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With the development of communication technology and network technology, as

well as the rising popularity of digital electronic products, an image has become an

important carrier of access to outside information. However, images are vulnerable

to noise interference during collection, transmission and storage, thereby decreasing

image quality. Therefore, image noise reduction processing is necessary to obtain

higher-quality images. For the characteristics of its multi-analysis, relativity removal,

low entropy, and flexible bases, the wavelet transform has become a powerful tool in

the field of image de-noising. The wavelet transform in application mathematics has

a rapid development. De-noising methods based on wavelet transform is proposed

and achieved with good results, but shortcomings still remain. Traditional threshold

functions have some deficiencies in image de-noising. A hard threshold function is

discontinuous, whereas a soft threshold function causes constant deviation. To address

these shortcomings, a method for removing image noise is proposed in this paper.

First, the method decomposes the noise image to determine the wavelet coefficients.

Second, the wavelet coefficient is applied on the high-frequency part of the threshold

processing by using the improved threshold function. Finally, the de-noised images are

obtained to rebuild the images in accordance with the estimation in the wavelet-based

conditions. Experiment results show that this method, discussed in this paper, is better

than traditional hard threshold de-noising and soft threshold de-noising methods, in

terms of objective effects and subjective visual effects.

Keywords: wavelet threshold, wavelet transform, image de-noising, MSE, PSNR

INTRODUCTION

The transmission, detection and collection of signals are subject to pollution of varying degrees
of random noise, influenced by the environment and due to the nature of the work. Thus, the
implementation of signal de-noising is necessary. How to filter out the noise in the real signal to
obtain effective information, is a current research hotspot. Wavelet transform has a time-frequency
local analysis function, and its de-noising results are relatively good. Thus, its application is also
very extensive.

In recent years, with the deepening of the intersection and research, along with the application
of mathematics and other disciplines, the application of fuzzy mathematics, mathematical
morphology, intelligent optimization, neural network, and wavelet theory and technology in image
processing, as well as some new methods of noise resistance have emerged. In the early stage, the
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traditional de-noising method has a low pass filter method,
which mainly includes median filtering, linear filtering and
adaptive filtering.

During image collection, coding and transmission, all images
are visible or invisible to varying degrees of noise. The image
noise is divided into three main categories. The first is Gauss
noise, which belongs to the category of electronic noise that is
produced by a sensitive element caused by the random thermal
motion of the electronic components. The second is Poisson
noise, which is produced during the process of photoelectric
conversion; it has an apparent effect under a weakened light.
The third is particle noise, which is produced during the process
of photography and can be found under a microscope. The
smooth images that can be seen in the photo will display random
particle images under the microscope (Auber and Kornprobst,
2006). The purpose of image processing is to perform some
operations or processing on the digitized image information,
in order to improve the image quality or to achieve a desired
effect. For example, the non-uniformity of the sensitivity of
sensitive components in photoelectric conversion, transmission
error and human factors during the digitization diminishes the
quality of an image, which contains various random noises.
Sometimes, this random noise will greatly affect the image
quality. The noise image affects not only the visual effect of
the viewed image, but also affects image processing. Image
de-noising aims to retain useful information and reduce or
eliminate the interference of noise in the image. De-noising is
a key link in image processing. In practical applications, this
process is often used as a pretreatment of image processing
and recognition, which is the basis of subsequent high-level
image processing. Thus far, all studies on image de-noising
have focused on this effect and has achieved great progress.
However, with the emergence of new problems, people have
higher standards of image quality. The traditional image noise
removal algorithm is based on the spectrum distribution. In
frequency, wavelet de-noising is the commonly used method to
separate useful information and noise from images (Johnstone
and Silverman, 2005, Othman and Qian, 2006). Other methods
include the Markov field model, partial differential equation and
LP regularization method (Baske, 2011). This method is also a
drawback on regularizing noise. The convergence rate is slow in
regions with minimal changes. Sinha and Dougherty (Thomas
Asaki and Kevin Vixie, 2010) combined fuzzy mathematics with
mathematical morphology and applied it to image processing. In
recent years, the feed forward BP neural network was proposed
as a filter to de-noise (Noh et al., 2011; Swami et al., 2017).
Wavelet transform has also greatly contributed to image de-
noising (Michal et al., 2006; Apotsos et al., 2008; Patil, 2015).
The correlation coefficient method is based on the correlation
between the wavelet coefficients at the corresponding positions
for each scale, whereas the noise is neither correlated nor has
a weak correlation on each scale to remove the noise. Noise is
mainly concentrated in high frequencies, provided that high-
frequency processing can achieve the effect of noise reduction.
In 2006, Elad and Aharon (2006) proposed a de-noising method
on the basis of sparse representation and KSVD dictionary

