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We developed a panel-based NGS pipeline for comprehensive analysis of 340 genes
involved in absorption, distribution, metabolism and excretion (ADME) of drugs, other
xenobiotics, and endogenous substances. The 340 genes comprised phase I and
II enzymes, drug transporters and regulator/modifier genes within their entire coding
regions, adjacent intron regions and 5′ and 3′UTR regions, resulting in a total panel
size of 1,382 kbp. We applied the ADME NGS panel to sequence genomic DNA from
150 Caucasian liver donors with available comprehensive gene expression data. This
revealed an average read-depth of 343 (range 27–811), while 99% of the 340 genes
were covered on average at least 100-fold. Direct comparison of variant annotation
with 363 available genotypes determined independently by other methods revealed an
overall accuracy of >99%. Of 15,727 SNV and small INDEL variants, 12,022 had a minor
allele frequency (MAF) below 2%, including 8,937 singletons. In total we found 7,273
novel variants. Functional predictions were computed for coding variants (n = 4,017) by
three algorithms (Polyphen 2, Provean, and SIFT), resulting in 1,466 variants (36.5%)
concordantly predicted to be damaging, while 1,019 variants (25.4%) were predicted to
be tolerable. In agreement with other studies we found that less common variants were
enriched for deleterious variants. Cis-eQTL analysis of variants with (MAF≥ 2%) revealed
significant associations for 90 variants in 31 genes after Bonferroni correction, most of
which were located in non-coding regions. For less common variants (MAF < 2%),
we applied the SKAT-O test and identified significant associations to gene expression
for ADH1C and GSTO1. Moreover, our data allow comparison of functional predictions
with additional phenotypic data to prioritize variants for further analysis.
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INTRODUCTION

Genetic variation in genes that function in the absorption,
distribution, metabolism, and elimination (ADME) of drugs
contributes significantly to the interindividual variability in
efficacy and toxicity of numerous drugs from practically all
therapeutic categories. In the past half century, pharmacogenetic
research has unraveled many clinically meaningful associations
between germline genetic variants and pharmacokinetic or
drug response phenotypes (Meyer, 2004; Zanger and Schwab,
2013; Alfirevic and Pirmohamed, 2017). Clinical implementation
of this knowledge is currently being pursued worldwide by
several consortia (Caudle et al., 2013; Dunnenberger et al.,
2015; Relling and Evans, 2015; Cecchin et al., 2017; Swen
et al., 2018). For example, the Clinical Pharmacogenetics
Implementation Consortium (CPIC) has so far issued 65
dosing guidelines for 38 drugs and 15 relevant genes (October
20181). Until recently, pharmacogenetics has mainly focused
on common genetic variants, which can be relatively easily
assessed for association with pharmacokinetic or drug response
phenotypes. However, a considerable proportion of genetic
variability remains unexplained even for well-studied genes like
CYP2D6, as recently shown by twin studies (Matthaei et al.,
2015). Currently, it is widely assumed that rare deleterious
variants fill this gap and contribute significantly to functional
variability, which is further supported by the fact that rare
variants are enriched for deleterious alleles due to purifying
selection (1000 Genomes Project Consortium et al., 2012;
Lek et al., 2016; Ingelman-Sundberg et al., 2018). Indeed,
with the increasing availability of next-generation-sequencing
(NGS) technology, several studies explored genetic variability
of pharmacologically relevant “pharmacogenes” and revealed
large numbers of rare variants, most of which were previously
unknown (Tennessen et al., 2012; Fujikura et al., 2015; Han
et al., 2016; Kozyra et al., 2016; Hovelson et al., 2017;
Schärfe et al., 2017). For statistical reasons it is intrinsically
more difficult to investigate the functional significance of
rare variants as compared to common variants, especially
regarding pharmacogenetic phenotypes, for which studies
including relevant phenotypic data are essentially lacking. On
the other hand, in vitro testing of thousands of variants is
currently prohibitive for time and financial reasons. Current
hopes to integrate rare variants into clinical pharmacogenomics
therefore rely mainly on computational prediction tools, many
of which are publically available (Ingelman-Sundberg et al.,
2018; Zhou et al., 2018a). Computational predictions of
“damaging” or “loss-of-function” (LOF) versus “tolerable” (TOL)
functionality performed on ADME rare variants detected in
genetic screens indicated that up to 30% of drug response

Abbreviations: ADME, Absorption Distribution Metabolism Excretion; bp,
basepair; CNV, copy number variant; eQTL, expression quantitative trait
loci; HWE, Hardy–Weinberg equilibrium; INDEL, insertion/deletion; Kbp, kilo
basepair; LOF, loss of function; MAF, minor allele frequency; NGS, next
generation sequencing; RFLP, restriction fragment length polymorphism; SNP,
single nucleotide polymorphism; SNV, single nucleotide variant; TOL, tolerated;
UTR, untranslated region.
1www.pharmgkb.org/guidelines

variability could be due to rare variants and that likely
every patient carries at least one “actionable” pharmacogenetic
variant (Crosslin et al., 2015; Ji et al., 2016). However, data
on the validity of functional prediction are scarce and their
performance as well as the true contribution of rare variants
to pharmacogenetics variability remains unclear, especially since
current predictive algorithms rely largely on principles of
evolutionary conservation, which may be more appropriate
in the context of disease than for drug metabolism and
response.

In this study we have developed a panel-based NGS pipeline
for comprehensive sequence analysis of 340 ADME genes
comprising all major genes known to be involved in phase 1
and phase 2 drug metabolism, drug transport and its regulation,
as well as numerous additional genes of potential interest in
this context. We applied our ADME NGS panel on genomic
DNA from 150 human liver samples that we have previously
genotyped by other methods and for which comprehensive
mRNA expression data and some additional ADME phenotypes
are available. This allowed us to directly compare genotype with
expression for common and rare variants, unraveling numerous
novel associations and potential candidates. In addition, we
performed functional prediction for subsets of variants and
exemplarily compared these with hepatic phenotype. This type
of analysis, which has rarely been done, should be helpful to
improve functional prediction and allow to prioritization of
interesting rare variants for further analysis.

