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As sessile organisms, plants are continuously exposed to a wide range of environmental
stress. In addition to their crucial roles in plant growth and development, small signaling
peptides are also implicated in sensing environmental stimuli. Notably, recent studies
in plants have revealed that small signaling peptides are actively involved in controlling
stomatal aperture to defend against biotic and abiotic stress. This review illustrates our
growing knowledge of small signaling peptides in the modulation of stomatal aperture
and highlights future challenges to decipher peptide signaling pathways in guard cells.
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INTRODUCTION

Plants are confronted with various biotic and abiotic stress conditions during their life cycle. Plant
stomatal pores, consisting of a pair of guard cells, are dynamic structures that open and close to
modulate gas exchange for photosynthesis and transpirational water loss, thus allowing plants to
respond appropriately to diverse environmental stimuli (Blatt et al., 2017). In addition, stomata
are also the major sites for bacterial entry. Therefore, guard cells-mediated stomatal opening and
closure serves as an useful strategy to defend against pathogen attack (Kim et al., 2010; Blatt
et al., 2017). Stomatal opening involves the activation of H+-ATPases in the plasma membrane
of guard cells. The activation of H+-ATPases results in membrane hyperpolarization that induces
K+ uptake via activation of inward K+ rectifying channels, thereby generating an increased turgor
in guard cells to induce stomata opening. Stomatal closure requires the inhibition of H+-ATPase
and the activation of anion channels, which synergistically cause membrane depolarization and K+

efflux through activation of K+ outwardly rectifying channels (Kim et al., 2010; Daszkowska-Golec
and Szarejko, 2013). Additionally, the elevation of cytosolic Ca2+ accompanies stomatal closure
(Kim et al., 2010). The molecular mechanisms underlying stomatal opening and closure have
been extensively studied (Kim et al., 2010; Daszkowska-Golec and Szarejko, 2013; Murata et al.,
2015). Notably, conventional phytohormones, including abscisic acid (ABA), brassinosteroids,
striglactones, salicylic acid (SA), and jasmonic acid (JA), have been found to play pivotal roles
through their coordination with key transcription factors to control stomatal movement in
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response to fluctuating environmental conditions (Daszkowska-
Golec and Szarejko, 2013; Murata et al., 2015; Lv et al., 2018;
Zhang et al., 2018). In this regard, ABA serves as a central hub that
integrates various signaling pathways to cause stomatal closure
by activating S-type anion channels, SLOW ANION CHANNEL-
ASSOCIATED 1 (SLAC1) and its homolog SLAC1 HOMOLOG3
(SLAH3) (Kim et al., 2010; Roelfsema et al., 2012). Additionally,
OPEN STOMATA1 (OST1), an essential gene for ABA-induced
stomatal closure, has been shown to phosphorylate and activate
SLAC1 in guard cells (Geiger et al., 2009; Lee et al., 2009; Vahisalu
et al., 2010).

Numerous small signaling peptides have been found in many
plant species, although most of them are yet to be functionally
characterized (Czyzewicz et al., 2013). Small signaling peptides
contribute substantially to plant growth and development
(Wang and Fiers, 2010; Murphy et al., 2012). In addition,
considerable advances have been also achieved towards our
understanding of interactions between small signaling peptides
and environmental stimuli (Wang et al., 2016). Particularly, it
was recently found that small signaling peptides are actively
implicated in controlling stomatal aperture to defend against
biotic and abiotic stress (Li et al., 2014; Takahashi et al., 2018;
Yu et al., 2018; Zheng et al., 2018). The Arabidopsis receptor-
like kinase FLAGELLIN-SENSITIVE2 (FLS2) recognizes flg22,
a 22-amino acid peptide derived from the bacterial flagellin
protein (Monaghan and Zipfel, 2012). Upon flg22 perception by
FLS2, which interacts with the coreceptor BRI1-ASSOCIATED
KINASE 1 (BAK1), a series of physiological events occurs
sequentially, including a transient elevation of cytosolic calcium
and the production of reactive oxygen species (ROS) which could
ultimately induce stomatal closure as a defense strategy to prevent
bacterial invasion (Figure 1A; Melotto et al., 2006; Li et al.,
2014; Deger et al., 2015). Mechanistically, the flg22-stimulated
receptor complexes activate OST1, which phosphorylates the
anion channel SLAC1 in guard cells. In addition, flg22-induced
cytosolic Ca2+ elevation could activate SLAC1 and SLAH3.
The activation of anion channels SLAC1 and SLAH3 releases
anions into the guard cell wall, thereby depolarizing the plasma
membrane to induce stomatal closure (Figure 1; Deger et al.,
2015). Recently, more studies have provided novel mechanistic
insights into small peptide-mediated signaling and its modes
of action in stomatal movement (Takahashi et al., 2018; Yu
et al., 2018; Zheng et al., 2018). Here, we review recent
advances in cell-cell communication through small signaling
peptides and their cognate receptors, with a focus on stomatal
movement.