learning. The dictionary learned by the KSVD algorithm (Oey
et al., 2013) was used for image de-noising. However, the KSVD
algorithm ignores the similarity of the image, and the KSVD
algorithm cannot use the detailed information of the image
when learning the dictionary on a single scale. At present, the
popular multi-scale directional transformation mainly includes:
curved wave transformation (Palakkal and Prabhu, 2012),
contour wave trans-formation and non-sub sampling contour
wave transformation (Amisha et al., 2013). The multi-scale
transformation methods can use the inherent geometric features
of the natural image data, and all relative wavelet transforms
have remarkably improved in direction selection. The 3D block
matching algorithm (BM3D) (Lebrun, 2012) is an effective de-
noising method for Gauss noise. This algorithm can preserve
information such as edge and texture. BM3D comprehensively
utilizes non-locality, linear transformation threshold, Wiener
filtering, and sparse representation. BM3D also reveals details of
different sub-block classes and retains the basic characteristics
of each sub-block. This method can improve the resolution in
noisy images, however the computation is very large, as each
similar block needs to be computed. Pizarro et al. (2010) selected
non-local constraints as fidelity items. In similarity measure, the
error of noise image and real images was minimal. Moreover,
the high-order smoothing of the de-noised image was used as
a regularization term, and a non-local data smoothing model
was proposed. The model was applied to the similarity between
images to obtain a further general model. A selected unsuitable
threshold can easily present a Gibbs phenomenon (Huang et al.,
2005, Chen et al., 2005). Mallat presented alternating projection
(AP) for de-noising. The AP (Mallat and Hwang, 1992; Zhu et al.,
2017) method obtains the modulus maxima at each scale after the
signal is differentiated on each scale. Then, the non-propagating
modulus maxima should restore the signal. The disadvantage
of the alternating projection method is that the computation is
very large and, the iteration is prone to instability. Li proposed
a novel hybrid model based on an extreme learning machine,
k-nearest neighbor regression and wavelet de-noising (Li et al.,
2017).Using the linear mode to reduce noise will lead to the
loss of detail in textured images. The static wavelet transforms
(SWT) use time invariance to achieve image de-noising (Wang
et al., 2003). Some researchers (Zou et al., 2015; Liu et al., 2017)
proposed an approach that searches for candidate matching
blocks along the edges that are well-adapted to image details.
All similar blocks form a 3D group. De-noising is performed
by shrinking the coefficients of the 3D transform applied on
these groups. The non-linear diffusion filtering method based on
PDE, is a non-linear anisotropic de-noising method (Lee et al.,
2005). A non-linear model for de-noising can be excessive in the
smoothing of images. Scholars have also studied how to improve
the speed of de-noising. The Non-linear Diffusion techniques
and PDE-based variational models are very popular in image
restoring and processing. The researchers proposed (Fazli et al.,
2010; Zeng et al., 2012, 2018) that a heuristic method such as
Particle Swarm Optimization (PSO), be used for Complex PDE
parameter tuning byminimizing the Structural SIMilarity (SSIM)
measure. Tasdizen (2009) enhanced the algorithm efficiency by
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clustering the blocks with PCA, selecting the similarity between
block features as the measurement of block similarity, and
optimally estimating the parameters. Mahmoudi and Sapiro
(2005) proposed to accelerate the algorithm by eliminating
irrelevant neighborhoods in the weighted averaging process.
Currently, many researchers have proposed a combination
of ways for de-noising. For example, machine learning and
random walks are combined with traditional noise removal
methods (Huang et al., 2006; Jieru et al., 2016; Liu et al.,
2018). Zeng et al. (2017), proposed de-noising and de-
blurring gold immune chromatographic strip images via gradient
projection algorithms.