MATERIALS AND METHODS

Patient DNA and Liver Samples
Liver tissues and corresponding blood samples were previously
collected from patients of White European descent undergoing
liver surgery at the Department of General, Visceral, and
Transplantation Surgery (A. K. Nuessler, P. Neuhaus, Campus
Virchow, University Medical Center Charité, Humboldt
University Berlin, Germany) (Klein et al., 2012). The study
protocol was approved by the ethics committees of the medical
faculties of the Charité, Humboldt University, and the University
of Tübingen. The study was conducted in accordance with the
Declaration of Helsinki, and written informed consent was
obtained from each patient. Only non-tumorous tissue was
collected, as confirmed by histological examination, and stored
at −80◦C. Available patient documentation includes sex, age,
smoking habits, alcohol consumption, presurgery medication,
diagnosis leading to liver resection, and serological liver function
parameters. Samples from patients with hepatitis, cirrhosis, or
chronic alcohol abuse were excluded. A summary of the data is
presented in Supplementary Table S1.

Phenotypic data were available from previous studies.
Genome-wide mRNA expression profiling was previously
performed using Illumina Human-WG6v2 Expression BeadChip
(see below). For selected genes quantitative mRNA levels were
determined by real-time PCR, protein levels by Western blot,
and enzyme activity levels by mass spectrometry (Supplementary
Table S2).

Frontiers in Genetics | www.frontiersin.org 2 January 2019 | Volume 10 | Article 7

http://www.pharmgkb.org/guidelines
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00007 January 29, 2019 Time: 16:59 # 3

Klein et al. NGS Analysis of ADME Genes

Genomic DNA was isolated from corresponding blood
samples as described previously (Gomes et al., 2009). Quality
and concentration of gDNA were determined using both, the
Qubit Fluorometric Quantitation (Thermo Fisher Scientific,
Dreieich, Germany) and Nanodrop ND-8000 (Thermo Fisher
Scientific, Dreieich, Germany). Gene expression and genotyping
data assessed by Human-WG6v2 Expression BeadChip and
HumanHap300 Genotyping BeadChip (Illumina, Eindhoven,
Netherlands) were preprocessed as previously described
(Schröder et al., 2013) and the data are accessible through GEO
Series accession numbers GSE32504 and GSE39036, respectively.

Targeted ADME NGS Panel Sequencing
Genomic DNA was enriched using a custom design Agilent
SureSelect XT in-solution kit (Agilent Technologies, Santa
Clara, CA, United States). The design of the PGX panel
for all relevant ADME classified and ADME related genes
(340 genes in total) included publically available gene lists of
PharmaADME.org2 (CORE/EXTEND, n = 236), pharmGKB3

(Whirl-Carrillo et al., 2012); [very important pharmacogenes
(VIP), n = 36], as well as additional genes with confirmed or
putative ADME-related function according to literature search
(n = 104; Supplementary Table S2). For analysis, the genes
were assorted into functional groups as follows: ATP-binding
cassette transporters (ABC; n = 45), solute carrier transporters,
solute carrier organic anion transporters, and ion channels
(SLC/SLCO; n = 64), members of phase I metabolism excluding
cytochrome P450 and other modifying enzymes (Phase1: n = 36),
members of phase II metabolism (Phase 2; n = 53), cytochrome
P450s/modifying enzymes (CYP/modifiers; n = 53), nuclear
receptors/transcription regulators (NR/TR; n = 46), and genes
of other background and potentially related to ADME (others;
n = 43) (Figure 1B and Supplementary Table S2). Positions
of exon regions, 3′ and 5′ UTR (untranslated regions) were
based on RefSeq major transcripts sequences (GRCh37; hg19;
UCSC genome browser). Exon sizes were extended by 20
nucleotides on each side. Sequence of very short exons was
symmetrically increased to at least 160 nucleotides. For selected
genes 5′ regions were extended to cover 2 kbp (n = 29). The
total number of exons was 4,210 and total target size reached
1,382 kbp (Supplementary Table S2). Panel details are available
on demand.

Target capturing was specifically designed for NGS of selected
regions and DNA libraries were generated using Agilent in-
solution target capture technology from up to 1 µg high quality
genomic DNA for each sample. NGS was carried out on the
Illumina HiSeq2500 system (Illumina Inc., San Diego, CA,
United States) at high depth with 2 × 100 bps paired-end reads.
Raw sequencing reads generated by the Illumina platform were
demultiplexed using Illumina bcl2fastq (1.8.2) (Illumina, San
Diego, CA, United States). Adapter sequences were removed with
cutadapt and the trimmed reads mapped to the human reference
genome (GRCh37 hg19) using the Burrows Wheeler Aligner
(BWA-mem 0.7.2; Li and Durbin, 2010). Reads mapping to more

2http://pharmaadme.org
3https://www.pharmgkb.org/

than one location with identical mapping scores were discarded
(in house software). Read duplicates likely resulting from PCR
amplification were removed (samtools 0.1.18). Variants were
called using samtools and varscan (2.3.5)4. Technical artifacts
were removed (in-house software) and the remaining variants
were annotated based on several internal and external databases.
We created a read count matrix for sequenced targets and
150 samples using the R package cn.mops.1.12.0 and the BAM
files to assess the quality of coverage per gene and per target
region. Approximately 5.9 million on target reads were generated
per sample with a mean mapping quality of 58.2 and a mean
coverage of 343 per target site. A Frequentist or a Bayesian
algorithm was applied to call SNVs and small insertions/deletions
(INDELs). Detection of insertions is limited by read length and
no insertions above 50 bp were observed. Variant annotations
were retrieved from UCSC genome data browser5, dbSNP
build151 (March 22, 2018), and Sequence Ontology (SO) terms
to describe the effect of each variant on genes in terms of
transcript structure. Enrichment and sequencing procedure were
established, validated, and provided by CeGaT GmbH, Tübingen,
Germany. CeGaT is accredited by DAkkS according to DIN EN
ISO 15189:2014, by the College of American Pathologists (CAP)
and CLIA-certified (Dohrn et al., 2017). Sequence variant data
has been deposited at the European Genome-phenome Archive
(EGA), which is hosted by the EBI and the CRG, under accession
number EGAS00001003426. Further information about EGA
can be found on https://ega-archive.org (Lappalainen et al.,
2015).

High Quality Variants
Only variants within the predefined target regions were selected
and further analyzed (n = 16,928). Variant calls with sequencing
coverage below 20× were regarded as invalid. Moreover,
heterozygous calls were regarded as invalid when variant allele
ratios were <5%. Invariant positions and variants with less than
70% valid values in all samples were excluded. Furthermore,
696 variants with HWE p-values < 10−5 were considered
suspicious and consequently excluded from all subsequent
analyses. Finally, 13,838 SNVs and 1,889 INDELs were further
investigated in this work. Genedata Profiler Analyst Module
(V12.0.2.; Genedata AG, Basel, Switzerland) and GraphPad Prism
(V5.04; GraphPad Software Inc., La Jolla, CA, United States)
were used for data filtering, visualization, and basic statistical
calculations.

