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Spiking neural networks (SNNs) are believed to be highly computationally and energy

efficient for specific neurochip hardware real-time solutions. However, there is a lack

of learning algorithms for complex SNNs with recurrent connections, comparable in

efficiency with back-propagation techniques and capable of unsupervised training. Here

we suppose that each neuron in a biological neural network tends to maximize its activity

in competition with other neurons, and put this principle at the basis of a new SNN

learning algorithm. In such a way, a spiking network with the learned feed-forward,

reciprocal and intralayer inhibitory connections, is introduced to the MNIST database

digit recognition. It has been demonstrated that this SNN can be trained without a

teacher, after a short supervised initialization of weights by the same algorithm. Also,

it has been shown that neurons are grouped into families of hierarchical structures,

corresponding to different digit classes and their associations. This property is expected

to be useful to reduce the number of layers in deep neural networks and modeling the

formation of various functional structures in a biological nervous system. Comparison of

the learning properties of the suggested algorithm, with those of the Sparse Distributed

Representation approach shows similarity in coding but also some advantages of the

former. The basic principle of the proposed algorithm is believed to be practically

applicable to the construction of much more complicated and diverse task solving SNNs.

We refer to this new approach as “Family-Engaged Execution and Learning of Induced

Neuron Groups”, or FEELING.

Keywords: spiking neural networks, unsupervised learning, supervised learning, digits recognition, classification,

neuron clustering

1. INTRODUCTION

Compared to formal neural networks, spiking neural networks (SNNs) have some remarkable
advantages, such as the ability to model dynamical modes of network operations and computing
in continuous real time (which is the realm of the biological prototype), the ability to test and
use different bio-inspired local training rules (Hebb’s, Spike-Timing Dependent Plasticity (STDP),
metabolic, homeostatic, etc.), significantly reduced energy consumption of SNNs realized in specific
multi-core hardware (neurochips) (Merolla et al., 2014), and others. Despite the great work done so
far in the field of SNN learning, there is still a lack of effective algorithms comparable in perfomance,
to formal neural network training techniques. Moreover, there is still the big challenge “How do our
brains learn without a teacher?,” the answer to which has been sought for decades.
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The traditional ways of SNN parameters setting are (i) the
transfer (adaptation) of parameter values of a formal neural
network to an SNNwith the same (or similar) architecture (Diehl
et al., 2015), (ii) the adaptation of learning algorithms suitable
for the formal neural networks, such as the back-propagation, to
SNN (Lee et al., 2016), and (iii) the training based on the bio-
inspired local inter-neuron rules, such as STDP, of SNN with a
biologically plausible architecture, e.g., with competition between
neurons in Winner-Takes-All (WTA) networks (Diehl and Cook,
2015).

The first approach is appealing due to a wealth of experience
accumulated in the field of formal network training, with
the use of back-propagation techniques, which minimize the
value of some loss function with different weight update rules
(SGD Bottou, 1998, Nesterov momentum Sutskever et al., 2013,
Adagrad Duchi et al., 2011, Adadelta Zeiler, 2012, Adam Kingma
and Ba, 2014). At the same time, the transfer of parameters
determined by elaborate training methods from a formal to
spiking network, is not a trivial task. The accuracy of problem
solution can be reduced, and a special technique, usually specific
to the task and/or architecture used, should be applied (Diehl
et al., 2015).

The second approach tries to adopt the most developed back-
propagation learning algorithms for direct use in networks with
spiking neurons. Besides a specificity with respect to a spiking
neuron model used, this method can be (limitedly) applied only
to feed-forward SNN. Nevertheless, gradient-based methods still
remain the state-of-the-art approach for training SNN (Lee et al.,
2016).

The third way is still under development and therefore not
perfect. At present, the use of local training rules cannot compete
with the well-established industrial algorithms of learning formal
neural networks to solve different practical tasks. Nevertheless,
this approach has a great potential for the coming generation of
SNN algorithms for intelligent information processing. This is
due to (i) the ability to develop new bio-inspired self-learning
methods (not requiring the huge amount of labeled data), (ii)
the ability to build up and train complex SNN architectures with
recurrent connections, cross-linked association, reinforcement,
attention, and other types of neuronal layers, and (iii) the
capability to realize the real-time, energy-efficient information
processing systems with non-linear dynamics corresponding to
different applications (communications, household appliances,
industrial production, robotics, etc.) on the base of special
neuromorphic hardware. There is of great interest and many
studies describing the first results of developing local training
rules for the SNNs (Izhikevich, 2007; Legenstein et al., 2008;
Lazar et al., 2009; Clopath et al., 2010; Querlioz et al., 2013;
Diehl and Cook, 2015; Zhao et al., 2015; Kheradpisheh et al.,
2017; Sanda et al, 2017; Sboev et al., 2017, 2018; Mozafari et al.,
2018), on the one hand, as well as many studies concerning the
first steps in a hardware realization of neuromorphic computing
systems with analog weights and a spiking architecture (Demin
et al., 2015; Prezioso et al, 2015; Covi et al., 2016; Emelyanov
et al., 2016; Serb et al., 2016; Wang et al, 2018), on the other
hand.

A Particular case of developing local training rules is the
modification of STDP that converts a task in to reinforcement
learning. The weight change is modulated by a global reward
signal that often has the meaning of increasing the dopamine
concentration. This model, proposed by Izhikevich (2007),
has been researched analytically by Legenstein et al. (2008),
and this work continues to date (Kappel et al., 2017). This
approach showed an ability to memorize temporal spike patterns
(Legenstein et al., 2008) and solved the problem of finding a
forage by a robot (Sanda et al, 2017). Timothee Masquelier
(Mozafari et al., 2018) created a model that solves the MNIST
benchmark with a multilayer network that has dopamine-
modulated STDP applied to the last layer.

