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Abstract 

Prior knowledge in pervasive computing recently has garnered a great deal of 

attention due to the high demand in most applications in order to fulfil the human 

needs. Human Activity Recognition (HAR) has considered every bit unitary of 

the applications that are widely explored to provide the valuable information to 

the human. Small in size within the various smartphones, accelerometer sensor 

has utilized to undergo the HAR research. Current HAR is not only covered the 

simple daily activities but also, broadly covered the complex activities. 

Nevertheless, the existence of high interclass similarities activities tends to 

increase the level of incorrectly classified instances. Hence, this study 

demonstrates the binarization classification strategy to tackle the above-

mentioned issue for the activities with a high degree of similarities. Acceleration 

signal in the time domain is transformed into frequency terms for separating the 

signals between gravitational and body acceleration. Two different groups of 

features; statistical, and frequency analysis are extracted in order to increase the 

diversity in differentiating between stationary and locomotion activities. The 

problem complexity is simplified using the binarization strategy before the 

extracted subset is evaluated. One-Against-All (OAA) classification strategy is 

introduced to tackle the challenge in improving the accuracy for very similar 

activity. The proposed work significantly resulted with high accuracy 

performance, particularly in differentiating between the various high interclass 

similarities activities using two physical activity datasets; WISDM and PSRG. 

Keywords: Accelerometer, Binarization, HAR, Interclass similarities, One-

against-all, WISDM. 
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1.  Introduction 

The advancement of pervasive computing has become an emerging discipline in 

the area of intelligent computing. Human Activity Recognition has one of the most 

ubiquitous intelligent application that has been aggressively explored. Activity 

recognition is seen as an important discipline in the smart environmental 

applications, but likewise to provide contextual knowledge for human-computer 

interaction applications. In a smart environmental application such as smart homes, 

the residents able to monitor and control their home appliances when they are away 

from their homes [1]. In addition, this application also talented to observe the 

regular resident activities in a certain period. For instance, the residents will receive 

a reminder through their smartphone to perform their regular task such as taking 

medicine or feeding their pets and also to engage the door when they are off from 

their homes. In the healthcare perspective, the activity recognition is capable to 

monitor and track the daily physical exercise particularly for those who need the 

intensive care to raise the degree of their physical activities such as elderly or stroke 

patient [2, 3]. It is unmanageable to manually record the regular practice sessions 

everyday chores since it wastes a great deal of time to do so [4]. Therefore, the 

automatic self-recorded system becomes a solution. These opportunities are not 

only yielding benefits to the mentioned group but also tend to ameliorate the human 

lifestyle by promoting people to execute a simple regular physical exercise.  

Numerous types of sensing technologies appeared in HAR such as an 

environmentally-based sensor, vision-based sensor and wearable-based sensor [5]. 

The environmental-based sensor is designed to observe the interaction between the 

user and the environment by monitoring and recognizing the type of activity 

performed. This kind of sensing technologies has not required any user intervention 

to manage the system. Nevertheless, the monetary value of the system 

implementation is commonly high and considered impractical to be implemented 

since it requires an abundant number of sensors to be installed. The camera, motion, 

temperature, humidity are the typical sensors need to be bound in a certain area at 

homes including the home appliances, furnitures, doors and windows [6]. The 

vision-based sensor might take place when the monitoring of the human behaviour 

is seen as crucial and desires [7] especially when it is involved disabled or aged 

people. The video camera will record the daily human chores including the daily 

routines or the uncommon routines. In certain cases, the system is able to predict 

what are the next incoming activity will be directed based on the previous pre-

recorded activity. Unfortunately, the lighting condition and the activities 

complexity turn out to be this technology is unable to perform well to acknowledge 

the activity [8]. Moreover, this system might unpractical to be carried out due to it 

will reveal the resident identity that will reduce the level of human satisfaction [9, 

10]. Thus, the wearable-based sensor is considered as a favourable in activity 

recognition system and gained popularity to provide more comprehensive 

intelligent physical activity application. Small in sizes and less in cost, the wearable 

sensor granted an outstanding deal to perform the HAR applications [11].  

The accessibility of the onward motion in the Micro-Machined Electromechanical 

Sensor System (MEMs) such as an accelerometer sensor has provided an opportunity 

to undergo the HAR applications. Practically designed, an accelerometer sensor is 

easy to attach to any part of the human body to sense the human action. Furthermore, 

this sensor also has been equipped with the various smartphones and smartwatches 

without requiring any additional devices. Many works that have been done in HAR 
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utilized numerous sensors such as accelerometer, gyroscope and magnetometer 

attached to different parts of the human bodies [12, 13]. Even though the accuracy 

obtained is considerably high, it might burden the carrier to hold a bunch of sensors 

and increase the uncomfortable feeling to practice their bit. Furthermore, the sensor 

placements also play important roles in defining the activity. Different sensor 

placements would produce different accuracy performance since the sensor 

placement is highly correlated with the signal characteristics [14]. In fact, even 

though the same activity performed by the same user, it might produce a different 

signal pattern due to several influences [15]. Hectic, emotional mood and the 

environment setting are considered as unitary of the facets that contribute to the 

generated signal. In addition, the signal pattern from the same activity might produce 

the different characters from the different users. This occurred due to the energy 

expenditure influenced by the human ages and the gait of each human might differ. 