Global Validation
Evaluation of ADME panel sequencing data was performed by
direct comparison of sample genotypes to available genome
wide SNP data (Illumina HumanHAP300 SNP; GEO Series
accession number GSE39036; Schröder et al., 2013) as well as
genotype data of 87 individual SNVs determinations obtained
with several other genotyping methods in former studies (RFLP,
Sanger sequencing, TaqMan allelic discrimination, MALDI-TOF,
and other arrays) from the same sample set. Array variant data

4http://dkoboldt.github.io/varscan
5https://genome.ucsc.edu/cgi-bin/hgVai
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FIGURE 1 | Study overview. (A) Schematic overview of the workflow for the ADME NGS panel sequencing. cov, coverage; NAF, novel allele frequency; HWE,
Hardy–Weinberg equilibrium; MAF, minor allele frequency; eQTL, expression quantitative trait loci. (B) Composition of ADME NGS target genes displayed in % of
total number (n = 340). Number of target genes within a family is given in brackets. Sum of target size is given in kbp. Major functional classes were defined as Phase
1, phase 1 enzymes; CYP/modifiers, cytochrome P450 and modifying enzymes; Phase 2, phase 2 enzymes; ABC, ABC transporters; SLC/SLCO, SLC/SLCO
transporters and ion channels; NR/TR, nuclear receptors and transcriptional regulators; Others, other genes. For further details see Supplementary Table S1.
(C) Ideogram of the genes included in ADME NGS panel. Target genes (n = 340) are denoted by red arrows besides chromosomes (GRCh37).

were “lifted” to GRCh37 (hg19), and only SNVs within the
target regions defined above and with HWE p-value > 10−5

were extracted (n = 276). Finally, genotype data for 363 variants
were available for validation. Concordance of genotype data
from ADME NGS and results from orthogonal methods was
evaluated by computing percentage of identical genotype calls
over all variants and samples. Variant positions within the
above defined target boundaries were extracted from publically

available databases from the Exome Aggregation Consortium
ExAC6 (Lek et al., 2016) and 1000 Genomes project7 (1000
Genomes Project Consortium et al., 2015). In total, 11,558
and 68,918 variants were retrieved in the demanded genomic
regions from 1000G and ExAC, respectively. Chromosomal

6http://exac.broadinstitute.org/
7http://www.internationalgenome.org/
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position and nucleotide change (reference/alternative) were
used to identify corresponding variants in the ADME NGS
panel data. After adjusting frequency data to MAF numbers
ranging between 0 and 50%, MAF from European (EUR,
1000G) or non-Finnish European (NFE, ExAC) were compared
to observed MAF from our cohort. In addition, several well
known variants in CYP2D6, CYP2C9, CYP2C19 and CYP2B6,
NAT2 and DPYD were confirmed by Sanger sequencing.
A concordance of 100% was observed covering 57 SNVs in 19
samples.

In silico Prediction
The impact of coding variants on protein function was
predicted using Polyphen 2 (PP28 Adzhubei et al., 2013) as
well as the Provean Human Genome Variants tool [Protein
Variation Effect Analyzer (PROV)9; Choi et al., 2012], providing
Provean and in addition SIFT (Sorting Intolerant from Tolerant;
Sim et al., 2012) scores. All algorithms are based, among
other features, on sequence conservation and were used
with default settings. For a total of 4,017 coding variants
including missense (n = 3,893), frameshift (n = 37), initiator
codon (n = 7), stop codon (n = 46) and other coding
variants (Table 1), prediction was performed using chromosomal
genomic positions, reference and variant nucleotide. Functional
predictions of the type LOF versus tolerated (TOL) was
retrieved from Provean (cutoff 2.5; deleterious/neutral), SIFT
(cutoff 0.05; damaging/tolerated) and Polyphen2 (probably
and possibly damaging/benign). It must be pointed out that
frameshift variants (n = 37) as well as mutations of stop
codons (gain/loss; n = 46) are not predictable by these
tools.

Cis-eQTL Analyses
Cis-eQTL analysis between the 15,727 variants (13,838 SNVs and
1,889 INDELs) and their corresponding gene were performed

8http://genetics.bwh.harvard.edu/pph2/
9http://provean.jcvi.org/index.php

with statistical software R-3.5.0 (R Core Team, 2018) and
additional packages SNPassoc (v1.9-2; González et al., 2014),
SKAT (v1.3.2.1; Lee, 2017), and illuminaHumanv2.db (v1.26.0;
Dunning et al., 2015).

mRNA expression levels were assessed by Human-WG6v2
Expression BeadChip (Illumina, Eindhoven, Netherlands) and
preprocessed as described (Schröder et al., 2013). Probe sets
were re-annotated using the R package illuminaHumanv2.db
(Dunning et al., 2015). Only probe sets with “good” or “perfect”
probe quality as defined by illuminaHumanv2fullReannotation
were considered for the eQTL analyses. Of the 340 ADME and
ADME related genes described above, 303 genes (89%) were
represented on the Human-WG6v2 Expression BeadChip with
at least one “good” or “perfect” probe set. If several “good” or
“perfect” probe sets were annotated to a gene, data of these
entire probe sets (i.e., log2 normalized expression signals) were
averaged, finally resulting in an expression matrix of size 303
genes × 150 samples for the eQTL analyses. Of the 15,727
variants, 14,294 (90.9%) were annotated to one of the 303 genes.

For individual eQTL analyses, only variants with MAF ≥ 2%
and annotated to one of the 303 genes (n = 3,241) were
considered, in order to avoid testing variants with very few
minor allele carriers (a MAF ≥ 2% in 150 patients corresponds
to at least 3 minor allele carriers; in our dataset, all variants
with MAF ≥ 2% actually comprised at least 4 minor allele
carriers). For 8 of the 303 genes, only variants with MAF < 2%
were annotated in the ADME NGS panel (ABCB9, ALDH2,
CYP11A1, GSTK1, GSTM1, GSTT1, PRMT1, and SULT1A4),
leaving 295 genes and 3,241 variants for individual cis-eQTL
analyses. These analyses were performed using the generalized
linear model framework of R-package SNPassoc (González et al.,
2014), considering four different genetic models: codominant,
dominant, recessive, and additive. Only the minimal p-value of
the four genetic models for each SNP was reported. Besides
univariate analyses, cis-effects of variants on mRNA expression
were analyzed controlling for 10 covariates [sex, age, smoking,
alcohol consumption, diagnosis, C-reactive protein (CRP) level,
cholestatic liver disease, presurgical medication (no drugs, P450

TABLE 1 | Structural classification of ADME panel variants (n = 15,727).