Another direction of research is reservoir networks. Maass
has introduced the Liquid State Machine (Maass et al., 2002),
which is a large neural network with random connections,
where hidden neurons apply a lot of nonlinear transformations
to the input data. He showed analytically that, if the number
of neurons are large enough, the classifying layer can learn
to reproduce any desired output. The classifying layer can be
trained with a genetic algorithm (Schliebs and Kasabov, 2013),
for example. Liquid State Machines were also used with various
kinds of plasticity, including STDP, so the model showed better
performance in memorizing spatio-temporal patterns than the
Liquid State Machine with static weights (Lazar et al., 2009).

Claudia Clopath has introduced a kind of synaptic plasticity
based on mechanical principles and investigated its behavior
in small networks in relation to the type of the input signal:
temporal or rate-coded. It was shown that for temporal
coding of signals (Clopath et al., 2010) the FORCE learning
rule (Sussillo and Abbott, 2009) was useful to learn various
oscillatory behaviors, to solve classification tasks and even to
reproduce a bird song (Nicola and Clopath, 2017). The work has
demonstrated the importance of high dimensionality of the input
signal, which increases the effectiveness of the FORCE learning
method.

All the results shown are only paving the way to the
above-mentioned task of elaborating an effective SNN learning
algorithm based on the local inter-neuron relations. So, in
this work, we aim to make the next step, suggesting a simple
universal principle for the development of local training rules of
the BCM-like type (Bienenstock et al., 1982), responsible for a
weight update between spiking neurons of different functionality
(excitatory or inhibitory).

The neuron model, recurrent SNN architecture chosen and
some other implementation details will be described in section
2.1. The bio-inspired premises, basic assumptions and suggested
local training rules will be discussed in section 2.2 of the article.
Section 3 demonstrates the main results of the application of
our rules for training the special SNN architecture to solve
the bench-marking task of MNIST database handwritten digit
recognition, both supervised and partially unsupervised. The
brief analysis based on the weights clustering and visualization
shows that families (or groups) of neurons corresponding
to different classes of digits, are formed in the processes of
competition and cooperation between neurons during training.
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FIGURE 1 | “784− 100− 10” architecture of the model with forward, lateral

and reciprocal connections (the architecture is fully interconnected; only a few

connections are shown). When training the network, an additional supervised

current can be introduced into the neuron corresponding to image of a certain

class presented at the input.

So, we refer to the new algorithm as ‘Family-Engaged Execution
and Learning of Induced Neuron Groups’, or FEELING. In
section 4, we compare our algorithm with the Sparse Distributed
Representation approach, discuss some perspectives of the
FEELING algorithm, its further development and usage.

2. MATERIALS AND METHODS

2.1. SNN Architecture and Implementation
Details
2.1.1. SNN Architecture
Here we consider a simple SNN architecture with 2 layers
of neurons, which is sufficient for the demonstration of the
proposed FEELING algorithm with the MNIST benchmark.
Considerations about using this algorithm for more complex
network architectures will be outlined in section 2.3.

We constructed the SNN in the architecture “784− 100− 10”
(784 neurons in the input layer, 100 in the hidden layer and 10
classifying neurons in the output layer). There are three types of
connections between neurons. The first one is the standard feed-
forward connections (from input to hidden, and from hidden
to output layer), whose weights are in the range of 0 to 1. The
second is the negative lateral connections (from –1 to 0) that
model inhibitory connections between neurons inside the layer
and helps to learn faster. The third one is reciprocal connections
from the output layer directly to the neurons of the hidden layer.
This architecture is presented in Figure 1.

2.1.2. Activity Calculation
An important part of implementing our training rules in the
SNN, is to efficiently compute the instant and average firing
activity for all the neurons at every time step. The solution is that
we do not really need an accurate value of the activity (which
is a sum of all action potential amplitudes multiplied by their
relaxation kinetics), so we can just find a good approximation
that is easy to calculate. If we consider a spike train as a time-
series of 0’s and 1’s, where 1 corresponds to the moment of spike,
its Exponential Mean Average (EMA) could be a good solution

for approximating the firing activity (Figure 2) for time intervals
of different lengths, for a and θ , which we will call “instant” and
“average” activity, respectively:

a(t) = (1−
1t

τa
)a(t − 1t)+

s(t)

τa
, (1)

θ(t) = (1−
1t

τθ

)θ(t − 1t)+
s(t)

τθ

. (2)

Here, τa and τθ are the hyper-parameters to be chosen (τa ≪ τθ ),
1t = 1 ms is the simulation time step, and s(t) is a binary
spike variable equaling 1 if spike occurs at the moment t, and 0
otherwise. As a first iteration for adjusting these time constants

it is suitable to set τθ =
Tinput∗n

5 , where Tinput is a time necessary
for presenting one image (see also sections 2.4, 2.5) and n is the
number of image classes in a classification task (for the MNIST

database this is 10); τa should be reasonably set to the value
Tinput
5

or less. It is worth noting that once the parameters τa and τθ

are chosen, an interesting feature arises. It concerns the non-
zero firing rate fluctuations around the average value of (a − θ)
difference, even after a long period of time, enough for the full
relaxation of the neuron to its stationary state. These fluctuations
can be considered as noise added to the input signal of the
neuron. Some considerations on the role of fluctuations in the
learning are presented in Supplementary Material, section 1.

It is important to note that the addition of instant and average
firing rates to the model of the neuron, does not make the
implementation of the neuron in a neurochip too complicated,
because the activity is calculated similarly to the leaky threshold
potential with a different time constant. The implementation of
the LIF neuron model with the leaky threshold model has been
shown in Indiveri et al. (2011).

2.1.3. Neuron Model
During the simulation we used a leakage-integrate-and-fire (LIF)
neuron model (Burkitt, 2006) to define the dynamics of the
membrane potential of the neuron. When the potential Vj rose
to the threshold value with a characteristic membrane time τm
= 20ms, the neuron generated a spike and entered the period of
refractoriness with τref = 2 ms:

τm
dVj

dt
= −Vj(t)+ Ij(t). (3)

The input current of a post-synaptic neuron j was calculated as a
weighted sum of instant activities of all pre-synaptic neurons:

Ij(t) =
∑

i

wijai(t). (4)

This neuron model was used in all the layers except the input
layer. The inputs at the first layer were simulated by the Poisson-
distributed spiking trains with the average rates proportional to
the input signal level (the pixel intensities). This allowed saving
computation time to process every neuron in the input layer.