An adult might produce a different signal pattern with elderly people even if they 

perform the same activity like jogging, running or walking.  

Furthermore, the existence of the high similarities between the activity 

categories is treated as a dominant crucial issue in HAR [16]. Moreover, the issue 

of handling the abundant number of features also plays important matters 

particularly in machine learning applications [17]. Generally, the interclass 

similarities could appear when the characteristics of the classes are fundamentally 

different, but present very similar characteristics in the signal pattern. The high 

amount of activity with interclass similarities yield to decrease the accuracy of 

performance. This occurs due to the signal between two or more activities are very 

similar and always confounding on each other. For representative, two walking 

activities with a different surface like ascending or descending stairs has always 

mystifying each other or with walking, even if the upshot of the gravity force makes 

the signal production differently. Previous work reported that those two kinds of 

activities are very difficult to discriminate and usually tends to increase the falsely 

with other walking activities. Hence, these works provide several contributions to 

tackle the issues that have been brought up. These fusions of the statistical with 

frequency analysis features is able to show a good performance in recognizing the 

stationary and locomotion activities. Binarization classification strategy using One-

Against-All (OAA) [18] is proposed to increase the diversity of differentiating 

between high interclass similarities activities such as walking upstairs and walking 

downstairs with high accuracy performance. The high accuracy performance also 

gathered using the proposed method even if various numbers of sensor placements 

are utilized. The proposed methods have also been evaluated with various types of 

machine learning classifiers in order to evaluate the effectiveness of this 

classification strategy. 

 

2.  Previous Work on HAR  

The earlier work of HAR using wearable-based sensor has reported in the 90’s 

where the author's utilized the accelerometer sensor in their work [19]. However, 

there are several unanswered questions that have been stated and still unsolved. The 

choice of attributes, the implementation of portable and inexpensive devices, the 

features that going to be used, either the data has been gathered in the real condition 

environment, the generalization of the training data and to minimize the energy and 

processing requirement of the data [20] are the several issues highlighted in recent 
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HAR. Due to these reasons, the more exploration using wearable sensing in HAR 

becomes prevalent. Bao and Intille [21], have done the pioneering work in HAR. 

A Decision Tree, decision table, Naïve Bayes, the nearest neighbour has utilized to 

classify accelerometer activities collected from five biaxial accelerometer sensors. 

These sensing elements are tied to various placements of the human bodies during 

the data collection. Mannini et al. [22] have proposed a work on a single 

accelerometer sensor and compared the effectiveness of the sensor placements to 

classify the physical activities in order to minimize the use of the sensor. Wrist and 

ankle placements have been utilized and compared in defining the most optimal 

performance to produce a decent performance. Later, they spread out their work in 

defining the best sensor placements from five different positions, ankle, thigh, hip, 

arm, and wrist [23].  

Kwapisz et al. [24] have collected physical activity dataset for six different 

physical activities using a single accelerometer sensor equipped with a smartphone. 

The Android smartphone has attached to front pant user pocket. They assess their 

work using several machine learning classifier models to recognize the activity 

performed. They obtain an acceptable result, yet though the accuracy for walking 

downstairs and upstairs seems to produce the less accuracy performance less than 

62%. Catal et al. [25] have extended a study to improve the recognition 

performance. In this study, the same pre-processed has been carried out as Kwapisz 

et al. [24]. However, they utilized several ensemble voting methods and compared 

the proposed method with several ordinal classifier models. Walse et al. [26, 27] 

have employed the same dataset to recognize the activities using several well-

known classifier models. They claimed that the ensemble classifier model using 

Random Forest and rotation forest produced high accuracy performance on 

average. Nevertheless, the above work is unable to produce the high level of 

accuracy to portray the high interclass similarities activities. Easy and directly 

derived from the acceleration signal, most of the study reported in HAR has utilized 

the features from time domain analysis than the frequency domain. Arif and Kattan 

[4] and Arif et al. [28], have reported two articles in the HAR to recognize various 

stationary and locomotion activities in the free-living environment. Referable to the 

simplicity, they drew out several features from time domain features in their work 

and reported that these features are able to recognize perfectly for postural activities 

rather than locomotion activities.  

As mentioned, most reported works are able to accomplish the high accuracy in 

average but neglected to differentiate between very similar activities involving the 

stairs activities [16]. Zhang and Sawchuk [29] have collected several stationary 

activities and additional locomotion activities from Motion Node sensing devices. 