Coding (n = 6,058; 38.5%) Non-coding (n = 9,669; 61.5%)

Classa Variant Variant Classa Variant Variant

(knownb) (novelb) (knownb) (novelb)

Initiator_cod 3 4 Upstream 476 359

Missense 1,610 2,283 5′UTR 501 499

Stop_gained 22 22 Non-coding exon 95 34

Stop_lost 2 Intron 1,166 1,441

Synonymous 1,219 764 Splice 296 520

Inframe 29 28 3′UTR 2,922 1,261

Frameshift 19 18 Downstream 68 31

Other codingc 26 9

Total 2,930 (48%) 3138 (52%) Total 5,524 (57%) 4,145 (43%)

aClassification nomenclature according to ENSEMBLE variation sequence ontology terms. bKnown/novel: with/without dbSNP database identifier. c Including: coding-
exon-variant, stop-retained.
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FIGURE 2 | Variability of gene families. (A) Distribution of known and novel
variants in ADME gene families. The numbers of observed known and novel
variants (including SNVs and INDELs) per gene are shown for the seven major
functional classes of ADME genes defined in Figure 1. Open boxes, known
variants; filled boxes, novel variants; boxes show median with 75th and 25th
percentiles and whiskers represent 10th and 90th percentiles. Lower part:
statistical significance calculated by Kruskal–Wallis with Dunn’s multiple
comparison test of total number of variants per genes between family groups:
∗P ≤ 0.05, ∗∗∗P ≤ 0.001. (B) Functional categorization of variants. Total
number and proportion of variants observed in each functional class is shown
separately for known and novel variants. Functional classes are defined as
follows: 5′UTR, upstream and 5′ untranslated region; MIS, initiator codon,
missense and stop codon variants; SPLICE, variants in consensus splice site
acceptor and donor regions; 3′UTR, downstream and 3′ untranslated region;
OTHER, other functional classes (intronic, frameshift, synonymous, other
coding and non-coding variants). (C) Comparison of minor allele frequencies

(Continued)

FIGURE 2 | Continued
(MAF) between novel and known observations. Total number of known
observations with dbSNP identifier (open white bars; n = 8,454), novel
observations (filled purple bars; n = 7,273); dotted line marks MAF = 2
and 5%.

inducer and other drugs), serum total bilirubin (TBILI) level,
and serum gamma glutamyl transferase (GGT) level; see further
details in Supplementary Table S1]. We used the Bonferroni
method for multiple testing correction and set the significance
level at 0.05/3,241 = 1.54E-05.

Moreover, we performed combined cis-eQTL analyses of
the rare variants (MAF < 2%; n = 11,053) using the optimal
unified association test framework for sets of variants (SKAT-
O; Lee et al., 2012) implemented in R-package SKAT. To
be more precise, for each of the 303 genes, the association
of the set of all rare variants annotated to this gene and
the corresponding mRNA expression data was investigated
applying the SKAT-O test with standard weights. The
same 10 covariates as in the eQTL analysis of common
variants were used for an analogous multivariate SKAT-O
analysis. For combined cis-eQTL analysis of rare variants, the
Bonferroni-corrected significance level was set to 0.05/303 =
1.65E-04.

RESULTS

Development and Performance of the
Targeted ADME NGS Panel
Figure 1A gives an overview of the project workflow. The
selection of genes was based on the PharmaADME.org gene
lists “core” and “extend” and the PharmGKB VIP genes and
was complemented with numerous additional genes of potential
relation to drug metabolism (Figure 1B). All 340 genes finally
included were targeted for all exons, exon/intron boundaries,
as well as 5′ and 3′UTRs. An extended 5′ region of 2 kb was
included for a group of 29 selected genes. The total panel
size comprised 1,382 kbp distributed over all chromosomes
except the Y chromosome (Figure 1C and Supplementary
Table S2). In our cohort of 150 liver samples, the gene target
regions were covered to a mean read-depth of 343× (25th
percentile = 265; 75th percentile = 398; Supplementary Figure
S1A). More than 98% of the target regions were covered
at more than 30×. The highest coverage was obtained for
UGT2B11 (average 811), while GSTT2B showed the lowest
average coverage of 27. These discrepancies did not hinder our
analysis and can be resolved in a further iteration of design.
Overall, 99% of the genes were covered on average at least
100-fold. Direct comparison of variant annotation with 363
available genotypes determined independently by other methods
revealed an overall concordance of >99% (Supplementary
Figure S2). The accuracy obtained with data derived from
the Illumina HumanHap300 genotyping platform (99.3%)
was slightly lower compared to data from other genotyping
methods (99.6%), which may be due to inaccurate genotype
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TABLE 2 | eQTL analysis: Significant associations from multivariate regression models after Bonferroni correction (only minimal p-values of four genetic models used are
listed).

