factors is about 0.20. The KS statistic for the stable 

non-Gaussian test is almost 5 times smaller than the 

KS distance in the Gaussian case. 

We notice from Figure 5 that all estimates of 

parameter  are less than 2. We see also from 

Table 9 that the third quartile for  is 

approximately 1.87. This implies that none of the 

factors is normally distributed.  

Some factors have negative estimate  as it can be 

seen from Figure 5. The mean of  is equal to        

-0.18 as in Table 9. This fact also confirms that the 

stable fit outperforms the Gaussian one. 

Table 8. Normality and stable distribution 

hypotheses for i.i.d. PCA model 

Confidence 
level 

95% 99% 99.9% 99.95% 99.99% 

% of energy 
futures prices 
for which the 
normal
distribution 
hypothesis is 
rejected 

75.07 73.20 73.78 72.97 72.51 

% of energy 
futures prices 
for which the 
stable 
distribution 
hypothesis is 
rejected 

19.98 21.09 20.70 21.60 20.40 

Table 9. Summary of statistics for sample of 18 

assets on i.i.d. PCA model 

KS distances 
(normal)

KS distances 
(stable) 

Mean 1.5749 -0.1786 0.7507 0.1988 

Median 1.5245 0.0130 0.7573 0.1428 

1 quartile 
(25%)

1.3897 -0.4025 0.7361 0.1092 

3 quartile 
(75%)

1.8660 0.0713 0.7613 0.3303 

In addition to the comparison between Tables 8 and 1, 

the stable distribution model is rejected in more cases 

in the i.i.d. PCA model than in the simple i.i.d. model. 
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It implies that the stable distributed innovations are 

accommodated in each energy price returns. It may 

partially support our assumption that the stable 

distributed innovations in price returns stem from the 

price spikes in that the price spikes occur due to the 

imbalance of supply and demand for each energy. 

Fig. 5. Scatter plots between index of stability  and 

skewness parameter  for 7 factors' series 

As a next step, we estimate the normal and stable 

GARCH(1,1) models for factors, obtained from the 

PCA. Table 10 shows the results of testing the 

normal and stable distribution hypotheses for stable-

GARCH(1,1) models of factors with normal and 

stable innovations, respectively. The results show 

that at the 95% confidence level, the hypothesis of 

normality is rejected for about 43% of assets 

residuals and the hypothesis of stable distribution is 

rejected only for about 8% of assets' residuals.  

Comparing the results in Table 10 to those in Table 3, 

we observe that the Gaussian model is rejected in more 

cases in the GARCH(1,1) model for factor series than 

in the GARCH(1,1) model for asset returns. 

Table 10. Normality and stable distribution 

hypotheses for GARCH(1,1)-PCA model 

Confidence 
level 

95% 99% 99.9% 99.95% 99.99% 

% of energy 
futures prices 
for which the 
normal
distribution 
hypothesis is 
rejected 

42.75 41.15 40.71 41.00 41.52 

% of energy 
futures prices 
for which the 
stable 
distribution 
hypothesis is 
rejected 

7.79 9.42 8.58 8.18 9.04 

A summary of the computed statistics for the 

residuals of the GARCH(1,1) model is reported in 

Table 11. The table shows that the average KS

statistic across different factors equals about 0.43, 

when FS(x) is the cumulative Gaussian distribution 

for the case of confidence level equal to 0.05. When 

FS(x) is the cumulative stable distribution, the 

average KS statistic among different factors is about 

0.08. The KS statistic for the stable non-Gaussian test 

is almost 5 times smaller than the KS distance in the 

Gaussian case. Generally, the results imply that the 

stable Paretian distribution is more adequate as a 

probabilistic model for the innovations compared to 

the Gaussian assumption. A plausible model for 

factors' returns is then a model that exhibits the 

properties of volatility clustering captured by 

GARCH process and heavy-tails captured with stable 

non-Gaussian innovations in the GARCH model.  