Presently, details of images and how to remove noise
from them has received increased attention. In this paper, we
present an improved threshold to de-noising of MRI images.
Experimental results show that the de-noising effect is better than
the hard and soft threshold.

PRINCIPLE OF WAVELET DE-NOISING
MEDTHOD

In current research, there are numerous ways to eliminate noise
from images. The application of wavelet de-noising is very
extensive. The wavelet method for removing noise has numerous
advantages. Not only is the algorithm simple to implement, but
it also has a particularly superb effect of de-noising. This method
has therefore achieved great results in practical applications. The
main principle of wavelet threshold de-noising is based on the
strong correlation of the wavelet. The energy concentration of the
signal after wavelet transform is often concentrated on the large
wavelet coefficient. The noise energy after wavelet transform does
not have concentrated characteristics, because the noise does not
have the correlation of wavelets. Wavelet coefficients with large
amplitude values are mostly signals, whereas the coefficients with
small amplitude values are largely noise. The threshold is set on
the basis of this property. The hard and soft threshold function
method was proposed by Donoho (Donoho, 1995) et al.

The hard threshold is expressed as follows:

ŵj,k =

{

wj,k, |wj,k| >= λ

0, |wj,k| < λ
(1)

The soft threshold is calculated as follows:

ŵj,k =

{

sgn (wj,k)(|wj,k| − λ), |wj,k| >= λ

0, |wj,k| < λ
(2)

The Semi-threshold function is expressed as follows:

ŵj,k =











0, |wj,k| <= λ

sgn (wj,k)
λ2(|wj,k|−λ1)

λ2−λ1

wj,k, |wj,k| > λ

, λ1 < |wj,k| < λ2 (3)

Although the soft, hard thresholds and semi- thresholds have
achieved some results, they all still have drawbacks. The hard
threshold function can better preserve boundary information

however, the hard threshold function is discontinuous at closed
values, thus removing the noise cancellation effect remains
rough. Furthermore, its application has some limitations; this
function only processes wavelet coefficients smaller than the
threshold and does not manage wavelet coefficients larger than
the threshold. Therefore, the de-noising result is relatively
different. The resulting estimated signal produces additional
oscillations. Furthermore, the interference of the noise signal
is often mixed in with the wavelet coefficients greater than the
closed value function. The soft threshold function has improved
overall continuity, and the de-noising result is relatively
smooth. However, after noise cancellation, the signal is easily
overwhelmed by noise, thereby resulting in difficulties at higher-
order derivatives, causing de-noising distortion. Moreover, the
soft threshold function performs constant value compression on
the wavelet coefficients rather than the threshold. This function
directly affects the degree of approximation of the reconstructed
signals. The semi-threshold function not only retains a large
coefficient, but also has continuity.

The calculation of complexity through this function is higher.
In the semi-threshold function, determining the threshold is a
difficult point. Therefore, the traditional threshold function has
its own defects and has certain limitations in its application,
which affects the effect of de-noising.

In this article, we proposed a new threshold function. We
improved the threshold to compensate for the deficiency of
soft and hard thresholds. In our experiment, we analyzed the
experimental results of subjective and objective experiments and
concluded that the improved threshold function de-noising effect
is better than the hard and soft threshold de-noising.

IMPROVED WAVELET THRESHOLD
DE-NOISING METHOD

For the method of threshold de-noising, using hard and soft
closed-valued functions, the basic idea is to remove relatively
small wavelet coefficients as much as possible. When a hard
threshold function is used to de-noise, although it can save
the effective part of the original signal relatively well, the
reconstructed signal after the noise processing will be very
rough. When de-noising with a soft threshold function, the
reconstructed signal will easily lose useful signals.