In this work, five different types of walking activities are recorded. These walking 

activities are categorized into two categories; 2D (walk left, walk right, walk 

forward) and 3D (walk up, walk down). Zheng [13] has utilized that dataset and 

evaluated their work using five classifier models; Artificial Neural Network 

(ANN), Decision Tree, K-Nearest Neighbour (KNN), naïve Bayes and Least-

Squared Support Vector Machine (LS-SVM). Average accuracy obtained 

considered high, but the accuracy for 2D and 3D walking activities considered were 

more depressed than other types of activities. Recently, deep learning neural 

network such as Convolutional Neural Network (CNN) has become a solution to 

resolve the problem of interclass similarities activities [16, 30]. Nevertheless, the 

model complexity and the high ambiguity of features are considered as several 
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drawbacks of the CNN. Ronao et al. [16] found tha the recognition of high interclass 

similarities produced an acceptable performance, but the proposed model is 

incapable to recognize the stationary activity accurately. Furthermore, the 

implementation cost is definitely high since it involves a very high processing 

requirement to be implemented and it might impossible to be conducted in real-

time applications. Binarization classification strategy has introduced to tackle this 

issue of the high interclass similarities. There are two types of learning methods in 

this classification strategy, that is One-Against-All (OAA) and One-Against-One 

(OAO) [18]. This learning method has been proven to produce good accuracy to 

recognize the types of food within the same image that considered consists of high 

interclass similarities and various of intra-class variations [31, 32]. He and Jin [33] 

carried out the work to recognize physical activity using OVO. However, the work 

only covered the limited number of activities such as walking, jumping, still and 

running. The author also excluded the stairs activities in their experiment.  

 

3.  Proposed Framework on HAR  

In this section, a comprehensive work regarding on the proposed HAR framework 

is discussed. Analytical methods are depicted in detail on how the processes have 

been carried out. The step and process of the framework are visualized in Fig. 1. 

 

Fig. 1. The framework of the proposed HAR. 

3.1.  Physical activity dataset 

In this study, two physical activity datasets are used to assess the performance of 

this work. Wireless Sensor Data Mining (WISDM) Laboratory has collected 

activity recognition dataset using the accelerometer sensor embedded in Android 

smartphone [24]. The device was placed in subject front pants leg pockets for thirty-

six participants including male and female. The sampling frequency used is 20 Hz. 
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The subjects were required to perform six different types of activities such as 

sitting, standing, jogging, walking, ascending stairs and descending stairs. All the 

activities were conducted in a laboratory environment condition and were guided 

by one of their team members. The second dataset was downloaded from the 

Pervasive System Research Group (PSRD) activity dataset [34]. Similarly, 

WISDM, six physical activities such as walking down, walking up, walking, 

running, sitting and standing were collected from four male participants. Four 

Samsung Galaxy S2 smartphones are utilized and attached to four different sensor 

placements; dominant arm, belt, pocket and right wrist. The sampling rate used in 

this dataset is 50 Hz and the data entered at the same time for each of the actions. 

Each of the participants required to perform the activity in duration 3 to 5 minutes. 

Walking and running were performed in the department corridor, office space used 

for sitting activity and standing activity was carried out during the coffee break. 

For ascending and descending activities, 5-floor stairs were used.  

  

3.2.  Butterworth bandpass filter 

The accelerometer signal consists of noise, which, leads to degrading the accuracy 

performance. Since the accelerometer sensor is highly sensitive to the device 

placement, hence the noise is existed due to the effect of the gravitational forces. 

Filtering process needs to be applied to pre-process the raw signal stream before 

any further calculation is performed. Referable to the effect of the gravity forces, 

accelerometer sensor produces the signal in two different acceleration signals; 

gravitational acceleration and body acceleration. The high-frequency components 

of the gravitational acceleration are not used to specify the action performed. While 

the low-frequency component represented by body acceleration signal is needed to 

portray the activity. The bandpass filter could be employed to discriminate between 

both of these frequency components. The raw signal in the time domain will be 

transformed into a frequency domain by using a Fast Fourier Transform (FFT). In 

this work, 5th order Butterworth low pass filter has been employed to separate 

acceleration signal into gravitational and body acceleration [35]. In this filter, the 

selection of cut-off frequency might be crucial. If the chosen cut-off is too high, it 

is potential to wipe out the meaningful information from the signal. Hence, 0.3 Hz 

[35-39] is considered sufficient to split the signal by removing the unnecessary 

information of the acceleration signals.  

 

3.3.  Proposed feature extraction 

It any classifier model, it is difficult to learn the class pattern by using a very 

minimum number of characteristics. Moreover, the diversity of different activities 

highly associated with the signal variations, which, leads to the recognition accuracy. 

Hence, the chosen features tend to help the classifier model to be able to learn the 

signal characteristic. Some of the features are able to describe the stationary activity, 

but might incapable to describe the locomotion activity. In order to address this 

matter, several features from two different groups are brought out. The signal for each 

dimension (x-axis, y-axis and z-axis) is segmented by using the well-known 

segmentation method namely sliding window. The size of the window segment needs 

to be determined before the signal is divided into an equal size of window segment. 

In this work, sliding window sizes of 64 samples with 50% overlapping between two 
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consecutive window segments are applied. Subsequently, several features from two 

groups of features (statistical and frequency analysis) are extracted. 

 

3.3.1. Statistical features 

The simple statistical features as shown in Table 1 are used to recognize the 

stationary or postural activities [35] such as sitting, standing and laying down due 

to the signal representation of stationary activity not diverges. Besides the benefit 

of having a capability to recognize stationary activities, these features also require 

less computational complexity and directly derive from each window segment.  