Frontiers in Neuroinformatics | www.frontiersin.org 3 November 2018 | Volume 12 | Article 79

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Demin and Nekhaev Activity Maximization Based Learning

FIGURE 2 | Approximation of instant and average neuron activity. Instant (green line) and average (blue line) firing activities are calculated as the Exponential Mean

Average of the spike time-series. Spike train here was obtained from a Poisson distribution with firing probability of 0.3 at every time step (300 Hz rate). The difference

between instant and average firing rates while presenting a Poisson-distributed input signal with constant probability has a noisy effect on the network training,

because most of update rules depend on this difference. Moments of spikes are highlighted by vertical dashed lines.

For the sake of equitable competition and correct training of
spiking neurons, an adaptive dynamic threshold was used that
depends on the neuron firing rate (this property is bio-inspired
as it was observed for the real neurons in the brain Zhang and
Linden, 2003). The easiest way to implement this was to set
the threshold as an exponentially decaying value with the time
constant τth (50 ms in our case) and increasing it abruptly at the
moment of a spike by a constant that depends on the number of
neurons N in the corresponding layer:

dVth,j

dt
= 1VthNδ(t − tj)−

Vth,j

τth
, (5)

where 1Vth = 0.1 is the increment for the threshold.
For all the simulations of the SNN training and functioning

the freely distributed software BRIAN was used (Goodman and
Brette, 2008).

2.2. Bioinspired Training Rules
To propose a universal principle for the interneuron synaptic
plasticity which determines the local training rules for artificial
SNN we have to ponder the question: “What could be the
purpose, or the evolution–designed mission, of each individual
neuron’s life in a biological neural network?” It is well known
that adult neurons do not have the capability of division, so
reproduction cannot be the purpose of a neuron. On the other
hand, it is involved mostly in information processing which,
from the biological point of view, means the generation of action
potentials by the neural cell. So it is reasonable to suppose that
every neuron tends to support its activity at a high level to justify
its biological role in the whole network. We propose to go further
and assume that a neuron striving to maximize its activity in
competition with other neurons, is a good premise for the SNN
learning algorithm.

This hypothesis is inspired by the following biological
observations. First of all, there are many studies about the so-
called synaptic pruning, which means elimination of the neuron’s
synaptic connections, mostly during the developmental stage
of an organism (Chechik et al., 1998, 1999; Iglesias et al.,
2005; Vanderhaeghen and Cheng, 2010; Petanjek et al., 2011).
Generally, it is associated with the competition of synapses for
the neurotrophic factors. Only those get the sufficient survival
resources that justify their biological role of transmitting a strong
signal to a cell, likely consistently (in conjunction) with input
signals through the other synapses of this neuron.

Second, there is a lot of evidence for the neuronal
programmed cell death (mainly, apoptosis) during the
experience-free pre-natal and the experience-dependent
early development of organisms, from insects to vertebrates
and humans (Mazarakis et al., 1997; Abitz et al., 2007; Fuchs
and Steller, 2011; Kristiansen and Ham, 2014; Yamaguchi and
Miura, 2015). It has been assumed that this mechanism is not
only due to the necessity of the elimination of damaged or
stochastically degraded cells, but is also very important for
learning, i.e., continually maintaining more efficient brain
functions by removing neurons because of their information
processing inefficiency (Chechik et al., 1999). It is well known
that adults have significantly fewer neuron populations in some
regions of the brain, e.g., in the mediodorsal thalamic nucleus
(Abitz et al., 2007), than newborns. It is believed that this is due
to an initial surplus of neurons which is competitively removed
from the brain during experience-based development, so only
cells that correspond to important behavioral and functional
properties remain.

Third, there is some circumstantial support from the
experiments in vitro on learning in a culture of real cortical
neurons (Shahaf and Marom, 2001; Bakkum et al., 2008), when
repetitive electric stimulation of a network drives a change of
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its synaptic connectivity pattern until stimulus is removed or
modified. It may be a sign of the network reconstructing its
connections due to the appearance of a group of highly active
neurons under repetitive input. Other cells try to make or
strengthen the connections to those leading neurons and become
highly active too (secondary activity). Then the remaining
neurons establish synapses with the secondary activity cells, and
so on along the chain. This may be the mechanism of continuous
reconstruction of the network topology and obtaining almost any
desired output pattern, as mentioned in the works on learning
neuronal cultures (Shahaf and Marom, 2001; Bakkum et al.,
2008). Of course, it is speculative until it is shown directly, but
this is one of the simplest interpretations of how it works. It is
indirectly confirmed by the absence of target learning under the
application of stochastic spatio-temporal stimuli to a network,
when neurons change their activity in a random way (Bakkum
et al., 2008). It should also be specified that we talk about the
signals and stimuli significantly below the physiological limit of
neuron damage.

It is worth noting that additional, more specific studies are
needed to firmly establish or correct the principle of competitive
maximization of the activity of neurons, but we take it as a
good bio-plausible working hypothesis to derive the new learning
algorithm for SNNs.

Maximizing its activity, each neuron also reaches other
related aims such as (i) maximizing its lifetime, (ii) increasing
the level of trophic and biochemical energy resources, and
(iii) an enhancement of representation of this neuron at
the other neural layers. The second statement is due to the
increased cell metabolism, and the third one is explained
as follows. According to the described strategy, a particular
neuron should increase weights with those neurons which have
a relatively high activity at a given moment. So, keeping its
activity high, the neuron guarantees that neural cells from
the other layers seek to strengthen connections with it, thus
enhancing the representativeness of that neuron at the other
layers.