Gene Varianta dbSNP151 Functional class Minimal p-valueb

ABCA5 17_67242245_G_A rs12942867 3′UTR 1.20E-08 A

17_67242551_AG_A rs321469 3′UTR 1.20E-08 A

17_67242756_G_A rs1990248 3′UTR 9.00E-08 A

17_67243289_A_T rs15886 3′UTR 1.20E-08 A

17_67260926_A_G rs12449649 Synonymous 1.00E-08 A

17_67267317_T_C rs557491 Missense 1.10E-07 A

17_67282332_T_C rs1550828 Intron 1.00E-08 A

ABCC11 16_48250011_G_A rs11863233 Intron 6.90E-11 A

16_48250026_G_T rs11863236 Missense 6.90E-11 A

16_48250218_T_C rs28654935 Intron 6.90E-11 A

16_48256602_T_C rs16945974 Synonymous 6.90E-11 A

16_48265777_C_T rs16945988 Missense 6.90E-11 A

16_48269120_TAGAGATGCAA_T rs398088092 Upstream 3.20E-10 C

16_48269140_AAGAGATGCAA_A Upstream 1.80E-09 A

16_48269561_A_G rs10521167 Upstream 6.90E-11 A

16_48269918_T_C rs16946006 Upstream 6.90E-11 A

16_48270429_C_T rs9926206 Upstream 6.90E-11 A

16_48270508_T_C rs9934833 Upstream 6.90E-11 A

16_48270574_A_G rs9932328 Upstream 6.90E-11 A

AOC1 7_150553605_C_T rs10156191 Missense 8.50E-06 A

7_150555915_A_G rs10893 Synonymous 3.40E-08 R

7_150557622_G_A rs12179 Synonymous 6.50E-09 R

7_150557665_C_G rs1049793 Missense 6.50E-09 R

7_150558366_C_T rs12539 3′UTR 6.30E-09 D

ALDH6A1 14_74527190_A_G rs8204 3′UTR 1.40E-05 C

ARNT 1_150783934_G_GCACA rs71580328 3′UTR 1.90E-10 D

1_150783934_G_GCACACA rs71580328 3′UTR 5.80E-10 C

1_150783985_T_C rs11552229 3′UTR 3.10E-12 A

1_150804401_G_GA rs200891935 Intron 4.60E-10 C

1_150808889_C_G rs2228099 Synonymous 6.70E-12 A

1_150850904_CA_C rs10305645 Upstream 1.50E-11 D

ARSA 22_51062832_G_A rs8142033 3′UTR 9.10E-15 A

22_51063477_T_C rs6151429 3′UTR 3.70E-18 A

22_51064039_G_C rs743616 Missense 6.40E-07 A

22_51064416_T_C rs2071421 Missense 7.30E-12 A

CAV1 7_116200587_C_T rs1049337 3′UTR 2.50E-16 A

CYP2D6 22_42528382_C_G rs1080985 Upstream 2.40E-06 D

CYP2R1 11_14900931_G_A rs117913124 Synonymous 1.10E-05 D

CYP3A5 7_99245914_A_G rs15524 3′UTR 2.10E-13 D

CYP4F11 19_16023318_C_G rs61175303 3′UTR 3.10E-06 C

19_16023378_G_A rs58046343 3′UTR 3.10E-06 C

19_16023619_T_C rs58153611 3′UTR 3.10E-06 C

CYP4F12 19_15791132_T_A rs2074568 Intron 1.80E-09 A

19_15793235_T_C rs2285888 Missense 8.30E-06 A

19_15807884_A_G rs593818 Missense 1.80E-06 A

EPHX2 8_27373923_T_C rs4149243 Splice_region 2.20E-08 D

8_27396208_G_A rs4149253 Synonymous 5.80E-06 C

8_27401964_A_C rs1126452 Synonymous 3.60E-12 D

8_27402074_A_G rs1042032 3′UTR 3.60E-12 D

8_27402132_T_C rs1042064 3′UTR 1.20E-12 D

FMO4 1_171311003_A_C rs1042772 3′UTR 1.70E-06 A

GPX4 19_1106477_G_C rs8178977 Intron 1.80E-09 A

19_1106615_T_C rs713041 3′UTR 6.90E-06 A

(Continued)

Frontiers in Genetics | www.frontiersin.org 7 January 2019 | Volume 10 | Article 7

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00007 January 29, 2019 Time: 16:59 # 8

Klein et al. NGS Analysis of ADME Genes

TABLE 2 | Continued

Gene Varianta dbSNP151 Functional class Minimal p-valueb

GPX7 1_53074532_C_A rs1047635 3′UTR 2.50E-23 C

GSR 8_30535660_C_A rs3594 3′UTR 1.10E-15 A

8_30536581_A_G rs1138054 3′UTR 2.90E-07 A

GSTM2 1_110210780_C_G rs530021 Splice_region 6.10E-07 A

GSTO2 10_106034491_A_G rs2297235 5′UTR 1.00E-12 A

10_106037894_T_C rs157077 Intron 2.40E-08 A

GSTZ1 14_77788908_G_A rs2363643 Intron 1.40E-06 A

14_77793207_G_A rs7975 Missense 8.70E-06 A

NUDT8 11_67395714_C_T rs7124513 Synonymous 2.50E-07 A

PIAS2 18_44390536_T_C rs17472 3′UTR 3.50E-07 A

18_44391566_T_TAG rs149022619 3′UTR 3.50E-07 A

PON1 7_94927924_C_T rs854552 3′UTR 1.20E-06 A

7_94953895_G_A rs705379 Upstream 1.90E-09 A

SLC22A10 11_63057925_G_A rs1790218 Stop_gained 2.50E-21 C

11_63064823_T_C rs576641 Synonymous 5.10E-19 A

11_63072310_C_T rs1201559 Missense 2.50E-21 C

11_63078986_T_C rs1404608 3′UTR 2.50E-21 C

11_63079101_AT_A rs5792282 3′UTR 4.40E-20 A

SLC29A4 7_5338714_T_C rs6950111 Synonymous 8.20E-09 A

7_5342413_T_C rs11979775 Intron 4.10E-07 D

7_5342980_C_T rs56166050 3′UTR 2.80E-06 D

SQSTM1 5_179260153_C_T rs4935 Synonymous 1.40E-13 A

5_179260213_G_A rs4797 Synonymous 2.80E-13 A

5_179264731_T_C rs10277 3′UTR 7.60E-17 A

5_179264915_G_T rs1065154 3′UTR 1.30E-15 A

SULT2A1 19_48374306_G_A rs112468411 3′UTR 3.50E-10 C

19_48374320_C_T rs112285002 3′UTR 1.50E-61 C

19_48374538_T_C rs296366 3′UTR 1.90E-64 C

19_48374551_C_G rs296365 3′UTR 5.60E-21 R

19_48389363_G_A rs296361 Intron 3.30E-34 C

UGT2A1 4_70454289_A_G rs4148312 3′UTR 5.20E-08 A

UROC1 3_126200146_A_T rs777513 3′UTR 1.40E-10 A

3_126200291_C_T rs800950 3′UTR 7.70E-07 R

3_126200403_A_C rs1799398 3′UTR 3.10E-12 A

3_126202257_G_A rs1687477 Synonymous 8.50E-06 R

VKORC1 16_31102321_C_T rs7294 3′UTR 5.50E-07 A

XRCC5 2_217012901_A_G rs207906 Synonymous 7.60E-06 D

aVariant identifier “chromosome _ position _ reference nucleotide _ variant nucleotide”. bGenetic model with minimal p-value: A, additive; R, recessive; D, dominant; C,
codominant.

calling by the array method. Further details on performance
and validation of the ADME NGS panel are presented in
the Sections “Materials and Methods” and Supplementary
Material.