PLANT ELICITOR PEPTIDES (Peps)
CLOSE STOMATA BY ACTIVATING
GUARD-CELL ANION CHANNELS IN AN
OST1-INDEPENDENT MANNER IN
ARABIDOPSIS

It has been known that Peps, a family of damage/danger-
associated molecular patterns (DAMPs), contribute to plant

defense against pathogen attack and abiotic stress through
perceiving by two closely-related receptor-like kinases, PEPR1
and PEPR2 (Yamaguchi et al., 2006, 2010). Enhanced bacterial
growth was observed in pepr1 pepr2 double mutant plants
sprayed with Pseudomonas syringae pv tomato (Pst) DC3000,
but not in plants infiltrated with bacteria, indicating that
PEPR-mediated stomatal defense may be achieved by inducing
stomatal closure as a mechanism to restrict bacterial entry.
Indeed, in vitro application of AtPeps significantly induced
stomatal closure in wild-type plants, but not in pepr1 pepr2
mutants, underscoring the importance of the AtPeps-PEPR
signaling module in the induction of stomatal closure, and
indicating that AtPeps-induced stomatal closure is PEPR-
dependent (Figure 1B; Zheng et al., 2018). Further investigation
revealed that SLAC1 and SLAH3 are required for the AtPep1-
induced stomatal closure based on the result that slac1 slah3
double mutants, but not slac1 or slah3 single mutants, are
impaired in the AtPep1-induced stomatal closure (Zheng et al.,
2018). Consistently, guard cells of slac1 slah3 double mutants
had much smaller S-type anion currents compared with the
wild-type or their single mutant plants. However, disruption of
OST1, a central regulator in stomatal closure, did not impair
the anion channel activity or AtPep1-induced stomatal closure
(Zheng et al., 2018), suggesting that, unlike the flg22-FLS2
pathway, OST1 is dispensable for AtPep1-induced stomatal
closure (Melotto et al., 2006; Zheng et al., 2018). BOTRYTIS-
INDUCED KINASE1 (BIK1), a coreceptor of PEPR, was
also implicated in AtPep1-induced stomatal response as bik1
mutants failed to respond to AtPep1 in stomatal closure assays
(Zheng et al., 2018). Together, these results indicate that the
AtPeps-PEPR signaling module exploits a unique mechanism
for stomatal closure promotion through SLAC1 and SLAH3
activation in an OST1-independent manner. Nevertheless, it
remains largely unknown that how the AtPeps-PEPR signaling
pathway stimulates stomatal closure. Thus, further experiments,
such as the identification of critical intermediate component(s),
detection of physical interaction(s) among different components,
and determination of the order of events, will facilitate the
elucidation of the mechanism of AtPeps-PEPR-induced stomatal
closure.

RAPID ALKALINIZATION FACTOR 1
(RALF1)-MEDIATED STOMATAL
OPENING AND CLOSURE THROUGH
DISTINCT PATHWAYS

The RALF family, comprising 35 members, is a group of cysteine-
rich peptides that control alkalization and cell expansion (Haruta
et al., 2014; Murphy and De Smet, 2014; Stegmann et al.,
2017). RALF1 is the most well-studied member of the RALF
family. RALF1 has been reported to directly bind the receptor-
like kinase FERONIA (FER) and stimulate phosphorylation of
FER and other proteins (Haruta et al., 2014). Heterotrimeric
guanine nucleotide-binding (G) proteins are composed of Gα,
Gβ, and Gγ subunits, and function in various biological processes
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FIGURE 1 | Small signaling peptides-mediated stomatal movement. (A) Pathogen-derived flg22 induced stomatal closure and stimulated the anion channels in an
OST1-dependent manner. Upon flg22 perception, the FLS2 receptor interacts with the coreeptor BAK1 to activate OST1 which could phosphorylate the anion
channel SLAC1 in guard cells. Additionally, the flg22-induced cytosolic Ca2+ elevation could activate SLAC1 and SLAH3. The activation of anion channels SLAC1
and SLAH3 release anions into the guard cell wall, thereby depolarizing the plasma membrane to induce stomatal closure. (B) The AtPeps-PEPR signaling pathway
close stomata by activating guard cell anion channels SLAC1/SLAH3 in an OST1-independent manner. (C) The RALF1-FER signaling module mediated stomatal
opening and closure through distinct pathways. All of the G protein subunits, except GAP1, are involved in the induction of stomatal closure and the inhibition of
stomatal opening triggered by RALF1. RALF1-FER signaling may trigger cytosolic Ca2+ elevation, which induces stomatal closure. OST1 is only involved in the
RALF1 inhibition of stomatal opening, but not in the RALF1 promotion of stomatal closure. (D) The CLE25 peptide-mediated root-to-shoot signaling stimulated the
stomatal closure under dehydration stress. Dehydration stress induces CLE25 expression in roots. The resultant synthesized peptide is transported to the leaves,
where it binds BAM1/BAM3 and subsequently stimulates ABA accumulation through activating NCED3 expression; this in turn induces stomatal closure. Dashed
lines represent missing step(s)/component(s) that are yet-undetermined in the signaling pathway.