 

3.3.2. Frequency analysis features 

Nevertheless, the statistical features seem to be unable to recognize the locomotion 

activity perfectly due to the signal of locomotion activity, which, extremely 

depends on the activity complexity. Moreover, the activity such as walking and 

jogging require the involvement of more actions from different types of human 

body, which, results to the different signal variations from each dimension. In 

addition, these frequency analysis features are considered as less susceptible to 

signal quality variations and correlate to the periodic nature of the specific activity. 

These features also used to specify a periodic action that produces different 

statistical measures such as walking and jogging since it requires correlated 

acceleration patterns in different ways. The names of the features extracted from 

frequency analysis are listed in Table 1. 

Table 1. Features extracted from both groups of features. 

 Features group 

Minimum Statistical features 

Maximum   

Mean   

Variance   

Standard deviation  

Skewness   

Kurtosis   

Harmonic mean  

Power bandwidth  Frequency features 

Band power  

Occupied bandwidth  

3.4.  Binarization strategy classification learning method 

The choosing of the classifier model is crucial in order to evaluate the extracted 

feature subsets. This stage is necessary to estimate the feature subsets by measuring 

the ability level of the classifier model to portray the activity class. The 

effectiveness of any classifier model is measured by evaluating the training model 

in recognizing the unseen data to the particular class. In some cases, some classifier 

models are able to solve the two-class classification problems, but simply unable 

to manage the multi-class classification problems accurately. It is difficult for any 

classifier model to produce the accurate prediction when the data is sparser. Also, 

most of the classifier models are able to produce a perfect recognition in separating 
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the data into two different classes by minimizing the selection class probabilities. 

In order to tackle this matter, the original multi-class problems need to be 

transformed into a series of two-class problems. Therefore, it will increase the 

probability of the classifier model to learn and recognize the class pattern within 

the two-class classification problems. 

The binarization strategy is applied by converting the multi-class problems into 

a series of two-class problems [18]. There are two strategies could be enforced, 

One-Against-All (OAA) and One-Against-One (OAO). In OAA, one binary class 

(two-class) will be created for each of the classes where the selected class belongs 

to the positive class whereby the negative class belongs to the union of all other 

classes. In this approach, the number of classifier model constructed is n-1 where 

n represents the number of classes. Alternatively, OAO is done by transforming the 

multi-class into a series of class problems where n (n-1)/2. This approach also being 

called as a round-robin classification. All the training instances need to be trained 

for all created models. In order to obtain the final prediction, the prediction results 

from each model needs are combined. The class who received the most majority 

vote is classified as the final class. However, the time consuming for OVO is 

extremely longer than OAA due to the expansion of the training model. In this 

study, several base classifier models such as Random Forest (RF), K-Nearest 

Neighbour (KNN) and Decision Tree (J48) are utilized. 

 

3.4.1. Random Forest ensemble classifier 

Two types of ensemble learning methods are widely applied in solving various 

applications including activity recognition problem; bagging and boosting [40]. In 

boosting, the incorrectly predicted points are received an extra weight from 

successive trees on the early predictors. Later, the weighted vote is taken to classify 

the final predictions. Unlike boosting, bagging does not depend on the earliest trees 

and each tree is independently generated by using a bootstrap sample of the dataset. 

Breiman [41] has proposed new ensemble classifier models called Random Forest, 

which, utilized additional randomness layer in bagging. The tree in the forests is 

changed by using different bootstrap of sample information. Each node is split 

using the best among subset predictors, which is randomly chosen from the 

generated node. These decision trees based algorithm utilized the same parameter 

setting to specify the final prediction class using majority voting. Moreover, this 

method has also been proven likened with several classifiers like SVM and ANN 

by minimizing the potential of overfitting. 

 

3.4.2. K-Nearest Neighbour 

K-Nearest Neighbour is required high computational space since all the data is 

stored and needed during the testing process [42]. K nearest instances search for 

the query instances and assigned to the common class among k neighbour in the 

vector space. The initial population is selected from all instances and each of them 

corresponds to the particular activity. Afterwards, the neighbour is identified and 

the nearest instances with the test instances are selected. The majority K-Nearest 

Neighbour corresponds to the activity is determined as final prediction. The 

advantage of this method is, the training time could be minimized due to this 

classifier model does not require to do any generalization.   
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3.4.3. Decision tree (J48) 

A Decision Tree is proposed based on the theory of technology in generating the 

knowledge-based system by inductive reference from the examples [43]. Due to the 

limitation of an early version of the Decision Tree, namely Iterative DiChaudomiser 

(ID3), the enhancement of the newest version of the tree is introduced to undertake 

the problem in order to manage very large numbers of values. This enhanced version 

is called as C4.5, which, work by recursively partitioning the training data set 

according to the test for the potential feature values in the separating the class. Easy 

to be implemented, this new tree is able to cater to the problem of incomplete data, 

continuous data and having the advantage to generate the pruned tree after the tree 

has been made. J48 comes when the Decision Tree integrates with the Java platform. 

 

4.  Results and Discussion 

The experimental comprises two different environments from two different datasets. 