For our purposes, it is not important which specific aim, from
those stated above, is the main one and which is secondary.
From the practical point of view of SNN learning algorithm
development, it is convenient to use the activity maximization
principle as the basis. However, it is important to note that
the maximization of neuronal activity needs the biochemical
resources, which are actually limited at every moment. The
neurons therefore compete with each other and re-distribute
their current resources in such a way, as to obtain maximum
input currents from other neurons. For example, a post-synaptic
neuron should weaken the connection weights with low activity
pre-synaptic neurons, in order to get an opportunity to increase
other weights with more active pre-synaptic cells. This can be
written as follows:

dwij

dt
= α(ai − θi)δ(t − tj)−

wij

τ
. (6)

Here ai determines the instant activity of a pre-synaptic neuron i,
θi is the time-averaged activity of neuron i (see also section 2.1.2
for a and θ definition), α is a positive learning rate, δ stands for

the Dirac delta-function corresponding to the moments of spikes
of post-synaptic neuron j, and the

wij

τ
term means an exponential

decay of the weight.
The weight update rule (6) can be motivated as follows. Post-

synaptic neuron j strives to strengthen its connections with those
pre-synaptic neurons with a higher than average activity, over
some previous period of time and to weaken them otherwise. Of
course, it is only one of the ways to express the idea of neuron
activity maximization (due to increased connection weights with
cells for which ai > θi) under conditions of limited resources
and competition between presynaptic neurons (due to decreased
weights with cells for which ai < θi). A specific type of update
rule could be quite different from that of (6), but it still has
to reflect the activity maximization principle and to describe
the economy and “forced uptake” of resources, including the
competition between neurons.

Simple rules (6) can be implemented to train forward
connections of an SNN, but not for reciprocal (from a logically
deeper layer to those closer to the input) or lateral (intralayer,
competitive) ones (see section 2.1.1 for the SNN architecture
description). Note that the update rule (6) is event-driven
as it is applied only at the moment of post-synaptic neuron
spikes [the exponential decay of the weight in (6) is calculated
according to an exponential factor dependent on the time
difference between consecutive spikes]. Thus, this scheme is
computationally economic.

To derive a rule for the backward connections wkj update
we can follow the same principle: a particular neuron of the
most distant layer tries to maximize its activity and, in order
to do this, provides an extra current to those neurons of the
previous layer that are the most active at the moment and
have strong positive forward connections wjk to this neuron.
This neuron therefore tries to increase the weights of its
reciprocal connections to neurons with high activity in the
previous layer:

dwkj

dt
= β(aj − θj)wjkδ(t − tk)−

wkj

τ
. (7)

Here β is a positive learning rate for backward-type connections.
In both synaptic weight update rules described above it is

assumed that the value of a weight is clamped between 0 and 1,
so they are excitatory connections. In our model we also took
into account the inhibitory connections inside a layer of the
network, that provide the competitive interaction of neurons.
It is a widely-used technique, but it is often implemented with
the non-learnable WTA rule (Diehl and Cook, 2015). Here we
describe the same idea, with the weight change based on the local
competition of a pair of neurons in the last (classifying) layer of
the SNN:

dwkk′

dt
= −γ (ak − θk)δ(t − tk′ )−

wkk′

τ
. (8)

Here γ is a positive learning rate for intralayer negative
connections, and the weight values are clamped between –1 and
0. This update rule provides, obviously, a learnable competition.
It should be noted that in this case the meaning of the term
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(ak − θk) is different from that of the rule (6) and (7). It roughly
means that only a highly active neuron (i.e., more than on
average and, consequently, has a high level of resources) can
strengthen the competition with other neurons in this layer, and
vice versa.

Finally, we would like to introduce not only competition, but
also cooperation, inside the hidden layer. Some neurons that
form a subgroup inside the hidden layer can simultaneously have
high activities while processing the current input signal, so they
start to cooperate to increase their lifetime and produce more
powerful signals deeper into the network. Dynamics of this type
of connection can be described as follows:

dwjj′

dt
= η(aj − θj)(aj′ − θj′ )δ(t − tj)−

wjj′

τ
. (9)

Here η is a positive learning rate for intralayer negative
connections, and the weight values are also clamped between
–1 and 0. This approach gives rise to subgroups, or families,
of cooperating neurons inside the hidden layer, with small
or zero negative weights between them (we consider
cooperation as absence of competition). At the same time,
these subgroups compete with each other, because neurons of
different families tend to have strong negative connections with
each other.

It is important to emphasize once again the update rules
(6)–(9) are only one of the numerous ways to reflect the
main biologically plausible principle of the spiking neuron:
maximization of its activity in competition for resources.
This, if correctly adjusted, guarantees the whole algorithm’s
convergence, in both supervised and unsupervised learning. The
most complicated part of the rule design was the choice of
specific formulae for the weight updates and hyper-parameter
values such that an equitable competition between neurons
was provided during the whole process of learning, especially
in the initial phase. For the unsupervised training, a correct
initialization of weights was also of crucial importance. If it is
given by the uniform distribution, as in our case (see below), then
the algorithm during the early training relies only on random
similarities between the input vector and the weight vector of the
neuron considered. In another case, if we train the neurons at the
beginning of learning in the supervised manner, presenting to the
SNN only a few labeled images, then the unsupervised training
works much better in terms of algorithm’s convergence, based on
the same weight update rules. It will be demonstrated in section
3 of the article.

We do not claim that the particular kind of local training
rules presented here is bio-inspired. Moreover, considering the
formula (9) we postulated the existence of lateral inhibitory
connections between excitatory neurons outside of the biological
realm (in fact, the competition between excitatory neurons is
mediated by inhibitory interneurons Faust et al., 2016). For us,
compliance with the basic learning principle of the FEELING
algorithm is the only relevant compliance. Nevertheless, we tried
to select those rules in a simple form, similar to the plasticity of
BCM type, which has some experimental evidence (Bienenstock
et al., 1982) and is computationally admissible.