Table 11. Summary of statistics for sample of 18 
assets on GARCH(1,1)-PCA model 

KS distances 
(normal)

KS distances 
(stable) 

Mean 1.6614 -0.2458 0.4275 0.0779 

Median 1.6514 0.0213 0.4248 0.0554 

1 quartile 
(25%)

1.5755 -0.7642 0.3860 0.0535 

3 quartile 
(75%)

1.9001 0.0827 0.4424 0.0603 

Figure 6 shows the scatter plots of the estimated 

pairs of  and  for all factors' innovation series. 

We notice from Figure 6 that all estimates of 
parameter  are less than 2. We see also from 

Table 11 that the third quartile for  is 

approximately 1.90. This implies that none of the 
innovations is normally distributed.  

The majority of innovations have negative estimate 

 as it can be seen from Figure 6. The mean of 

is equal to about -0.24 as in Table 11. This fact also 
confirms that the stable fit outperforms the 
Gaussian one. 

In contrast to the comparison between Tables 10 and 
3, the stable distribution model is rejected in more 
cases in the GARCH(1,1)-PCA model than in the 
GARCH(1,1) model. It implies that the stable 
distributed innovations may be accommodated not 
only in principal component returns but also in each 
energy price returns. It may partially support our 
assumption that the stable distributed innovations in 
price returns stem from the price spikes in that the 
price spikes occur not only due to the events 
influencing whole energy markets such as wars and 
cold waves but also due to the imbalance of supply 
and demand for each energy such as shortage of 
natural gas storage. 

Comparing Tables 10 to 8, the stable distribution 
model is rejected in fewer cases in the 
GARCH(1,1)-PCA model than in the i.i.d. PCA 
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model. It implies that by removing heteroskedasticity 
from price returns, the stable distribution innovations 
are highlighted. It may support our assumption that 
the stable distributed innovations in price returns 
stem from the price spikes1.

As the last step, we have estimated ARMA(1,1)-

GARCH(1,1) model for factors as in Tables 12 and 13. 

In the simple setting of the i.i.d. returns model, we 

have estimated the values for the four parameters of 

the stable Paretian distribution using the method of 

maximum likelihood. Figure 7 shows the scatter 

plots of the estimated pairs of  and  for the 

innovations of GARCH(1,1) fit of residuals, 

obtained from ARMA(1,1) fit of factor series. 

Fig. 6. Scatter plots between index of stability  and 

skewness parameter  for innovations of GARCH(1,1) fit 

of 7 factors' series 

Table 12. ARMA(1,1)-GARCH(1,1) model for principal components 
ri pi qi,1 qi,2 qi,3 qi,4 qi,5 qi,6 qi,7