Unlike WISDM, PSRG has utilized four sensor placements (arm, belt, pocket and 

wrist) to decide, which position produce an optimum result to distinguish several 

types of actions. In this entire work, there are two independent experiments have been 

conducted. Firstly, the experiment on WISDM is conducted based on one sensor 

placement to evaluate the strength of the proposed method and the solution obtained 

is compared with various related works. The second experiment is conducted to 

determine the best sensor placement to recognize several types of actions. 

 

4.1.  Experiment on WISDM physical activity dataset 

In this section, we visualize the acceleration signal in Fig. 2 for two high interclass 

similarities activities, which are downstairs and upstairs. This signal is represented 

in the time domain analysis, which, the signal represented in amplitude against 

time. To translate the signal into frequency response, Fourier analysis would be 

applied by using FFT where the signal is presented to identify how much the energy 

propagates in the range of frequencies. These processes need to be repeated for 

each of the signal dimensions (x-axis, y-axis and z-axis). 

 

 

 

 

 

 

 

 

 

Fig. 2. Raw signal in time domain analysis 

for downstairs (left) and upstairs (right) activities. 

It is clearly being seen that the recorded signal in stairs activities is extremely 

comparable. Furthermore, the unwanted information has also been clearly noticed 
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due to the representative of the high peak of signal amplitude. This unnecessary 

information (high-frequency component) needs to be removed before further 

calculation conducted. Since the only body acceleration signal used to govern the 

natural action, gravitational acceleration signal needs to be removed. Hence, we 

apply 5th order Butterworth low pass to separate the signal between gravitational 

and body acceleration. Figure 3 shows the unfiltered signal and the signal after the 

filtering process is applied. 

 

Fig. 3. Unfiltered signal (top) and filtered signal 

using 5th order Butterworth low pass filter (bottom). 

Referring to the Fig. 3, it is clearly can be shown that the filtered signal (bottom) 

represents in a proper sinusoidal wave in comparison with the unfiltered signal 

(top). This process is to ensure that the unwanted information (represented by a 

rough sinusoid wave) is excluded. Hence, the smooth sinusoid wave is gathered as 

shown in Fig. 3 (bottom) to show that the noise is being cleared. We choose 0.3 Hz 

cut-off frequency to produce the smooth sine wave. However, it seems to the 

likelihood of reducing the meaningful information if the chosen cut-off is too high. 

We choose several numbers of the cut-off parameter as shown in Table 2 to evaluate 

the signal before any further calculation takes place. 

Table 2. Accuracy using several numbers of the cut-off frequency. 

Cut-off  Accuracy Precision 

0.3 Hz  0.998 0.998 

0.5 Hz  0.994 0.994 

0.7 Hz 0.993 0.993 

0.9 Hz  0.987 0.987 

Afterwards, we segmented the filtered signal into a number of pre-determined 

sizes of window segments. Thus, 64 samples were generated by 50% of two 

consecutive segments was overlapped. In each segment, we extracted several 

features (as described in section 3.3) to evaluate the performance of the proposed 

features. In this experiment, we conduct two different experimental conditions, 

which is evaluating the features individually and in combining between both feature 

groups. In each evaluation, the 10-fold cross-validation testing strategy is applied 

for validation purposes. Two measurement indicators such as average accuracy and 

precision are used to evaluate the classification performance. Tables 3 to 5 show 

the classification accuracy for WISDM with different categories feature subsets; 

statistical, frequency analysis, and both categories respectively. 
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Table 3. Classification result using statistical features. 

 RF-OAA KNN-OAA J48-OAA 

 Accuracy Precision Accuracy Precision  Accuracy Precision  

Downstairs 0.988 0.997 0.768 0.721 0.926 0.934 

Upstairs 0.991 0.999 0.720 0.846 0.956 0.956 

Walking 1.000 0.996 0.948 0.904 0.986 0.986 

Jogging 0.999 1.000 0.946 0.918 0.993 0.992 

Sitting 1.000 1.000 0.855 0.970 0.995 0.998 

Standing 1.000 0.999 0.692 0.940 0.979 0.965 

Average 0.998 0.998 0.889 0.890 0.979 0.979 

Table 4. Classification result using frequency analysis features. 

 RF-OAA KNN-OAA J48-OAA 

 Accuracy Precision Accuracy Precision Accuracy Precision 

Downstairs  0.802 0.950 0.401 0.294 0.798 0.809 

Upstairs  0.848 0.948 0.453 0.448 0.841 0.848 

Walking  0.975 0.927 0.747 0.700 0.942 0.932 

Jogging  0.979 0.957 0.660 0.740 0.949 0.950 

Sitting  0.997 0.997 0.703 0.905 0.980 0.982 

Standing  0.973 0.991 0.475 0.767 0.917 0.945 

Average  0.947 0.947 0.641 0.660 0.920 0.920 

Table 5. Classification result using combinational 

of statistical with frequency analysis features. 