The similarity to the thoroughly explored BCM rule
(Bienenstock et al., 1982) only refers to the use of the rate-
coded instant and time-averaged variables a and θ and of their
differences in type (a − θ). At the same time, the original
BCM rule has a specific form for the weight modification in a
feed-forward network between pre-synaptic neuron i and post-
synaptic neuron j,

dwij

dt
∝ aiaj(aj − θj)−

wij

τ
. (10)

It differs from (6) by an additional factor of the pre-synaptic rate
ai (the multiplier aj is approximately equivalent to the function
δ(t − tj) accounting for the post-synaptic spikes) and by using
the post-synaptic rate difference (aj − θj) instead of the pre-
synaptic one (ai − θi) in (6). It is worth noting that the BCM
rule (10) could also be used in the framework of the activity
maximization principle, implying an increase in weights with
active pre-synaptic elements if the post-synaptic neuron has
enough resources, and vice versa. Regarding our experiments,
the presence or absence of a factor of ai was not critical for the
training, but the use of the pre-synaptic difference, as opposed to
(10), was important. The learning could not effectively converge
by using the rule (10), because of the formation of a neuron
group that captured almost all the image classes and suppressed
other neurons in the layer. Presumably, this is due to a low image
contrast training by the BCM rule compared to rule (6) (see
Supplementary Material, section 2).

In addition to the remark in subsection 2.1.2 about a and θ

emulation in hardware, it should be noted that the differences
of the type (a − θ) can be realized either by specific differential
amplifiers on chip and transforming it into a weight change
control signal, or directly by a specific type of STDP. Indeed,
Izhikevich has shown that the BCM rule is equivalent to the
classical additive STDP taking place in a Poisson sequence
of uncorrelated pre- and post-synaptic spikes (Izhikevich and
Desai, 2003). Our rule (6), a non-essential factor of up to ai,
may be derived in the same way as Izhikevich has done, but
considering the post-synaptic instead of pre-synaptic centered
spike pairing scheme.We also believe that other BCM-like weight
modifications can be reduced to some special cases of STDP.
In turn, different types of STDP were demonstrated in various
memristive devices (Linares-Barranco and Serrano-Gotarredona,
2009; Prezioso et al., 2016; Pedretti et al., 2017; Lapkinab et al.,
2018). It could therefore be the way to realize the proposed
training scheme in a direct, on-line weight update manner.
Further investigation however, is needed.

The values of hyperparameters used in the simulation are
presented in Table 1. It should be noted that the model also uses
additional hyperparameter coefficients for balancing the input
currents of a neuron. The fact is that every neuron presents a
non-linear transformation of the input signal. So, the signal is
attenuated at the output of the neuron, and the feed-forward,
inhibitory and reciprocal currents should be multiplied by some
carefully chosen coefficients, to equalize their effects on the
neuron. This task is considered in Supplementary Material,
section 3.
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TABLE 1 | Values of hyperparameters used in the simulation.

Hyperparameter Value

τm 20 ms

τa 15 ms

τθ 150 ms

τth 50 ms

τref 2 ms

τ 10 s

α 0.1

β 0.3

γ 0.1

η 0.15

1Vth 0.1

Isupervised 30

2.3. Scalability of the Network’s
Architecture
In general, the proposed principle and the corresponding
rules based on that principle should work with any complex
architecture of a recurrent SNN for any classification task, i.e., an
SNN can be trained up to some appropriate recognition accuracy.
The reason for this is that the neuron activity maximization
principle relies on the competition between neurons responsible
for different kinds or classes of input signal features, and works
with any type of connections. However, there is a possibility
that the convergence of learning is not achieved when some
prevailing quantity of neurons forms a strong family, because
of their cooperation, which suppresses the activity of all the
other neurons. It depends mainly on the global and local neuron
and the training rule parameters, which in current realization
should be carefully adjusted for a chosen architecture. It might
be promising to use some additional techniques for parameter
space reduction and recognition accuracy improvement such
as batch normalization or the metabolic rule defining a
certain limit for the total excitatory weight sum of a neuron.
The crucial necessity of cooperation and other methods
to improve the whole algorithm will be discussed later in
section 4.

There is also a question about the systematic choice
of the weight update rules for more complicated SNN
architectures. Despite the wide freedom of choice mentioned
earlier, the local learning rules are constrained by the neuron
activity maximization principle, on the one hand, and by the
functionality of the neuron layers, on the other hand. If one
would like to scale up a network, we should use the rules
describing excitatory weight updates for the feed-forward and
reciprocal connections of the types (6) and (7) for the repetitive
hidden layers, respectively, and inhibitory weight change for
the lateral competitive connections similar to the formula (9).
The last, classifying layer is somewhat different from the hidden
neuron layers and from any biological prototype. There is no
layer in which each neuron is responsible for only one class of
images. Therefore, the local training rules should be special for

this artificial layer, with strong competition between neurons,
similar to that defined in the formula (8).

Furthermore, for more complex SNN architectures, the spatial
sparsity of neuron connections should most likely be ensured to
detect low-level simple features at the shallow layers and provide
the sparsity of the information representation. Some additional
considerations about this are presented in section 4.

2.4. MNIST Dataset Encoding
The size of the SNN input layer was chosen according to the
MNIST dataset which contains 60,000 training objects and 10,000
test objects that are images of 28×28 pixel images of handwritten
digits with labels from 0 to 9 (LeCun et al., 1998). Three thousand
training images were used as the validation set. Each digit was fed
to the input of the network for Tinput = 100ms of simulation
time in the form of Poisson-distributed spike trains with firing
rates proportional to the intensity of the pixels of the input
images, followed by 100ms of the empty signal to allow the
current and activity of neurons to decrease. The firing rates of
the input neurons were distributed between 0 Hz and 250 Hz.
The initial weights were chosen from the uniform distribution in
the range [0, 1] for the feed-forward connections, the weights for
the lateral inhibitory connections were initialized to –1, and the
initial reciprocal connection weights were set to 0.

2.5. Hyperparameter Search
The proposed learning algorithm contains a sufficiently large
number of hyperparameters. Here we briefly provide the strategy
chosen for their search. The parameters Tinput , τm and τref
were initially set to their values and were not changed during
hyperparameter search. Isupervised injected into a target neuron
was set to the value that was slightly greater than that
guaranteeing 100 % accuracy during training. Learning rate
parameters α,β , γ , η should be chosen similar in their values.
Firstly, we found α = 0.1 that provides the fastest convergence
to the best result for the feed-forward SNN. We then noticed
that slightly greater β and η accelerated the convergence at the
early training phase. The time constant of the weight decay τ

was chosen to be small enough to let the hidden neurons learn
zero weights, linking them to some border pixels that always
provide zero signal. On the other hand, it was chosen to be large
enough to prevent the appearance of “dead” neurons (with all
zero weights) during training. The main parameters to which we
applied the grid-search procedure were τa, τθ , τth, 1Vth. The
algorithm convergence appeared to be very sensitive to the τθ

τa
ratio: when it became < 5 or > 15, the network accuracy fell
to about 10%. Also, it is very important to balance the currents
introduced into a neuron that are provided by different types of
connections. Details about the current balancing are described in
Supplementary Material, section 3.