including growth and development as well as stress resilience
in Arabidopsis (Trusov and Botella, 2016). Recently, FER was
identified as one of the Gβ subunit (AGB1)-associated proteins
through co-immunoprecipitation and mass spectrometry (Yu
et al., 2018). In combination with the fact that FER and G
proteins are involved in the modulation of the guard-cell ABA
response, it thus raises the hypothesis that RALF1 is also involved
in the stomatal response. Indeed, it was found that RALF1
inhibited stomatal opening and promoted stomatal closure,
while both RALF1 effects were completely abolished in fer
mutants, indicating that RALF1-regulated stomatal aperture is
dependent on the FER receptor (Figure 1B; Yu et al., 2018).
In addition, two independent agb1 mutants failed to respond
to RALF1 peptides in stomatal opening and closure assays,
indicating that AGB1 is necessary to transduce the RALF1
signal in stomatal movement. Likewise, disruption of three Gγ

subunits (AGG1, AGG2, and AGG3) rendered the agg triple
mutant insensitive to RALF1 in both stomatal opening and
closure (Yu et al., 2018). However, the loss-of-function mutant
of the canonical Gα protein GPA1 responded normally to
RALF1 application, in a manner similar to wild-type plants with
respect to the induction of stomatal closure and the inhibition

of stomatal opening. Conversely, disruption of three extra-
large Gα subunits (XLG1, XLG2, and XLG3) impaired RALF1-
mediated stomatal movement (Yu et al., 2018). Interestingly,
OST1 is only involved in RALF1 inhibition of stomatal
opening, but not in RALF1 promotion of stomatal closure
(Yu et al., 2018). Overall, these results identified a G protein-
dependent function for the RALF1-FER signaling module in
the modulation of stomatal movement, in which several guard-
cell ABA signaling components are also required. Combined
with previous studies, it is likely that RALF1 promotes stomatal
closure through activation of cytosolic Ca2+ signaling in an
OST1-independent manner but inhibits stomatal opening in an
OST1-dependent manner, suggesting that RALF1 differentially
regulates stomatal opening and closure through distinct signaling
pathways (Allen et al., 2001; Haruta et al., 2008; Yu et al.,
2018). However, the biological relevance of RALF1-mediated
stomatal movement remains elusive. FER has been shown to
play roles in multiple processes including facilitation of pathogen
invasion (Kessler et al., 2010; Stegmann et al., 2017); thus,
it is speculated that RALF1-FER signaling may be involved
in stomatal immunity. Alternatively, given the fact that FER
influenced the modulation of stomatal aperture by ABA, it is
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possible that RALF1 may crosstalk with ABA to coordinate the
stomatal movement (Fan et al., 2008; Yu et al., 2012; Chen et al.,
2016).

THE CLAVATA3/ENDOSPERM
SURROUNDING REGION-RELATED 25
(CLE25) PEPTIDE-MEDIATED
ROOT-TO-SHOOT SIGNALING
MODULATES STOMATAL CLOSURE