 RF-OAO KNN-OAA J48-OAA 

 Accuracy Precision Accuracy Precision Accuracy Precision 

Downstairs 0.986 0.998 0.724 0.646 0.931 0.922 

Upstairs 0.992 0.998 0.689 0.791 0.952 0.960 

Walking 1.000 0.995 0.921 0.888 0.985 0.986 

Jogging 1.000 1.000 0.919 0.888 0.993 0.991 

Sitting 1.000 1.000 0.803 0.952 0.993 0.997 

Standing 1.000 1.000 0.622 0.923 0.978 0.968 

Average 0.998 0.998 0.857 0.859 0.979 0.979 

The classification result by using a different feature subset is tabulated in Tables 

3 to 5. Table 3 shows the classification result using statistical features with three 

different base classifier models; RF, KNN, and J48. On average, RF recorded the 

decent achievement compared to other two base classifier models; KNN and J48. 

Average accuracy and precision obtained are above 99%, which is considered as 

the virtuous performance. All the instances from stationary activities sitting and 

standing are correctly classified as its classes. Furthermore, a walking also recorded 

100% of accuracy and 99.6% of precision. In fact, jogging outperformed other 

activities where almost 100% accuracy was obtained using RF. Also, the most 

difficult activity, which is reported very challenging to be classified such as 

downstairs and upstairs were recorded very encouraging result. Above 99% 

precision is recorded for both of these activities respectively. The lowest accuracy 

and precision is obtained from KNN where the average result recorded 89%. 

Standing recorded the lowest accuracy 69% using KNN. Two high interclass 

similarities activities downstairs and upstairs recorded 76% and 72%, respectively 

considered as an unsatisfied achievement. However, J48 recorded the second 

highest position since the accuracy and precision were recorded above 97%. 
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Downstairs and upstairs reported acceptable performance above 92% for accuracy 

and 95% for precision.  

Nevertheless, the result recorded is drastically declined when the feature subset 

from a frequency analysis is employed. Average accuracy and precision reported 

slightly lower using RF about 94% as indicated in Table 4. Two activities 

considered the most problematic to be differentiated have also recorded a decrease 

in their performance where it is below than 90% for both of them. 80% and 84% 

accuracy obtained on downstairs and upstairs activities, but precision recorded 

slightly more depressed than other stationary activities. Above 92% and 97% of 

accuracy and precision obtained from other types of activities. The worst result 

obtained by KNN where accuracy average and precision obtained 64% and 66% 

respectively. Stairs activities and standing recorded the lowest among others and 

this could be concluded that the accuracy was drastically dropped when features 

from frequency analysis were applied. To measure the functioning of our proposed 

features, both of the features are fused into one subset and the carrying out of the 

result as tabulated in Table 5. Even though the average accuracy obtained similar 

to Table 3, but the accuracy for two locomotion activities (walking and jogging) 

and stationary activities (sitting and standing) recorded significantly increase to 

100%. Upstairs also recorded second highest (99.2%) followed by downstairs 

(98.6%). Unlike RF and J48, KNN recorded slightly decline the performance of the 

result about 3% - 4%when both of the features were combined. There is no radically 

different for J48 when the same feature subsets are used. 

 

3.5.  Experiment on PSRG physical activity dataset 

In this section, two different experimental environments are utilized. Firstly, we 

conducted the experiment to find the most optimal sensor placements portray the 

various activity types. Secondly, we fused the sensor placement from a different 

position to compare with the former environment. Since the previous experiment 

showed good performance by using combinational of features from both 

statistical with frequency analysis, thus this experiment will discard the previous 

steps to measure the performance by using a single group of features. Tables 6 to 

9 show the classification accuracy for PSRG dataset based on different sensor 

placements respectively. 

Table 6. Classification result using combinational of statistical with 

frequency analysis features (arm position). 

 RF-OAA KNN-OAA J48-OAA 

 Accuracy Precision Accuracy Precision Accuracy Precision 

Downstairs 0.978 0.981 0.815 0.734 0.929 0.917 

Upstairs 0.949 0.987 0.666 0.769 0.901 0.920 

Walking 1.000 0.973 0.854 0.799 0.957 0.963 

Running 0.998 0.998 0.984 0.980 0.994 0.985 

Sitting 0.997 0.996 0.890 0.857 0.982 0.988 

Standing 0.996 0.996 0.791 0.875 0.975 0.986 

Average 0.992 0.992 0.884 0.885 0.971 0.971 
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Table 7. Classification result using combinational of statistical with 

frequency analysis features (belt position). 

 RF-OAA KNN-OAA J48-OAA 

 Accuracy Precision Accuracy Precision Accuracy Precision 

Downstairs  0.955 0.973 0.816 0.731 0.881 0.894 

Upstairs  0.980 0.966 0.762 0.822 0.905 0.923 

Walking  0.997 1.000 0.856 0.837 0.965 0.963 

Running  0.996 0.993 0.908 0.912 0.957 0.947 

Sitting  0.999 0.998 0.938 0.947 0.991 0.974 

Standing  1.000 1.000 0.947 0.977 0.988 0.994 

Average  0.991 0.991 0.880 0.883 0.955 0.954 

Table 8. Classification result using combinational of statistical with 

frequency analysis features (pocket position). 