3. RESULTS

3.1. Learning Curves
3.1.1. Original Model Case
The original network was trained in two modes: supervised and
partially unsupervised. The first assumes that when the image
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is presented to the input layer, supervised currents are injected
into the appropriate neuron of the last layer. Thus, the network
can learn, according to the local rules (6)–(9), which should
activate output neurons in response to the image of this class. In
the partially unsupervised approach we allowed such supervised
training only for a very short period of time, to pre-train the
model and then let the weights change in an unsupervised way,
according to the training rules described in section 2.2, without
any supervised current injection. The response of the network
was calculated as the argmax function of the vector of instant
activities of 10 output neurons, in the 50–100ms interval of the
image example presentation (200 ms overall, the last 100 ms is
a silent signal). Threshold dynamics were highly correlated with
activities, and can therefore be used to calculate the response of
the network as well.

The learning curves for the supervised and partially
unsupervised cases are shown in Figure 3. To evaluate the
recognition accuracy, 10,000 images from the test set were
presented to the SNN with fixed weights after every 50 training
images. We were training the SNN only on 30,400 train examples
to get the curves of Figure 3 because of the accuracy saturation
effect. After feeding the first 400 training objects to the network
we continued learning in different modes: with and without
supervised currents. The best accuracy was 95.4% and 72.1%
for the supervised and the partially unsupervised learning,
respectively. These are not very impressive values, but the
new algorithm is quite far from the optimal realization, which
should be taken into account (see also section 4). We also
tried to increase the number of neurons in the hidden layer
up to 400 without additional adjustment of hyperparameters.
An accuracy of 96.2% was obtained. We also trained a feed-
forward formal neural network (perceptron) with 100 neurons
in the hidden layer, to compare the convergence speed. We used
an SGD algorithm (Bottou, 1998) with a learning rate of 0.1,
batch size 50, ReLU non-linearity function, and acquired 98.5%
accuracy after 10 epochs of training. However, the convergence
speed was much slower than for supervised SNNs.

One may note the fast convergence of the FEELING
algorithm. Indeed, the accuracy saturation was observed after
only 12,000 images from the train set, whereas a traditional
learning algorithm such as backpropagation with stochastic
gradient descent, converges only after hundreds of thousands of
image presentations.

3.1.2. Ablation Study
To verify the importance of different connections in the proposed
recurrent SNN architecture, we studied the contribution of each
type of synapses in the network. Four types of architecture
with the same number of neurons were trained with a teacher
signal: a simple feed-forward network, a recurrent network with
inhibitory connections only in the last layer, a recurrent network
with inhibition in both hidden and output layers, and a fully
connected network with the original architecture described in
section 2.1.1. Note that hyperparameters such as α, β , γ , η,
τa, τθ were different from the values in Table 1 because they
were adjusted separately for each type of SNN architecture to
reach the best recognition accuracy results in each case. Learning

FIGURE 3 | Learning curves on MNIST dataset present the recognition

accuracy on the test set for the supervised mode (green), the partially

unsupervised mode (red). The latter implies the full image presentations for a

few images (400 in this example) at the beginning of the training in the

supervised mode (with a teacher’s current), followed by training without a

supervised current. Learning curve for the feed-forward formal neural network

(blue) with “784− 100− 10” architecture is presented for comparison of the

convergence speed.

FIGURE 4 | Ablation study. Learning curves for different connectivity

architectures are presented. In the legend, “output(+)” means the presence of

inhibitory connections in the output layer, “reciprocal(−),” the absence of

reciprocal connections from the output to the hidden layer, etc.

curves for these experiments are shown in Figure 4. Here we
evaluated our models on a test set of 10,000 images after 50
training images passed through the network. A positive effect
of adding recurrent inhibitory and reciprocal connections was
observed. The addition of lateral inhibitory connections provided
the greatest increase in accuracy.

We do not show the results of the cases—using the
notation of Figure 4 —“output(−), hidden(−), reciprocal(+)”
and “output(+), hidden(−), reciprocal(+),” because they did not
provide any improvement relative to “feed-forward SNN” and
“output(+), hidden(−), reciprocal(−)” topologies, respectively.
Without inhibitory connections in the hidden layer, neurons do
not form groups, so reciprocal connections became ineffective
in our experiments. Indeed, if the most active output neuron
supports the weak neurons of its family, this group becomes
stronger and competitively suppresses the activity of other groups
in the hidden layer, and the recognition accuracy increases.
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FIGURE 5 | Last layer weights visualization. The first row contains

reconstructed maximizing images for the output neurons (Nekhaev and Demin,

2017). The second row is a simple product of two forward weight matrices:

one of the size 784 × 100 and the other of size 100 × 10. The third and the

forth rows are visualization of the forward and reciprocal 100 × 10 weights.

The last one is their difference: positive (green dots) and negative (red dots)

values are shown.

3.2. Visualization of Neurons’ Receptive
Fields
3.2.1. Output Layer
When a neural network model is trained it is often interesting
to visualize neurons’ receptive fields to find out if there are
some neurons that obtain label-specific behavior of their activity.
It is also useful to create visualizations to verify if the initial
hypothesis of maximizing neuron activities is presented in the
trained network. For example, it is reasonable to check if the
forward and reciprocal 100 × 10 weight matrices correlate.
This analysis for the original SNN trained with the supervised
algorithm is shown in Figure 5.