i = 1 0.007 0.190 0.085 0.170 0.126 0.154 0.026 -0.554 

i = 2 0.007 0.173 0.078 0.143 0.078 0.077 0.014 -0.094 

i = 3 0.006 0.157 0.072 0.135 0.071 0.033 0.001 0.032 

i = 4 0.006 0.144 0.066 0.130 0.065 0.009 0.000 0.103 

i = 5 0.006 0.134 0.062 0.124 0.061 -0.007 -0.003 0.154 

i = 6 0.005 0.126 0.058 0.119 0.055 -0.020 -0.005 0.188 

i = 7 0.020 0.549 0.103 -0.925 -0.197 1.395 0.408 0.528 

i = 8 0.022 0.515 0.142 -0.658 -0.132 0.408 0.119 -0.091 

i = 9 0.023 0.464 0.156 -0.502 -0.192 -0.059 -0.016 -0.183 

i = 10 0.024 0.426 0.160 -0.355 -0.232 -0.383 -0.094 -0.147 

i = 11 0.023 0.397 0.156 -0.251 -0.255 -0.535 -0.121 -0.069 

i = 12 0.023 0.373 0.144 -0.172 -0.252 -0.626 -0.134 0.003 

i = 13 0.003 0.030 -0.081 -0.067 0.144 0.003 -0.118 0.018 

i = 14 0.003 0.028 -0.073 -0.020 0.061 -0.035 0.026 -0.021 

i = 15 0.003 0.025 -0.065 0.000 0.017 -0.029 0.110 0.004 

i = 16 0.003 0.021 -0.051 0.017 -0.029 0.001 0.028 0.006 

i = 17 0.004 0.018 -0.044 0.021 -0.041 0.015 -0.028 -0.001 

i = 18 0.004 0.017 -0.041 0.021 -0.038 0.016 -0.040 -0.004 

Table 13. ARMA(1,1)-GARCH(1,1) model for 

principal components (cont’d)

fj aj,0 aj,1 bj, 1 0 1 1

j=1 0.0042 0.5373 -0.6056 0.07030 0.9059 0.0202 

j=2 -0.0073 0.7114 -0.7787 0.0371 0.8619 0.1047 

j=3 0.0070 0.3378 -0.3000 0.0513 0.9078 0.0421 

j=4 0.0468 -0.4911 0.3571 0.0356 0.7329 0.2425 

j=5 -0.0463 0.5192 -0.5566 0.4708 0.1682 0.5576 

j=6 0.1039 -0.7754 0.2478 0.1421 0 0.9999 

j=7 -0.0128 -0.2500 0.2048 0.5862 0 0.5913 

                                                     
1 In this case, the price spikes consist in the principal components.

A comparison between the Gaussian and stable 

hypotheses clearly indicates that stable distributions 

approximate the innovations' distribution much 

better than the Gaussian one. With KS test we can 

compare the empirical cumulative distribution of 

innovations with either a simulated Gaussian or a 

simulated stable distribution.   

The results in Table 14 show that we can generally 

reject the hypothesis of normality of innovations' 

distribution at different levels of confidence 

considered. Analogously, we cannot generally 

reject the stable distribution hypothesis for 

innovations’ distributions at different levels of 

confidence considered.  

Comparing the results in Table 14 to those in Table 

5, we observe that the Gaussian model is rejected in 

more cases in the ARMA(1,1)-GARCH(1,1) model 
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for factor series than in the ARMA(1,1)-GARCH(1,1) 

model for asset returns. 

Table 15 shows that the average KS statistic across 

different innovation series equals about 0.41, when 

FS(x) is the cumulative Gaussian distribution for the 

case of confidence level equal to 0.05. When FS(x)

is the cumulative stable distribution, the average KS

statistic among different innovation series is about 

0.10. The KS statistic for the stable non-Gaussian 

test is almost 4 times smaller than the KS distance in 

the Gaussian case.  

We notice from Figure 7 that all estimates of 

parameter  are less than 2. We see also from 

Table 15 that the third quartile for  is 

approximately 1.91. This implies that none of the 

innovation sequences is normally distributed.  

The majority of innovations have negative estimate 

 as it can be seen from Figure 7. The mean of 

is equal to about -0.23 as in Table 15. This fact also 

confirms that the stable fit outperforms the 

Gaussian one. 

In contrast to the comparison between Tables 14 and 

5, the stable distribution model is rejected in more 

cases in the ARMA(1,1)-GARCH(1,1)-PCA model 

than in the ARMA(1,1)-GARCH(1,1) model. It 

implies that the stable distributed innovations may 

be accommodated not only in principal component 

returns but also in each energy price returns. It may 

partially support our assumption, especially in the 

proposed model, that the stable ones stem from the 

price spikes in that the price spikes occur not only 

due to the events influencing whole energy markets 

but also due to the imbalance of supply and demand 

for each energy. 

Comparing Tables 14 to 10, the stable distribution 

model is rejected almost in the same way between in 

the ARMA(1,1)-GARCH(1,1)-PCA model and in the 

GARCH(1,1)-PCA model. It implies that the mean 

reversion as in ARMA effect does not affect the stable 

distributed innovations of principal components. 