 RF-OAA KNN-OAA J48-OAA 

 Accuracy Precision Accuracy Precision Accuracy Precision 

Downstairs  0.967 0.990 0.761 0.686 0.909 0.900 

Upstairs  0.982 0.990 0.702 0.806 0.904 0.906 

Walking  1.000 0.983 0.888 0.803 0.938 0.928 

Running  0.996 0.994 0.860 0.866 0.935 0.940 

Sitting  1.000 1.000 0.941 0.959 0.994 0.997 

Standing  1.000 0.999 0.901 0.956 0.989 0.996 

Average  0.993 0.993 0.854 0.858 0.949 0.949 

Table 9. Classification result using combinational of statistical with 

frequency analysis features (wrist position). 

 RF-OAA KNN-OAA J48-OAA 

 Accuracy Precision Accuracy Precision Accuracy Precision 

Downstairs  0.978 0.983 0.806 0.727 0.906 0.876 

Upstairs  0.957 0.988 0.735 0.778 0.890 0.882 

Walking  0.998 0.974 0.873 0.785 0.951 0.948 

Running  1.000 1.000 0.935 0.890 0.945 0.962 

Sitting  1.000 0.999 0.842 0.872 0.991 0.991 

Standing  0.999 1.000 0.781 0.925 0.968 0.980 

Average  0.991 0.991 0.834 0.839 0.947 0.947 

The classification result of the proposed method for each sensor placement; 

arm, belt, pocket, and wrist as tabulated in Tables 6 to 9 respectively. It is clearly 

can be ascertained that the accuracy and precision of each sensor position recorded 

above 99.1% using the proposed binarization classification OAA with ensemble 

RF base classifier model. As shown in Table 6, arm showed the highest 

performance to describe the walking. Running and two stationary activities, sitting 

and standing achieved above 99%. Downstairs and upstairs recorded acceptable 

performances where the accuracy obtained was 97.8% and 94.9%, respectively, 

which are higher than KNN and J48. J48 produced the second highest accuracy, 

followed by KNN where 97.1% and 84.4% respectively. In contrast, stationary 

activities recorded the uppermost when the sensor placed on a subject belt as 

referred to Table 7. Walking and running also recorded above 99.6% using RF and 

range from 95% to 99% obtained using J48. Contradictory to Table 6, the accuracy 

for upstairs recorded slightly upper than downstairs when the sensor is placed on 

the belt. This figure also recorded similar achievement when the sensor changes to 
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a pocket position. In this instance, there was little improvement in accuracy when 

the pocket is used to collect the signal where a 1.2% increase for downstairs and 

0.2% incline for upstairs as evidenced from the Table 8. 

Precision for both of these activities also recorded 99%, which is considered 

the eminent among the other positions. Three activities such as walking, sitting 

and standing recorded with 100% accuracy. This could be proven that the pocket 

position is the best sensor placement to determine the stationary activities. 

According to Table 9, running and sitting recorded 100% correctly classified 

instances for wrist placement. Two other activities like walking and standing 

recorded above 99% accuracy, followed by downstairs 97.8% and upstairs 

95.7%. This figure indicates that the hand sensor position gives the best accuracy 

for incline walking and body position placement produce better achievement for 

decline walking. The average accuracy and precision range from 83% to 88% 

obtained by KNN and from 94% to 97% by the J48 classifier. The next 

experiment has been done by combinational of all the acceleration from all sensor 

placements. The principle of this experiment is to evaluate if any improvement 

of accuracy when utilizing more than one sensor. The features extracted from all 

four sensor placements are incorporated and assessed using the proposed method 

as shown in Table 10.  

Table 10. Classification result of all sensor positions. 

 RF-OAA KNN-OAA J48-OAA 

 Accuracy Precision Accuracy Precision Accuracy Precision 

Downstairs  0.990 1.000 0.932 0.863 0.886 0.865 

Upstairs  0.996 0.993 0.868 0.957 0.885 0.913 

Walking  1.000 0.996 0.968 0.933 0.961 0.967 

Running  1.000 1.000 0.990 0.987 0.974 0.969 

Sitting  1.000 1.000 0.990 1.000 0.991 0.985 

Standing  1.000 1.000 0.986 0.999 0.989 0.987 

Average  0.998 0.998 0.962 0.963 0.955 0.955 

Average accuracy and precision of all the activities significantly achieved 98% 

using RF. The KNN is fractionally better than J48 particularly in recognizing the 

stairs activities. Accuracy for downstairs and upstairs significantly increased to 

99% and 99.6%, respectively, when all sensor positions were used. Precision for 

downstairs recorded 100%, which is considered the greatest achievement. Other 

four activities recorded almost 100% for both accuracy and precision. The accuracy 

and precision for both of stairs activities have also been increased by using KNN. 

Unfortunately, the accuracy in classifying the stairs activities was slight drops by 

using J48. Nevertheless, it is distinctly established that there is improvement 

obtained when all the data from all the sensor positions were merged. Our result 

also indicates that the binarization strategy classification learning OAA produced 

good results for making out the stairs activities, which, reported one of the cases 

leads to the decreasing of the recognition accuracy. 

 

3.6.  Comparison classification with benchmark studies 

In order to evaluate the performance of our proposed method, we compared our 

work with previous studies. In order to make the fairer comparison, the experiment 
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is conducted according to their procedure. Figure 4 shows the comparison result for 

WISDM with three previously reported work. 

 

Fig. 4. Comparison result with previous work for WISDM.  