Analysis of DNA Variants
A total of 16,928 genetic variants were detected within the
defined target regions. Of these, 1,201 were excluded from
further analysis because of low genotype quality (n = 505)
or due to HWE p-values below 10−5 (n = 696). The
remaining 15,727 variants comprised 13,838 SNV and 1,889
variants classified as small insertions or deletions (INDELs).
The length changes of these ranged from deletion of 33
nucleotides up to insertion of 20 nucleotides, with 1 bp

deletions or insertions being the most frequent. Larger
structural variants including copy number variations
(CNVs) are currently under investigation using other
methods.

As expected, most SNVs were biallelic, only 62 were triallelic
and no tetraallelic variants were found. Among triallelic variants,
transversions were more common (n = 80) than transitions, and
G to T and G to A were the most common observations (n = 26
and n = 25, respectively).

None of the sequenced regions was invariant. On average, we
observed 10.5 variants/kbp, corresponding to a mean distance
of variants of 95 bp. Based on SNV density, the least variable
genes were UGT1A9 and UGT1A10 with <2 SNVs/kbp and the
genes with highest observed variant densities were CYP4F11
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FIGURE 3 | Cis-eQTL analysis of common variants. Top cis-associations of common variants to mRNA expression. Manhattan plot presenting top results from
multivariate cis association analysis between mRNA expression and common variants (MAF ≥ 2%) investigated for the corresponding gene. Displayed are minimal
p-values (min. p) from four genetic models (codominant, dominant, recessive, and additive). In total, n = 3,241 common variants in n = 295 genes were analyzed.
Only genes with at least one significant cis-association after Bonferroni correction (p < 0.05/3,241 = 1.54E-05; dotted line) are shown with all minimal p-values. The
significant p-values are presented in Table 2.

(42 SNVs/kbp) and CYP2D6 (31 SNVs/kbp) (Supplementary
Figure S1C).

Variant annotation revealed that 7,273 (46.2%) of the
variants were not yet annotated in the NCBI dbSNP database
(dbSNP build 151, March 2018) and thus considered as novel
observations. Figure 2A displays the number of variants per gene
for known and unknown variants in the different ADME gene
groups while Figure 2B depicts the fraction of variants according
to functional annotation. The number of variants per gene was
highest in the ABC and SLC/SLCO transporters and lowest in
phase II genes. As reported in several recent studies the number
of novel observations was substantial in all gene and functional
groups (Fujikura et al., 2015; Gordon et al., 2016; Han et al., 2016).
Of 15,727 SNV and small INDEL variants, 12,022 had a MAF
below 2%, including 8,937 singletons. Of the 7,273 novel variants,
7,139 (>98%) had MAFs below 2% (Figure 2C), while 80 (1.1%)
had MAFs ≥ 5%. Most of these were located in non-coding
regions.

Functional classification based on major transcripts for each
gene according to UCSC database revealed 6,058 variants in
coding regions (including 3,893 missense and 46 stop gain
variants; Table 1 and Figure 2B) and 9,669 variants in various
non-coding regions (e.g., 1,000 in 5′UTR and 4,138 in 3′UTR;
Table 1 and Figure 2B). We also analyzed 36 VIP genes, derived
from PharmaGKB and PharmaADME websites separately for
novel SNVs. In total we observed 502 unannotated variants
in these genes (dbSNP151), 120 of them representing missense
variants (Supplementary Table S3).

For comparison with publically available population data,
we extracted small variants from the 1000 Genomes (EUR
population) and ExAC (NFE, non-Finnish European) databases
for the ADME NGS panel target regions, resulting in 11,558 and
68,918 variants, respectively (Supplementary Figure S3A). The
MAFs of the matching variants in our sample set (ExAC/NFE:
n = 2,993; 1000G/EUR: n = 4,913) were in good correlation
with published population frequency data (Pearson r = 0.96 and

r = 0.98 for both EUR and NFE populations, respectively). The
median MAF of these SNVs was 1.16% for NFE and 2.98%
for EUR. We did not detect another 6,645 (EUR) and 65,925
(NFE) known variants with median MAFs of 0.1% (EUR) and
0.002% (NFE) (Supplementary Figures S3A,B). Together these
data indicate that mainly very rare variants with allele frequencies
below 0.1% were missed in our cohort.

Association With Expression Levels
To directly evaluate the functional impact of variants, we assessed
liver mRNA expression in an existing dataset (Schröder et al.,
2013). To ensure high data quality only mRNA expression data
of genes with “perfect” or “good” probes (see section “Materials
and Methods”) were considered (available for n = 303 genes).
Due to sample size and statistical power considerations, we
performed separate analyses for less common (MAF < 2%) and
more common (MAF ≥ 2%) variants.

To evaluate the impact of more common variants (n = 3,241)
on expression of the corresponding genes we performed cis-
eQTL analysis using univariate regression models. This analysis
revealed significant associations for 94 variants after Bonferroni
correction. In multivariate analysis with correction for 10
covariates (see section “Materials and Methods”) 90 variants in 31
genes remained significant after Bonferroni correction (minimal
p-value of the four genetic models < 1.54E-05; Figure 3 and
Table 2). Interestingly, 62 (70%) of these were located in non-
coding regions, and most of these (n = 40) in 3′UTR regions. Of
note, three eQTLs represented PharmGKP VIP genes (CYP2D6:
rs1080985; CYP3A5: rs15524; VCORC1: rs7294).