It is worth noting that the simple multiplication of feed-
forward weight matrices gave quite recognizable visualizations of
digits learned by the output neurons (the 2nd row in Figure 5).
Slightly better and less noisy results were obtained by the
method described in Nekhaev and Demin (2017) (the 1st row
in Figure 5). It was also shown that the forward and reciprocal
weights between the hidden and output layers were highly
correlated. Moreover, removing the reciprocal connections after
training (making their weights equal to 0) decreased recognition
accuracy drastically from∼90 to∼55 %. It means that an output
neuron of a certain class strongly cooperates with the hidden
neurons from its family.

3.2.2. Hidden Layer
The hidden layer neurons can be visualized simply by the weight
values of their connections to the corresponding pixels of the
input layer (Figure 6). Hidden neurons specific to one MNIST
digit class (e.g., to “0”) can be joined into one family. Those
families are induced during training and then compete with each
other by negative lateral connections inside the hidden layer.
The local rule (9) also admits cooperation between neurons
belonging to the same class, i.e., a decrease in the absolute value

FIGURE 6 | Hidden layer neuron visualization. The feed-forward weight values

from the input to all 100 neurons of the hidden layer (organized here into the

square 10 × 10 for convenience).

of negative weights between them. So, it was interesting to see
how those families of neurons and their associations correlated
with each other after training the whole network. In Figure 7,
the tree of neuron families is presented, which was built in
the following way. We considered a hidden layer as a graph
with 100 nodes, having connections between them, all nodes
connected with each other. Each connection had a corresponding
value (inhibitory weight). We sorted connections according to
their values and started to prune connections with the most
inhibitory weights (starting from –1). When we reached the
value –0.9, two independent sub-graphs were formed (there is
no single connection between neurons in two different sub-
graphs) that can be seen at the top of the left-hand side of
Figure 7. When we continued this procedure up to the value
–0.2, ten independent sub-graphs appeared. We then mapped
these sub-graphs to digit labels: visualizations of weights from
the input to the hidden layer were easily associated with certain
digits. Therefore, the more negative the weights between neurons
were the further apart the corresponding family clusters at the
hierarchical tree were. It is interesting to note that clusters
were formed at the intuitive idea of visual resemblance of
different digits’ images. The clusters resolved at the minimum
level of competition (the cut-off weight value is –0.2) are
presented on the right-hand side of Figure 7. It is possible to
cluster neurons into the digit classes using information about
the whole weight vector of a neuron including its recurrent
connections, but the quality of such an algorithm is slightly
worse (see Supplementary Material, section 4) compared to
the simple procedure presented here and using only lateral
weights.
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FIGURE 7 | Hierarchical clustering of the neuron families. (Left) The tree of family clusters built by a level of competition between them, which is reflected by the

magnitude of negative weights between the corresponding hidden layer neurons (marked on the vertical axis). (Right) 10 clusters corresponding to the minimum level

of competition between hidden neurons (the cut-off weight value was chosen equal to –0.2).

4. DISCUSSION

The simple new local training rules for complex SNNs are
based on the biologically plausible hypothesis that each neuron
sets itself the goal to maximize its activity. These rules induce
the formation of neuron groups with the elements cooperating
inside each group and competing with neurons of other groups.
Nevertheless, due to the analog values of the negative weights,
there is no clear separation between groups, and a number of
“marginal,” poorly specialized neurons appear. Thus, the groups
should rather be called “families” meaning the “Romeo and
Juliet” effect for the marginal neurons. This new property might
be very important, as it builds an hierarchical structure of neuron
families, corresponding to the consistent hierarchical tree of
input pattern features. The similar features excite a specific group
of neurons, slightly different ones activate other neurons, but
these groups can join if those features are applied to the input
simultaneously, while suppressing the groups corresponding to
rather different features. For example, if one feature is responsible
for the nose, another for the eyes, and a third one for the mouth,
then together they are responsible for the face. Neuron groups
corresponding to these different features are combined when a
face image is applied to the input, forming one family. In our case
of simple MNIST task solving, it was seen from the hierarchical
clustering of neuron families that were responsible for visually
similar digits (Figure 7, left).

The most successful feed-forward deep neural networks
(DNN) today, operate by a similar principle, but they do
not have such a flexible competition between the features
inside the layers of hidden neurons. It can be assumed that
this leads to the multiple repetition of neurons responsible
for the same features, especially in the shallow layers (that
are closer to the network’s input). We therefore believe that
exploration of the deep recurrent SNNs with a hierarchical
neuron family structure, will significantly reduce the number
of layers and/or neurons in the layers in comparison with
DNNs. A similar property was introduced at the early stage
of neuroscience and ANN development by different authors
(Watanabe, 1960; Barlow, 1961). This was referred to as “Sparse

Distributed Representation” (SDR) according to the hypothesis
of sparse neuron representations of different poorly correlated
features and their combinations composing objects (Foldiak,
1990; Hinton and Ghahramani, 1997; Olshausen and Field,
2004). Despite the superficial resemblance of the suggested
FEELING algorithm’s results to those of the SDR they are
essentially different. Indeed, SDR is generally realized by a strong
competition of similar or strongly correlated features and by
weak or a lack of competition between poorly correlated or
independent features. It could be obtained by learning with a
local anti-Hebbian weight update rule of the following form [in
terms of formula (9)] (Foldiak, 1990):

dwij′

dt
∝ −ǫ(ajaj′ − p), (11)

where ǫ is a positive learning rate, p is a constant or a slowly
(compared to the neuron activity) changing value, aj and aj′ are
the activities of laterally interconnected neurons. It was shown
that the inhibitory connection strengthened when neurons were
jointly active, i.e., for similar or strongly correlated features. In
contrast to the FEELING algorithm, it was the opposite case–
cooperation [weakening of negative connections according to
(9)] of neurons responsible for similar or correlated features of
an object followed by the main principle suggested here, i.e., that
of maximizing neuron activity. We suppose that the FEELING
approach has a few important advantages compared to SDR:

1. The strategy of coding a feature by one neuron in the case of
SDR is unstable, because of the possibility of accidental loss
or death of this neuron. The copying of similar features by
the FEELING algorithm in different neurons is a more robust
information coding strategy.