The key to threshold shrinkage is the determination of
threshold and threshold functions. If the threshold is selected
as large, details will be lost. If the threshold is selected small,
then the noise still exists. Although a hard threshold de-noising
is simple and easy to implement, it will generate a pseudo-
Gibbs phenomenon at the image boundary. In comparison
with hard thresholds, soft thresholds are continuous, and the
structure of wavelet coefficients is maintained, thereby effectively
reducing the pseudoGibbs phenomenon. However, whenwavelet
coefficients with an absolute value greater than the threshold
value are processed, the image edges will become blurred. To
achieve improved results for de-noising, we have enhanced the
threshold functions.
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Improved Threshold Functions
The improved threshold function is as follows:

ŵj,k =







wj,k −
wj,k

2 . 1

100
|wj,k |λ−99

, |wj,k| > λ
wj,k

2 . 1

1−log
|wj,k |/λ

100

, |wj,k| <= λ
(4)

The threshold function after adding an adjustment factor is as
follows:

ŵj,k =







wj,k −
wj,k .m

2 . 1

100
|wj,k |λ−99

, |wj,k| > λ
wj,k .m

2 . 1

1−log
|wj,k |/λ

100

, |wj,k| <= λ
(5)

Wherem ∈ Z.
When|wj,k| −→ λ+, the first inequality of Equation (4) can be

written as:

lim
|wj,k|−→λ+

(
wj,km

2
.

1

100|wj,k|λ − 99
) =

λ

2
(6)

When|wj,k| −→ λ−, the second inequality of formula (4) can be
written:

lim
|wj,k|−→λ−

(
wj,k.m

2
.

1

1− log
|wj,k|/λ

100

) =
λ

2
(7)

The threshold is continuous at the ±λ point and has high-order
derivatives. The threshold function is continuous, and the high
order is steerable. The second inequality slowly approaches zero.
Here in adjusts the shape of the threshold function;m adjusts the
variation of wavelet coefficient; k determines the asymptote of the
threshold function. When k = 1,we proposed that the threshold
function approaches the hard threshold function. When k = 0,
the threshold function approaches the soft threshold function.
Thus, the parameter k was adjusted; we proposed that the
threshold function can vary between the interval values of soft
threshold function and hard threshold function.

The new threshold function proposed in this paper combines
the advantages of soft and hard threshold functions. This
approach enables the smooth transition of the wavelet threshold
curve. The same continuity is achieved in the wavelet domain
as the traditional soft threshold function, which improves
the shortcomings of hard threshold function discontinuity.
Moreover, pseudo-Gibbs phenomenon can be avoided. The
new threshold function is a high-order steerable between the
intervals of |wj,k| > λ and |wj,k| <= λ . This type of
conductivity enables the elimination of the generated oscillation
phenomenon in threshold de-noising and the improves the
suppression of overkill of the detail coefficient. Thus, the signal
after reconstruction can be made smoother.

Improved Threshold Selection
The threshold is vital in image threshold de-noising, and Donoho
(1995) proposed a unified threshold method.

λ = δ
√

2 log(M ∗ N) (8)

However, this method is not ideal in practical applications and
causes over-segmentation (Grace et al., 2000). Through analysis,
it was found that the decomposition of the image by wavelet
increases with the number of decomposition layers. The energy
of noise will become smaller and smaller, and the energy of
image information will become increasingly larger. Wavelet
decomposition is performed in accordance with the high and low
frequency characteristics of a wavelet. This method proposes the
following hierarchical threshold estimation.

λ = δ
√

2 logM ∗ N ∗ (1− α∗j) (9)

Where j is the resolution scale. M × N represents image size.
0 < α < 1, and α denotes the adjustment parameter.
When we calculate the high-frequency threshold, α is a
smaller value, resulting in a slightly larger threshold. When we
calculate the low-frequency, α is a larger value, resulting in
a slightly smaller threshold. By adjusting α to the threshold
parameter α, the accuracy of the threshold estimation is
microscopically improved.

EXPERIMENT ANALYSIS

In this paper, the experimental analysis consists mainly of two
parts. The objective and subjective evaluation.