Association analysis of rare variants is challenging. To
overcome the problem of limited sample size/statistical power,
various methods have been developed to test sets of rare variants.
Here we used the SKAT-O approach (Lee et al., 2012) for group-
wise association of all rare variants in a gene with mRNA
expression data. These variants are incorporated into a gene-wise
test statistic via a weighted sum. Thus, p-values relate to genes,
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FIGURE 4 | Cis-associations of rare variants and mRNA expression (SKAT-O analysis). (A) Manhattan plot displaying SKAT-O test p-values from uni- and multivariate
cis-association analysis between mRNA expression and the set of all rare variants (MAF < 2%) investigated for the corresponding gene. In total, n = 11,053 rare
variants in 303 genes were analyzed. Only genes with a minimal association p-value < 0.05 are shown. Horizontal dotted lines indicate significance level at 0.05
(lower) and Bonferroni corrected significance level at 0.05/303 = 1.65E-04 (upper). Blue squares: univariate analysis, orange circles: multivariate analysis.
(B) Boxplots of ADH1C and GSTO1 gene expression, the two genes with SKAT-O test p-values < 1.65E-05 in both uni- and multivariate analysis. All variants are
heterozygous. Patients with rare variants (MAF < 2%) in ADH1C or GSTO1 are marked by triangles if several patients are carrying a rare mutation or diamonds if a
rare mutation is only present in one patient. Gray dots represent patients without rare variants for the gene displayed. Colors differentiate variants.

not to variants. SKAT-O combines the strengths of burden tests
thereby being powerful in different scenarios, i.e., when many
variants of a gene are associated with expression levels and have
the same effect direction, or when there are only few associated
variants or variants that differ in effect direction. Figure 4A
summarizes the results for univariate and multivariate SKAT-O
analyses. After correction for multiple testing, two associations,
for ADH1C and GSTO1, remained statistically significant.
Further details showing expression levels of individual carriers
are presented in Figure 4B. For example, five samples with a
rather low expression were heterozygous carriers of the SNP
chr10_106027186 A > T (3′UTR; rs17885600), including the two

individuals with the lowest GSTO1 levels (Figure 4B). Hence,
SKAT-O analysis resulted in identification of at least two genes
with plausible genotype–phenotype correlations for variants with
MAF < 2%.

Prediction of Functional Effects
We concentrated on coding variants resulting in amino acid
change (missense), frameshift, or affecting initiator and stop
codons, together accounting for 66% of coding variants and one
fourth of all variants (Figure 2B). We used the common tools
Polyphen 2 (PP2), Provean, and SIFT, that make dichotomous
functional predictions of the type “loss of function” (LOF) versus
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FIGURE 5 | Prediction of coding variant effects. (A) Comparison of loss-of-function (LOF) and tolerable (TOL) predictions obtained by three different prediction tools.
Venn diagrams are shown for “LOF” and “TOL” predictions for n = 4,017 coding variants from Provean (“deleterious”), SIFT (“damaging”), Polyphen2 (PP2;
“probably/possibly damaging”). (B) Occurrence of TOL and LOF variants in gene family groups. The distribution of the number of concordant TOL (n = 1,019; blue
colored) and LOF (n = 1,466; red colored) predictions is shown for the indicated gene groups for known (filled bars) and novel (hatched bars) variants. Upper chart:
variants with MAF ≥ 2%; lower chart: variants with MAF < 2%. (C) Top LOF-variant carrier genes. Shown are genes with at least seven predicted LOF-variants.

“tolerated” (TOL) (Zhou et al., 2018a). Of the analyzed subset
of 4,017 coding variants, more than 95% were predictable by
these algorithms (PP2, n = 3,818; PROV, n = 3,874; SIFT,
n = 3,881). LOF prediction was retrieved concordantly by all three
algorithms for 1,466 variants (36.5%) and TOL was concordantly
calculated for 1,019 variants (25.4%; Figure 5A). In agreement
with other studies (Bush et al., 2016; Han et al., 2016; Hovelson
et al., 2017) we found that the proportion of LOF- versus

TOL-predicted variants was significantly higher among the less
common (MAF < 2%) compared to more common variants
(Chi-square test, p < 0.0001). With one exception (SLC28A1
G254V, MAF = 2.3%) all novel LOF-predicted variants were less
common with MAF < 2% (Figure 5B).

Interestingly, transporters and nuclear
receptors/transcriptional regulators had large proportions
of predicted LOF variants that had not yet been listed in the
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dbSNP database. The highest number of predicted LOF variants
in one gene was observed in NCOR2 (n = 47), and nine ABC
transporters (A7, A2, A4, C1, C10, C8, A3, and C11) are found
among the genes with the highest LOF-predicted variants
(Figure 5C).

Integrating Prediction and Association
While the SKAT-O test identified only two significant
associations, functional prediction indicated a much larger
number of predicted LOF variants, as also reported by others
(Han et al., 2016; Hovelson et al., 2017). In contrast to former
studies, our data allow inspection of genotype-phenotype
correlations individually for each variant and for several available
phenotypes. While these excessive data are currently being
analyzed, we illustrate here a typical example. Of particular
interest are protein levels, as functionally damaging ADME
gene variants are frequently associated with lower protein levels.
Figure 6 shows exemplarily the correlation of all detected
amino acid variants of ABCC11, encoding the drug transporter
MRP8, with MRP8 protein levels obtained for the same liver
cohort in a previous study (Magdy et al., 2013). Interestingly,
carriers of concordantly LOF-predicted variants (n = 73) showed
highly variable protein levels (23-fold; coefficient of variation
81%), essentially covering the entire range of MRP8 variability,
while carriers of only TOL-predicted variants (n = 30) were
spread across a smaller protein range (ninefold; coefficient
of variation 53%). Of note, the median protein levels of
carriers of LOF-predicted and TOL-only-predicted variants
were similar (P = 0.73; Figure 6). Thus, our phenotypic data
allow identification of several MRP8 low and high expressors
in relation to genotype. While there does not seem to be a
simple relation between functional prediction and phenotypic
expression, our data should be helpful to prioritize variants for
further investigation and to improve prediction tools.

DISCUSSION

In this study we designed a new panel to target 340 ADME
genes for NGS. We tested and validated our ADME NGS panel
on a cohort of 150 human liver specimens with comprehensive
genetic, functional, and medical characterization. This allowed us
not only to perform extensive genotype-phenotype correlations
to identify novel relationships for common and rare variants but
also to compare computational predictions of functional effects
with real phenotypes, which should be useful to further develop
and optimize prediction algorithms for variant effects.