It is distinctly demonstrated that the performance of our work outperforms the 

previous works [24, 25, 35]. Virtually all activities achieved a high level of 

accuracy, especially for jogging and walking. The most difficult activities reported 

with high interclass similarities activities (downstairs and upstairs) significantly 

outperform the work has been done by Arif et al. [35], who carried out the 

experiment by pruning the number of instances to reduce the space complexity of 

the KNN. Unfortunately, the accuracy of stairs activity recorded the lowest than 

others, even if the high percentage number of instances are pruned. In addition, it 

might possible insufficient instances remained to portray the activity. Catal et al. 

[25] also reported that the lowest accuracy contributed to stairs activities, but their 

result slightly improves the result obtained by Kwapisz et al. [24]. However, below 

than 85% of accuracy received when the authors combined the three classifier 

models (J48, logistic regression and multilayer perceptron) and predict the final 

prediction result using ensemble voting strategy. It might be concluded that the 

ensemble voting strategy able to improve the accuracy on average, but incapable to 

portray the high accuracy for the very similar class pattern. Even though the authors 

[24] has combined both stairs activities into one types of class, the recognition of 

those activities recorded lower than 78%. Figure 5 shows the comparison result 

with those obtained by Shoaib et al. [34] using the PSRG dataset.  

In this comparison, it is obviously highlighted that the accuracy of our proposed 

method outperforms the work reported by Shoaib et al. [34]. Each of the activity 

obtained above 99% accuracy, which is decidedly higher than their work. Even 

though the belt position recorded a bit more depressed than their work, but we were 

able to produce the promising result for the other three placements (arm, pocket 

and wrist). Shoaib et al. [34] claimed that the pocket position gives an optimal 

recognition performance in recognizing various activities. However, the accuracy 

of stairs activities recorded somewhat below than 90% on average. Hence, it could 

be summarized by applying our proposed features from both categories (statistical 

and frequency analysis features) significant upsurge in the performance in 

differentiating between stationary and locomotion activities. Furthermore, the most 
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difficult activity to be recognized involving the stairs activities also able to 

contribute to the virtuous performance of various sensor placements. The 

introducing of binarization strategy able to simplify the original multi-class 

classification problems into a series of two-class classification problems. Hence, 

this particular simplifies problem provides more probabilities to define the 

respected class by learning from the example within the two-class problems. As a 

result, the high interclass similarities activities (walking, downstairs and upstairs 

walking) are able to produce the high accuracy performance while minimizing the 

class selection probabilities. In comparison with previous work, the author has 

utilized the ordinal classifier model in their evaluation. It might happen some of the 

classifier models such as multilayer perceptron, logistic regression and KNN are 

unable to give a higher performance in differentiating the activity, which, involving 

very similar acceleration signal. 

 

Fig. 5. Comparison result with previous work for PSRG.  

5.  Conclusions 

This paper investigates the work in HAR using single accelerometer sensors placed 

in different sensor placements. Two physical activity datasets, WISDM and PSRG 

are utilized in which, the activity is collected by using the accelerometer sensor 

embedded in smartphones. Several contributions are highlighted in this work. In 

order to improve the performance of differentiating between stationary and 

locomotion activities, features from statistical descriptors and frequency analysis 

are introduced. The combinational from both of these features shown significantly 

upsurge the classification performance on average. The frequency features are able 

to describe the activity, particularly involving the high diversity motions from 

different signal dimensions. Secondly, we prove that the performance of the 

activity, which is involving the very similar signal pattern, is able to produce the 

high accuracy by simplifying the multi-class problems into several two-class 

problems. Binarization strategy, using OAA is introduced by transforming the 

multi-class problems into a series of coupling problems, which, the selected class 

is defined as a positive class while the rest of the class is defined as a negative class. 

Hence, it will give the classifier model more chances to learn and define the 

respected class for the example by minimizing the class selection probability. 
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Therefore, we are able to produce the high level of accuracy, particularly in 

differentiating between high similarities activities, which are involving the walking 

and stairs walking. In addition, the OAA binarization strategy has also proven the 

effectiveness with the integration with the Decision Tree classifier and with 

ensemble classifier models such as a Random Forest. Lastly, we also compare the 

effectiveness of the proposed work by using several sensor placements. The high 

accuracy performance is obtained even if various sensor positions are utilized. For 

projection work, we plan to carry out the experiment by minimizing the number of 

features, which, leads to the highest level of accuracy. Thus, it could minimize the 

classifier model complexity by utilizing the minimal number of features. The 

proposed OAA also could evaluate using other domain areas such as in 

Bioinformatics, text mining and medical image.  

 

 

Abbreviations 

 

ANN Artificial Neural Network 

CNN Convolutional Neural Network 

FFT Fast Fourier Transform 

HAR Human Activity Recognition 

J48 Decision Tree 

KNN K-Nearest Neighbour 

LS-SVM Least-Squared Support Vector Machine 

MEMs Micro-Machine Electromechanical Sensor System 

OAA One-Against-All 

OAO One-Against-One 

PSRG Pervasive System Research Group 

RF Random Forest 

WISDM Wireless Sensor Data Mining 
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