Objective Evaluation
To illustrate the effectiveness of the wavelet threshold algorithm
in medical image de-noising, the traditional threshold method
and the proposed method was compared. Objective evaluation
index is described by peak signal-to-noise ratio (PSNR) andmean
square error (MSE).

The PSNR is expressed as follows:

PSNR = 10 ∗ lg(
2552

MSE
) (10)

The MSE is calculated as follows:

MSE =
1

M ∗ N





M
∑

i=1

M
∑

j=1

((g(i, j)− ĝ(i, j)))2



 (11)

Where M ∗ N is the size of image; g(i, j)denotes original
image, and ĝ(i, j)represents the restoration image. Our data
were obtained from the Chinese People’s Liberation Army
118 Hospital. The results shown in Table 1 compare the hard
threshold method, the soft threshold method and the proposed
method.

Through simulation experiments, the data in Tables 1–3 show
that the proposed method obtains a large peak signal-to-noise
ratio and a smaller mean square error. Thus, our improved
wavelet de-noising effect is better.

Subjective Evaluation
The experiment was programmed in MATLAB2014 (b). MRI
brain images were used to prove the effectiveness of the
improved threshold function in medical image de-noising. After
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TABLE 1 | De-noising results in different ways of MRI 1.

MSE 0.01 0.03 0.05 0.1 PSNR 0.01 0.03 0.05 0.1

Hard threshold 310 603 643 1,495 23.21 20.33 20.05 16.49

Soft threshold 386 765 771 1,627 22.64 19.29 19.26 16.01

Proposed 147 311 341 625 26.46 23.20 23.20 20.17

TABLE 2 | De-noising results in different ways of MRI 2.

MSE 0.01 0.03 0.05 0.1 PSNR 0.01 0.03 0.05 0.1

Hard threshold 624 780 910 1,136 20.18 19.21 18.54 16.49

Soft threshold 740 952 1080 1,530 22.64 19.29 19.26 16.01

Proposed 206 338 483 668 24.99 22.84 21.29 19.83

TABLE 3 | De-noising results in different ways of MRI 3.

MSE 0.01 0.03 0.05 0.1 PSNR 0.01 0.03 0.05 0.1

Hard threshold 387 350 549 1,022 22.53 22.67 20.74 17.77

Soft threshold 465 422 647 1,308 21.46 21.88 20.02 16.96

Proposed 180 133 287 631 25.58 26.89 23.55 20.13

FIGURE 1 | MRI 1 of subjective results.

decomposition, the threshold was calculated using Equation (9)
and processed by the corresponding threshold. Finally, the image
was reconstructed to obtain the image after de-noising. The
subjective experimental results show that the method proposed
in this paper can achieve improved de-noising effects. De-noising
effects are achieved when the mean value is 0 and the variance is
as follows: 0.01, 0.03, 0.05, and 0.1. The experimental results are
shown in Figures 1–3

FIGURE 2 | MRI 2 of subjective results.

After adding noise, the original image was almost drowned
by noise. Using soft and hard thresholds to remove noise,
considerable noises remained in the image. Given the increase
in noise, the image appears smoother by using soft and hard
thresholds to remove noise. The method in this paper, removed
all the noise in the image, and the image was relatively clear.
By contrasting the experiments, we suggest that the proposed
method has a better effect than hard and soft threshold methods.
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FIGURE 3 | MRI 3 of subjective results.

CONCLUSION

In this study, we analyzed the shortcomings of traditional hard
and soft threshold functions for medical image de-noising. We
proposed an improved threshold function for de-noising. The
mediation factor was increased to find the best estimate of
the wavelet coefficient function. The wavelet coefficients were

smoothed by the soft threshold function. Thus, the image looks
smooth when noise is removed via soft threshold. Through
subjective and objective evaluations, the results show that the
effect of the hard threshold function is better than that of
the soft threshold. However, the signal will produce jumping
points when generating additional shocks and the original
signal will not be the smooth. The hard threshold method
will predict the ringing effect. Improved threshold selection
based on the multi-layer wavelet transform, overcomes the
disadvantages of soft and hard thresholds. Experimental results
showed that the proposed method in this paper can effectively
improve the de-noising performance of both soft and hard
threshold functions.
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