Table 14. Normality and stable distribution 

hypotheses for ARMA(1,1)-GARCH(1,1)-PCA 

model 

Confidence level 95% 99% 99.9% 99.95% 99.99% 

% of energy futures 
prices for which the 
normal distribution 
hypothesis is rejected 

40.97 41.83 40.39 41.85 41.46 

% of energy futures 
prices for which the 
stable distribution 
hypothesis is rejected 

9.88 8.39 9.76 8.40 8.72 

Table 15. Summary of statistics for sample of 18 

assets on ARMA(1,1)-GARCH(1,1)-PCA model 

KS distances 
(normal)

KS distances 
(stable) 

Mean  1.6735 -0.2298 0.4097 0.0988 

Median  1.6514 0.0400 0.3928 0.0812 

1 quartile 
(25%)

1.5883 -0.7650 0.3820 0.0751 

3 quartile 
(75%)

1.9058 0.1143 0.4224 0.0603 

Our results show that the ARMA(1,1)-

GARCH(1,1)-PCA model with stable distributed 

innovations is more appropriate forecasting model 

for the PCA factors' series of energy futures prices 

than that with normal ones. In addition, the 

ARMA(1,1)-GARCH(1,1)-PCA model with stable 

distributed innovations is likely to be more desirable 

to model for energy futures than the ARMA(1,1)-

GARCH(1,1) model with stable distributed 

innovations in that the PCA model can incorporate 

not only the whole market price behavior of stable 

distributed innovations but also each energy one.   

Fig. 7. Scatter plots between index of stability  and 

skewness parameter  for innovations of ARMA(1,1)-

GARCH(1,1) fit of 7 factors' series 

2.4. Scenarios generation based on the asset price 

return model. By using the PCA, we determined 

that each series (i = 1,..., 18) of asset returns can be 

represented as a linear combination of 7 factors plus 

a small uncorrelated noise. Now, we have to 

generate the series of i = 1,..., 18 using the formula 

of factor models as in Eq. (1). In our model, I = 18, 

T = 812, and S = 7 are employed as the numbers of 

energy futures, observations, and principal 

components, respectively. 

The algorithm is as follows. We use the window of 

250 observations to estimate parameters and residuals 

of the factor model as in Eq. (2) and then to generate 

the factor returns' values and residuals' values for the 

next day as in Eq. (1). Here in the following we 

describe the method of return's generation for 251 day. 
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We consider the first 250 observations of returns of the 

each asset and the matrix of factor returns as 

independent variables1 to estimate parameters pi, qi,j

and the sequence of residuals ei,t. We also have the 

factor return series fj,t for the corresponding 250 days. 

For each j = 1,..., 7 we fit the ARMA(1,1)-

GARCH(1,1) model with stable innovations uj,t to the 

factor, respectively2. We fitted stable distribution into 

the sample innovations obtained from the 

ARMA(1,1)-GARCH (1,1)-fit: ûj,t. In the sample 

innovations of ûj,t for the corresponding 250 days, we 

fit a skewed t copula so as to capture their dependence. 

The results are illustrated as in Table 16. Note that 

i 's denote the asymmetry parameters for each 

component, i 's denote the location parameters for 

each component,  represents the degree of freedom, 

and  shows the modified covariance matrix. 

Table 16. Estimates of skewed t copula parameters 
f1 f2 f3 f4 f5 f6 f7

i -0.0542 -0.0671 -0.0116 0.0335 0.0236 -0.0157 -0.1251 

i 0.1108 0.1709 0.0245 -0.0785 0.0505 -0.0440 0.2471 

5 5 5 5 5 5 5

Here the covariance matrix is estimated as follows.  

We have already estimated the stable marginal 

distribution of any innovation: uj,t.

Then having estimated the stable distribution for each 

factor's innovations uj,t, we employ it in order to 

transform it into the uniform scenarios generated by 

the skewed t copula by taking the inverse of the fitted 

one-dimensional stable distribution functions. So, as a 

result, we have generated innovations zt at the date 251 

having skewed t copula as dependence and stable 

distributions for the marginals of the innovations (uj,t).