In Arabidopsis thaliana, the CLE peptide family has been
extensively studied, mainly in the context of stem cell
homoeostasis (Betsuyaku et al., 2011; Murphy et al., 2012;
Czyzewicz et al., 2013). Other than their notable roles in stem
cell fate, CLE genes have been found to be implicated in a wide-
range of biological processes and to mediate plant responses to
environmental stimuli (Wang et al., 2016). Intriguingly, it was
recently found that the CLE25 peptide serves as a root-to-shoot
long-distance signal that results in remote control of the stomatal
closure mediated by ABA during dehydration stress (Figure 1D)
(Takahashi et al., 2018). Specifically, CLE25 is expressed in the
vascular tissues of roots and leaves, and its expression was
rapidly elevated only in roots following dehydration (Takahashi
et al., 2018). Most importantly, among 27 chemically synthesized
CLE peptides, only CLE25 application to roots could stimulate
the foliar expression of a key ABA biosynthetic enzyme gene,
NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3),
and thus enhance ABA accumulation in leaves, whereas NCED3
expression is heavily suppressed in CLE25 knockout mutants
under dehydration stress conditions (Takahashi et al., 2018).
CLE25 application to both roots and leaves effectively induced
stomatal closure. Examination of the CLAVATA1/BARELY
ANY MERISTEM (CLV1/BAM) receptor-like kinase family
identified that BAM1 and BAM3 are required for CLE25-
mediated responses, based on the result that enhanced NCED3
expression and ABA accumulation were abolished in the bam1
bam3 double mutant following dehydration (Takahashi et al.,
2018). Additionally, CLE25 application did not induce NCED3
expression in leaves of grafted plants in which the bam1 bam3
shoot was grafted to the rootstock of either the wild-type plant
or the double mutant itself. In contrast, CLE25 application
enhanced leaf NCED3 expression in grafted plants in which the
WT shoot was grafted to either the wild-type rootstock or the
bam1 bam3 rootstock (Takahashi et al., 2018). The mobility
of CLE25 was further confirmed by using a mass-spectrometry
technique to identify CLE25 peptides that moved from roots
to leaves. Taken together, these results indicated that the root-
derived CLE25 peptide, functioning as a long-distance mobile
signal, could move to the leaves and bind BAM1/BAM3.

Collectively, it was found that dehydration induces CLE25
expression in roots, and that the resultant synthesized peptide
is transported to the leaves, where it binds BAM1/BAM3 and
subsequently stimulates ABA accumulation via activatingNCED3
expression; this in turn induces stomatal closure. However,
many questions remain to be addressed concerning steps from

dehydration-induced CLE25 expression to elevated ABA-induced
stomatal closure. For instance, how is the CLE25 peptide
transported? Given its molecular features, it is likely that
transportation of the CLE25 peptide is considerably slower
relative to that of conventional phytohormones and hydraulic
signals. It thus raises the question how the rapid stomatal closure
is achieved with multiple steps through long-distance CLE25
signaling by affecting ABA biosynthesis. In addition, it would
be of interest to establish the regulatory network of hydraulic
signals, ABA, and CLE25 peptides in the orchestration of stomatal
closure. It was also reported that water shortage could result
in increased xylem tension, which can act as a rapid signal
to induce foliar ABA synthesis (Christmann et al., 2013). It is
likely that CLE25 acts together with these signals to regulate
stomatal aperture, as it was observed that cle25 knockout mutants
exhibited increased water loss following a 10-min dehydration
stress (Takahashi et al., 2018). Moreover, how the recognition
of the CLE25 signal by BAM/BAM3 could induce NCED3
expression remains unknown. ABA acts as a mediator in the
CLE25-mediated remote fine-tune stomatal closure under water-
deficit conditions in plants. Therefore, future studies will also
be necessary to elucidate whether any guard cell ABA-signaling
components, such as OST1, ROS, and/or SLAC1/SLAH3, are
required for the remote CLE25-mediated stomatal response.

CONCLUDING REMARKS

Accumulating data reveals that small signaling peptides are
implicated in the modulation of stomatal aperture (Figure 1).
The studies summarized here represent a significant step towards
understanding small signaling peptide-mediated stomatal
responses and stress acclimation. As discussed, respectively,
questions persist regarding the stomatal response stimulated
by each aforementioned small signaling peptide. In a broader
context, the identification of critical intermediate component(s),
examination of physical interaction(s), and phosphorylation
regulation of different components, and determination of the
sequence of events, are all undoubtedly essential to further
elucidate the underlying mechanisms of the stomatal movement
mediated by these small signaling peptides. The regulatory
network comprising various signaling molecules that coordinate
the stomatal response remains unknown. Additionally, a
number of studies have suggested the existence of crosstalks of
signaling peptides with phytohormones and external stimuli
(Wang et al., 2016). In this regard, the aforementioned small
signaling peptides are presumably implicated in responding to
environmental stimuli and are integrated with phytohormones
(e.g., ABA) to modulate stomatal aperture. Nevertheless, the
interconnection of these signaling peptides in mediating stomatal
movement remains elusive. To date, very few peptide-receptor
pairs in the fine-tuning of stomatal movement have been
characterized. However, given the complexity of the signaling
and the number of predicted peptides, it is expected that more
pairs will be identified in the future. Indeed, many small signaling
peptide-encoding genes have been found to be highly/specifically
expressed in guard cells (Adrian et al., 2015). The function of
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these small signaling peptides in the fine-tuning of the stomatal
response needs to be addressed in the future.
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