2. If the number of neurons is greater than the number of
uncorrelated features, then the SDR learning leads to the
appearance of neurons with all zero (or close to zero) input
weights (Hinton and Ghahramani, 1997). Therefore, learning
new features supplied to the network’s input is very inefficient,
due to the absence or the weak activation of neurons. It is not
the case for FEELING, because all existing neurons learn the
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TABLE 2 | Recognition accuracies of the proposed training algorithm and others on the MNIST dataset. Rate-based neural coding means the spike-based network with

the rate coding.

Architecture Hidden layers Neural coding Learning-rule Accuracy (%)

Dendritic neurons (Hussain et al., 2014) - Rate-based Morphology 90.3

Convolutional SNN (Zhao et al., 2015) Convolutional coding Spike-based Tempotron 91.3

Spiking RBM (O’Connor et al., 2013) 500-500 Rate-based CD 94.1

Two layer network (Diehl and Cook, 2015) 100 Spike-based STDP 82.9

Two layer network (Diehl and Cook, 2015) 6400 Spike-based STDP 95.0

Two layer network (Lee et al., 2016) 800 Rate-based Back-prop 98.56

Three layer network (Lee et al., 2016) 300-300 Rate-based Back-prop 98.71

Convolutional SNN (Lee et al., 2016) conv(20)-conv(50)-200 Rate-based Back-prop 99.3

Convolutional SNN (Kheradpisheh et al., 2017) conv(30)-conv(100)-100 Spike-based STDP 98.4

Two layer network (ours) 100 Rate-based FEELING 95.4

Two layer network (ours) 400 Rate-based FEELING 96.2

features supplied, with hierarchical discrimination of families
corresponding to uncorrelated features. A new stimulus to the
network then activates some neurons, and re-learning takes
place.

3. Sequential learning of independent features and their
combination is incorrect in the case of SDR. To show
this, assume we have a network that is learning two
independent features–e.g., “O” and “x.” We then apply their
combination–⊗ to the input. The SDR learning will lead,
according to the joint activation of neurons responsible for
initially uncorrelated features, to the formation of a strong
inhibitory connection between these neurons. Eventually, this
will lead to the fact that there will be only one neuron
responsible for ⊗. Then, the separate features “O” and “x,”
applied to the network, will be misclassified as “⊗” (perceptual
inference error). This is not the case for the FEELING
algorithm. By repeating the described learning procedure, we
will still obtain separate neurons responsible for the features
“O” and “x” but joined into one family (with zero connection
between them).

Despite the FEELING’s advantages shown, it would be desirable
to preserve the property of representation sparsity due to its
energy efficiency and bio-plausibility (Olshausen and Field,
2004). It turns out to be true for the more advanced FEELING
algorithm, because of the ability to arrange spatial sparsity of
neuron connectivity (then only a small part of neurons from one
family is active – that is close to the activated pattern in the layer
below) and due to competition between uncorrelated features
(e.g., the family for “O” competes with that for “x,” so the neurons
with the weakest activities from both families are inhibited by
each other). Moreover, the competition between uncorrelated
features, as opposed to SDR, cleared the representation code from
possible background noise that was present at the input but not in
the focus of the network, i.e., with the neuron activity insufficient
for competition with the main objects in the focus.

The learning algorithm demonstrated in this work allows one
to build a hierarchy of features by local weight update rules,
potentially not requiring the huge labeled training databases,

because of the capability of unsupervised learning after the
relatively short period of supervised learning.

To the best of our knowledge, this work is the first
unambiguous demonstration of the hierarchical family tree
construction due to the flexible cooperation and competition
inside the hidden layer of neurons in an SNN. The simple
method of by-intralayer-weight clustering shown above can be

used for a more subtle analysis of the network topology formed.
In its turn, it may be useful for engineered re-connection or
re-distribution of the weights between neurons in future SNN
learning techniques. Moreover, this could be the way to model

in silico the mechanisms of formation of different nuclei, ganglia
and other structures in a biological nervous system, due to
their functional properties and inter-relations. Of course, the

directed research is necessary to confirm or reject the possibilities
described here.

The proposed “Family-Engaged Execution and Learning of
Induced Neuron Groups” or, briefly, the FEELING algorithm can
evidently work with different architectures of SNNs, with all types

of connections between neurons, with fast convergence, and can
operate in supervised as well as unsupervised modes. However,
FEELING, in its current form, has one serious drawback—
the MNIST benchmark accuracy and recognition is not high
enough, especially as a result of partially unsupervised training.

Comparison of our proposed approach for training SNNs with
other methods is shown in Table 2. Our algorithm achieves

the highest accuracy (by supervised learning) among two layer
networks with local training rules, but convolutional networks
and backpropagation algorithms still outperform the proposed
method. So, applying the FEELING algorithm to a convolutional

architecture seems to be a good step forward. It is also worth
noting that an increase in the number of neurons in the hidden
layer will likely improve the SNN accuracy, as a result of (i) a

better division of similar input features in the space of higher

dimensionality, and (ii) reduction of statistical spread in the
number of neurons and their connectivity strength (roughly, the
total sum of the neuron input weights), responsible for different
classes.
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At the same time, this is the first demonstration of the
algorithm and, most likely, is far from optimal. The possible
sources of improvement could be: (i) other local training rules
for the weight update, as we have used just one of the numerous
alternatives from those which could be computationally
economic, reflecting the main principle of maximizing neuron
activity, and biologically realistically; (ii) more appropriate
weight initialization before training, to make competition
between neurons more gentle and equitable; (iii) other
architecture and topologies of SNNs, e.g., the addition of separate
inhibitory neurons instead of the biologically implausible
inhibitory connections of excitatory cells, implementation of
sparse topology of a network’s connectivity, variation of the
number of neurons and layers. Lastly, different tactics of learning
should be tested, i.e., with alternating periods of supervised and
unsupervised training, with different sources and parameters of
noise, and others. Thus, the FEELING algorithm can be further
developed both to meet the requirements of various practical
tasks and to be employed in fundamental research with more
complex bio-inspired architectures of SNNs.
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