Now we can generate scenarios for the factors fj,t at 

date 251 using the estimated ARMA(1,1)-

GARCH(1,1) model for every fj,t with known 

coefficients and with known and generated 

innovations. So, having generated innovations of 

GARCH(1,1), i.e., values of zt, from skewed t
copula and the stable distribution for the marginal 

distributions and then using the estimated 

coefficients of the GARCH(1,1) model denoted by 

0 , 1 , and 1  as in Eq. (3), we'll obtain the 

returns of GARCH(1,1) denoted by t  in Eq. (3) for 

the next day. In addition, we know the coefficients 

of the ARMA(1,1) model as in Eq. (2). So, we have 

                                                     

1  The matrix of size is 250×7. 

2 We distinguish the notation of uj,t from zt, because u represents the 

stable innovation for each factor.

generated the factor returns of fj,t at date 251 fitting 

skewed t copula in the factor innovations and using 

stable marginal distributions for those innovations. 

Table 17. ARMA(1,1)-GARCH(1,1) stable 

distributed innovations 

ei ai,0 ai,1 bi, 1 0 1 1

i = 1 7.93E-06 0.113 -0.149 2.00E-07 0.871 0.062 

i = 2 -1.23E-05 -0.249 0.131 2.78E-07 0.892 0.036 

i = 3 -3.84E-06 0.556 -0.490 1.76E-07 0.835 0.066 

i = 4 3.37E-06 -0.528 0.623 4.15E-08 0.840 0.061 

i = 5 4.75E-05 -0.696 0.678 4.40E-07 0.000 0.318 

i = 6 5.44E-05 -0.659 0.609 2.00E-07 0.834 0.071 

i = 7 3.23E-05 0.529 -0.530 4.03E-06 0.000 1.000 

i = 8 1.60E-04 -0.874 0.821 3.86E-06 0.019 0.935 

i = 9 4.35E-05 -0.917 0.890 8.19E-06 0.099 0.000 

i = 10 2.65E-05 -0.941 0.900 2.00E-07 0.954 0.000 

i = 11 -8.66E-06 -0.868 0.837 2.48E-06 0.233 0.000 

i = 12 2.77E-06 0.251 -0.317 8.70E-06 0.356 0.000 

i = 13 -4.71E-04 -0.992 1.000 5.04E-07 0.466 0.534 

i = 14 2.17E-04 0.150 -0.466 1.17E-06 0.493 0.507 

i = 15 -1.24E-06 0.766 -0.943 6.36E-07 0.735 0.265 

i = 16 6.85E-04 -0.881 0.898 5.21E-06 0.000 1.000 

i = 17 -2.82E-07 0.749 -0.726 1.29E-06 0.602 0.000 

i = 18 4.63E-07 0.593 -0.514 4.36E-06 0.469 0.000 

0.591275  0.155343  0.119897  0.244183  -0.168410  0.065424  0.239456 

0.155343  0.575963  0.037945  0.240159   0.116046  0.034315  -0.085000 

0.119897  0.037945  0.595065  0.041207  -0.039040  0.044453  -0.079760 

0.244183  0.240159  0.041207  0.587961   0.043619  0.094310  0.090417 

0.168410  0.116046 -0.039040  0.043619   0.595625 -0.053620 -0.102840 

0.065424  0.034315  0.044453  0.094310  -0.053620  0.911118 -0.015520 

0.239456 -0.085000 -0.079760  0.090417 -0.102840 -0.015520  0.549806 

ˆ
.
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Going back to our PCA model, using Eq. (1), we 

have 250 sample residuals ei,t for every i = 1,..., 18 

based on the first 250 observations. We fit in each 

individual series ei,t the stable innovations and 

generate scenarios for ei,251. This scenario generation 

is done independently for every i and also 

independently of the factor-innovations generations 

not by applying skewed t copula but by fitting the 

-stable distribution on individual series of e.