We designed our ADME NGS panel to comprise 340 genes
including most phase I and phase II enzymes, drug transporters
and numerous transcriptional regulators and other modifiers of
xenobiotics and endogenous substances. We used Agilent in-
solution target capture technology to allow informed selection
of relevant regions and optimization of coverage on targets.
Only four genes, SULT1A3, SULT1A4, MIF, and CYP26C1,
were covered below 100-fold. Low coverage of some genes
was also observed by others who speculated that common
null functional alleles, high sequence homology as well as

FIGURE 6 | Genotype-phenotype relation of ABCC11 missense variants to
MRP8 protein expression. Relative MRP8 protein abundance in the same
human liver samples used for NGS was determined by Western blot analysis
(Magdy et al., 2013). Symbols: open black circles, all variants; red filled circles,
carriers of LOF-predicted variants; green open circles, carriers of only
TOL-predicted variants; green box and whisker: carriers of TOL-predicted
variants not carrying LOF-variants (n = 30); red box and whisker: carriers of at
least one LOF (n = 73). Novel variants are indicated by a star.

pseudogenes may disturb capture of such regions (Han et al.,
2016). Direct comparison of 363 genotype data available from
previous pharmacogenetic studies in the liver cohort revealed an
overall accuracy of the ADME NGS panel of >99%. The overall
performance of our ADME NGS panel was comparable to other
targeted capture sequencing panels (Bush et al., 2016; Gordon
et al., 2016; Han et al., 2016; Hovelson et al., 2017). Compared to
these other platforms we included a greater number of genes with
the intention to investigate not only established ADME genes but
also less well known ADME candidate genes.

While several NGS studies of different types recently explored
genetic variation in ADME genes (Fujikura et al., 2015; Bush
et al., 2016; Han et al., 2016; Kozyra et al., 2016; Hovelson
et al., 2017; Schärfe et al., 2017), our study is, to our knowledge,
the only one that provides phenotypic measurements in human
samples. In this study we analyzed only SNVs and small INDELs,
while larger structural variations will be analyzed separately
(Tremmel et al., in preparation). For the more common
variants (MAF ≥ 2%) multivariate eQTL analysis revealed 90
significantly associated variants, most of them located in non-
coding regions. Six of these loci had already been described
in our previous genome wide association study, e.g., rs7294 in
VKORC1 3′UTR, or rs1201559 (P516L) in SLC22A10 (Schröder
et al., 2013). Interestingly, several of the SNVs located in 3′UTRs
(ARNT rs11552229, CYP3A5∗10 rs15524, EPHX2 rs1042032
and rs1042064, UGT2A1 rs4148312 and VKORC1 rs7294) are
discussed as potential micro-RNA binding sites, partially proven
by tissue eQTL (Wei et al., 2012). Furthermore, our data confirm
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predicted eQTL effects on expression in liver tissue in the
Genotype-Tissue Expression portal (GTex10; Lonsdale et al.,
2013) e.g., for the EPHX2 variant rs1042032 and VKORC1 rs7294.
Some other eQTLs we found had also been reported previously
in the context of phenotype/genotype correlations. For example,
rs1080985 in CYP2D6 corresponds to the −1584C > G variant
that is linked to the low-expression CYP2D6∗41 allele (Raimundo
et al., 2000; Raimundo et al., 2004); the PON1 rs854552 variant
had been found in a nutrigenetic approach on markers of
cardiovascular disease (Rizzi et al., 2016); and the AOC1 (diamine
oxidase) variant rs10156191 was associated with hypersensitivity
response to non-steroidal anti-inflammatory drugs (Agúndez
et al., 2012).

In contrast to common variants, association of individual rare
variants is greatly limited by sample size and thus presents a
special challenge. The problem is aggravated by the fact that by
far most rare variants occur in heterozygous condition, where
any effect could be masked by the variability of the “normal”
allele. Furthermore, rare variants can be damaging in many ways,
affecting expression, protein abundance, or catalytic function.
A single phenotype such as expression may thus not reveal
the deleterious nature of a particular variant. Nevertheless we
assume that analysis of gene or protein expression should be most
promising, because damaging variants often affect expression
negatively. This is the case, for example, for most low-activity
CYP variants (e.g., CYPs 2B6, 2C19, 2D6, 3A4, 3A5 mostly
due to aberrant splicing; Zanger and Schwab, 2013), and many
established variants of clinical relevance like UGT1A1∗28 and
Gilberts syndrome (Ehmer et al., 2012) and VKORC1 variants
in warfarin metabolism (Li et al., 2009). Our statistical approach
to relate rare variants to gene expression data by SKAT-O test
revealed two significant associations for rare variants of ADH1C
and GSTO1, both of which appear highly plausible and would not
have been detected by the cis-eQTL analysis. The variant rs283413
in ADH1C, a stop gain mutation at protein position G78, is
discussed as risk factor for Parkinson’s disease (Buervenich et al.,
2005) and alcohol biodisposition (Martínez et al., 2010; Way et al.,
2015). The GSTO1 rare variants have so far not been reported to
be associated with expression to our knowledge, but a significant
genotype influence of the 3′UTR SNP rs17885600 on expression
of the adjacent GSTO2 in liver tissue supports a potential eQTL
effect of this variant (Lonsdale et al., 2013).

As a further approach to identify deleterious ADME rare
variants, we used computational prediction, which has recently
been used in several studies (Bush et al., 2016; Han et al.,
2016; Hovelson et al., 2017). However, in none of these studies,
phenotypic information was provided to compare prediction
with a phenotypic parameter. Similar to other studies we found
a considerable fraction of all variants (36.5%) to be predicted
as damaging by all three prediction tools used. Somewhat
unexpectedly, preliminary analyses did not reveal statistically
significant associations between LOF-predicted variants and
lower expression. As exemplarily illustrated for ABCC11 and
MRP8 protein abundance, LOF predicted variants were not more
frequently associated with lower protein levels as compared to

10https://commonfund.nih.gov/gtex

TOL predicted variants. Thorough analyses of these data are
currently in progress. A recent advanced approach integrated
prediction and functional activity data available from diverse
sources to develop an improved prediction framework adopted
to pharmacogenetic assessments (Zhou et al., 2018b). Our data
should be highly valuable to test and further improve such
approaches.

CONCLUSION

We designed a new targeted NGS pipeline to determine
SNVs and small INDELs for 340 ADME genes and used
it to analyze 150 well characterized human liver samples.
In addition to common known variants we confirmed the
existence of large numbers of rare and previously unknown
germline variants. Available phenotypic information on the
samples allowed us to elucidate numerous novel eQTLs for
common variants and to identify novel relationships between
rare variants and expression. Furthermore our data allow direct
comparison of computationally predicted functional effects for
coding variants with actual phenotypes. Using data for the
transporter ABCC11/MRP8, we showed that variants predicted
as deleterious are present in both high and low expressors of
MRP8. While this emphasizes challenges and current limitations
of computational prediction approaches to integrate rare variants
into pharmacogenomics, such data are important to assess and
improve the current strategies.
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