We finally calculate the value of the return ri,t as in 

Eq. (1) for every asset on the next day, i.e., 251 day, 

by using the estimated parameters of pi and qi,j, the 

generated values of factor returns fj,t, and the 

generated value of the small uncorrelated noise ei,t.

In this way, we can generate the price returns of 

each energy futures with 3 types of energy and 6 

different maturities. 

2.5. Portfolio selection based on the price return 

model. By using the simulations of energy futures 

price returns, we obtain the winner and loser 

portfolios for energy futures. As the winner portfolio, 

we introduce the maximization of the STARR ratio 

for energy futures portfolio. The details are illustrated 

in Appendix C. In contrast, as the loser portfolio we 

employ the average weighted portfolio of energy 

futures prices. The realized portfolio wealth and total 

return of winner and loser portfolios are illustrated in 

Figures 8 and 9, respectively. Note that the wealth is 

defined as )1(1 i

n

i r .

Fig. 8. Realized wealth of winner and loser portfolios 

Figure 8 illustrates that the realized wealth of the 

winner portfolio almost exceeds that of the loser one 

except time around 270 and 470. In addition, Figure 9 

illustrates that the realized total returns of the winner 

portfolio are more than those of the loser one except 

the same periods. Figures 8 and 9 imply that the 

STARR based portfolio, i.e., the winner portfolio, can 

generate more profit than the equally weighted 

benchmark portfolio, i.e., the loser portfolio, as long 

as judging from the simulation results. 

Fig. 9. Realized total return of winner and loser portfolios 

Additionally, we also conduct another simulation. The 

results of two simulations are tabulated in Table 18. 

Table 18. The results of simulations 

Simulation 1 Simulation 2

Measures
Values

(daily, 
%)

Relative

difference 

Values

(daily, 
%)

Relative

difference 

Benchmark 

Average
mean
return

0.107 0.191 0.106 0.179 0.090 

Estimated 
ETL (99%) 

3.471 -0.418 3.493 -0.414 5.961 

STARR
(99%)

3.085 1.046 3.033 1.011 1.508 

Estimated 
standard 
deviation 

0.862 -0.535 0.861 -0.535 1.852 

Sharpe
Ratio

12.424 1.559 12.312 1.536 4.855 

Note that the relative difference is defined by the 

ratio of the value of simulation minus that of 

benchmark over the value of benchmark. 

Table 18 suggests that STARR ratios of the two are 

3.085 and 3.033, respectively and they are greater 

than that of benchmark of 1.508. Thus, the 

performance of the winner portfolios in energy 

futures markets by using the STARR ratio is likely 

to be better than that of loser portfolio by using the 

average return, as long as we employ the data in this 

paper.

Judging from Sharpe ratios as in Table 18, two 

simulations perform better than the benchmark with 

the relative differences of 1.559 and 1.536, 

respectively. On the other hand, from STARR ratios 

as in Table 18, two simulations perform better than 

the benchmark only with the differences of 1.046 

and 1.011, respectively. The differences come from 

the risk measures: the standard deviation for the 

Sharpe ratio on one hand, and the ETL for the 

STARR ratio on the other hand. The standard 
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deviation captures the risk of the portfolio by 

assuming that the price returns follow normal 

distributions, while the ETL does it by assuming 

that they do not necessarily follow normal ones. 

Thus, the estimated standard deviations evaluate the 

portfolio risk less than the estimated ETLs. Taking 

into account that price returns of energy futures 

have the stable distributed innovations, the STARR 

ratio may be more appropriate than the Sharpe ratio. 

It leads to the usefulness of the STARR ratio so as 

to obtain higher performance portfolio than the 

average in energy markets appropriately. 

Conclusions and directions for future research 

This paper has examined the portfolio optimization 

of energy futures by using the STARR ratio that can 

evaluate the risk and return relationship for skewed 

distributed returns. We have modeled the price 

return for energy by using the ARMA(1,1)-

GARCH(1,1)-PCA model with stable distributed 

innovations that reflects the characteristics of 

energy: mean reversion, heteroskedasticity, 

seasonality, and spikes. Then, we have proposed the 

method for selecting the portfolio of energy futures 

by maximizing the STARR ratio. The empirical 

studies by using energy futures prices of WTI crude 

oil, heating oil, and natural gas traded on the 

NYMEX have compared the price return models 

with stable distributed innovations to those with 

normal ones for energy futures. We have show that 

the models with stable distributed innovations are 

more appropriate for energy futures than those with 

normal ones. In addition, we have offered some 

arguments that the stable innovations may come 

from price spikes in energy futures markets. Then, 

we generate the price returns by using the proposed 

ARMA(1,1)-GARCH(1,1)-PCA model with stable 

ones and choose the portfolio of energy futures. The 

results have illustrated that the selected portfolio 

performs better than the average weighted portfolio. 

It implies that the STARR ratio may work well in 

selecting the winner portfolio of energy futures. 

This paper did not examine the performance of the 

long and short trading strategy in order to focus on 

the method for selecting the winner portfolio in 

energy futures markets. We leave it to the direction 

for our future research. 
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Appendix A. -stable distribution 

The log-returns of energy prices are well known for having high skewness and kurtosis. So it is difficult to model such time 
series appropriately by using the normal distribution. -stable distribution is often introduced as a tool to model such high 

skewness and kurtosis. Unfortunately, it does not have distribution function and density in closed form. Stable distributions 
are introduced by their characteristic function as follows, 

,1,|)|log)sgn(
2

1(||

1,))
2

tan()sgn(1(||
)(log

tittit

titit
tF                  (A1) 

where F(t) denotes the characteristic function of the stable law: 

dx
x

fetF itx 1
)( .                         (A2) 

The parameter  describes the kurtosis of the distribution with 20 . The smaller  is, the heavier is the tail of the 

distribution. The parameter  describes the skewness of the distribution, 11 . If  is positive (negative), then the 

distribution is skewed to the right (left).  and  are the shift and scale parameters, respectively. If  and  equal 2 and 

0, respectively, then the -stable distribution reduces to the normal one. 

Appendix B. The algorithm 

In the beginning, knowing the number of observations N (N = 812) and return series Rt
i, we determine coefficients a

and b of the ARMA(1,1) model: tttt bRaaR 11110 . Then, for that purpose we have to solve the system 

of equations: 
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If parameters a and b are found, we perform the next steps. We, then, restore empirical values of residuals )( t

from the ARMA(1,1) model: tttt bRaaR 11110  based on found coefficients a and b:

11110 tttt bRaaR .  (B4) 

After we have found the residuals from ARMA(1,1), we finally apply the GARCH(1,1) model for them, obtain 
innovations and check the hypotheses for normality and stability for the innovations of the GARCH(1,1) model of the 
residuals from the ARMA(1,1) model. We determine parameters of stable distribution for the sequence of innovations: 

is the index of stability ( ]2,0( ),  is the skewness parameter ( ]1,1[ ),  is the scale parameter 

( R ), and  is the shift parameter ( R ).

Appendix C. Optimization problem solving for energy futures 

)(max )( p

z
rSTARR
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where zpl is the weight of asset l in the portfolio of n assets, r (p) is the total random return of the portfolio consisting of 

n assets: lpl

n

l

p rzr 1

)(
, where rl is the random daily return of asset l, lpl

n

l

pp RzrER 1

)()( )(  is the total 

expected (daily) return of the portfolio of n assets, where Rl represents mean return (expected value of rl-vector of 
dimension equal to 250 working days), and n is set to 18 such that zpl > 0 where zpl is the weight of individual asset l in 
the portfolio of n assets: 

n

l

plp zz
1

1 , (C7) 

n = 18. (C8)
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